Conveners
Parallel session B7: Mesons in Matter 3
- Thomas Jude (University of Bonn)
At incident momenta below 2 GeV/c pion nucleus scattering is an ideal tool to study
properties of baryonic resonances in the nuclear medium. Previous measurements were mostly focused on the Δ(1232) resonance region and performed mostly with positive pions. In this energy range [1,2] pion absorption or scattering, including charge exchange reactions have been extensively studied. At higher...
Basing on the available published yields of strange hadrons emitted from heavy-ion collisions at beam kinetic energies within 0.6A - 3A GeV we propose the parametrizations of yields of K$^\pm$, K$^0_s$, $\phi$ mesons and $\Lambda+\Sigma^0$ hyperons as function of available energy and mean number of participants, $A_\mathrm{part}$. As different sources estimate $A_\mathrm{part}$ using three...
Relativistic nucleus–nucleus collisions offer a unique possibility for studying nuclear matter under the influence of high temperature and pressure. During the collision a system of interacting nucleons, resonances, and mesons, called hadronic fireball, is created.\par
The Dielectron Spectrometer HADES operated at the SIS18 synchrotron of FAIR/GSI Darmstadt recently provided new intriguing...
The study of femtoscopic correlations of photon pairs emitted from heavy-ion collisions can serve as an unique probe of the source's spacetime evolution and properties. In contrast to commonly used charged particles, photons are not subject to strong, nor electromagnetic interactions, having relatively long mean free path. These properties imply no to minimal distortion of the carried...