Exclusive production of η and η' mesons in proton-proton collisions at FAIR energies

Piotr Lebiedowicz (IFJ PAN)

Contents 1.Introduction 2.Formalism 3.Results 4.Conclusions

Workshop at 1GeV scale: From mesons to axions 19-20.09.2024 | Faculty of Physics, Astronomy and Computer Science, Jagiellonian Univeristy

Introduction

• Exclusive production of axial-vector $f_{1}(1285)$ meson (J^{PC} = 1⁺⁺) in proton-(anti)proton collisions for energy ranges available at the GSI-FAIR with HADES and PANDA P. Lebiedowicz, O. Nachtmann, P. Salabura, A. Szczurek, PRD 104 (2021) 034031

We shall learn from f_1 production about the $\rho \rho f_1$ and $\omega \omega f_1$ coupling strengths.

The narrow width of the η meson allows to set a mass cut on the $\pi^+\pi^-\pi^0$ invariant mass and suppresses the multi-pion background efficiently.

• We have estimated that HADES should allow the identification of $f_1(1285)$ in the $\pi^+\pi^-\eta$ channel.

- \cdot η'(958) \to π⁺π η and can also be visible, this requires a careful analysis of the production mechanism
- In this talk I will discuss exclusive production of η and η' mesons

We study exclusive production of pseudoscalar meson in the reaction

 $p(p_a, \lambda_a) + p(p_b, \lambda_b) \rightarrow p(p_1, \lambda_1) + p(p_2, \lambda_2) + \eta(k)$

where $p_{a,b}$, $p_{1,2}$ and $\lambda_{a,b}$, $\lambda_{1,2} = \pm \frac{1}{2}$ denote the four-momenta and helicities of the nucleons, respectively, and k denotes the four-momentum of the η meson.

The cross section is as follows

$$
\sigma(pp \to pp\eta) = \frac{1}{2} \frac{1}{2\sqrt{s(s-4m_p^2)}} \int \frac{d^3k}{(2\pi)^3 2k^0} \frac{d^3p_1}{(2\pi)^3 2p_1^0} \frac{d^3p_2}{(2\pi)^3 2p_2^0}
$$

$$
\times (2\pi)^4 \delta^{(4)}(p_1 + p_2 + k - p_a - p_b) \frac{1}{4} \sum_{p \text{ spins}} |\mathcal{M}_{pp \to pp\eta}|^2
$$

including a statistics factor $1/2$ due to identical particles appearing in the final state. The complete amplitude is

$$
\mathcal{M}_{pp\rightarrow pp\eta}=\mathcal{M}_{pp\rightarrow pp\eta}(p_1,p_2)-\mathcal{M}_{pp\rightarrow pp\eta}(p_2,p_1)
$$

The relative minus sign here is due to the Fermi statistics, which requires the amplitude to be antisymmetric under interchange of the two final protons.

Basic production mechanisms for $p_1p_2 \rightarrow p_1'p_2'\eta$ with $M = \pi$, σ, η, ρ^0 , ω, ...

 p'_1

 p'_2

In the calculations we can consider the amplitude given by the sum of the contributions with the intermediate protons, nucleon resonances and the vector-meson exchanges (VV-fusion processes).

where $p_{1f} = p_a + q_2 = p_1 + k$, $q_2 = p_b - p_2$, $t_2 = q_2^2$

The amplitude (b) with the ρ^{o} -meson exchange is obtained by making the replacement

$$
\Delta^{(\pi)}(q_2) \rightarrow \Delta^{(\rho)}_{\mu\nu}(q_2),
$$

\n
$$
\Gamma^{(\pi NN_{1/2}^*)}(p_{1f}, p_a) \rightarrow \Gamma^{(\rho NN_{1/2}^*)\mu}(p_{1f}, p_a),
$$

\n
$$
\Gamma^{(\pi NN)}(p_2, p_b) \rightarrow \Gamma^{(\rho NN)\nu}(p_2, p_b)
$$

The pseudoscalar-meson-nucleon coupling Lagrangians can be written as

$$
\mathcal{L}_{\pi NN} = -\frac{g_{\pi NN}}{2m_N} \bar{N} \gamma_5 \gamma_\mu \partial^\mu (\tau \Phi_\pi) N
$$

$$
\mathcal{L}_{\eta NN} = -g_{\eta NN} \bar{N} \left(i \gamma_5 \lambda + (1 - \lambda) \frac{1}{2m_N} \gamma_5 \gamma_\mu \partial^\mu \right) \Phi_\eta N
$$

where N and Φ denote the nucleon and meson fields, respectively. The parameter λ controls the admixture of the two types of couplings: psedoscalar (PS) ($\lambda =$ 1) and pseudovector (PV) ($\lambda = 0$). We take $g_{\pi NN}^2/4\pi = 14.0$. For the ηNN coupling we take $\lambda = 0.504$ and $g_{\eta NN} \rightarrow g_{\eta} = g_{\eta NN}/\lambda = f_{\eta NN}/(1 - \lambda) = 4.03$ [Kirchbach]. For the $\eta' NN$ case we take $\lambda = 1$ (PS) or 0 (PV) and $g_{\eta' NN} = 2$.

The MNN^* vertices involving spin-1/2 nucleon resonances are obtained from the effective Lagrangians

$$
\begin{split} \mathcal{L}_{\pi NN_{1/2}^+}^{\rm PS} &= \pm ig_{\pi NN^*} \, \bar{N}^* \begin{pmatrix} 1 \\ \gamma_5 \end{pmatrix} (\tau \Phi_\pi) N + \text{h.c.} \,, \\ \mathcal{L}_{\eta NN_{1/2^+}^*}^{\rm PS} &= \pm ig_{\eta NN^*} \, \bar{N}^* \begin{pmatrix} 1 \\ \gamma_5 \end{pmatrix} \Phi_\eta N + \text{h.c.} \,, \\ \mathcal{L}_{\pi NN_{1/2^+}^*}^{\rm PV} &= \pm \frac{g_{\pi NN^*}}{m_{N^*} \mp m_N} \, \bar{N}^* \begin{pmatrix} \gamma_\mu \\ \gamma_5 \gamma_\mu \end{pmatrix} \partial^\mu (\tau \Phi_\pi) N + \text{h.c.} \,, \\ \mathcal{L}_{\eta NN_{1/2^+}^*}^{\rm PV} &= \pm \frac{g_{\eta NN^*}}{m_{N^*} \mp m_N} \, \bar{N}^* \begin{pmatrix} \gamma_\mu \\ \gamma_5 \gamma_\mu \end{pmatrix} \partial^\mu \Phi_\eta N + \text{h.c.} \,, \end{split}
$$

M. Kirchbach and L. Tiator, On the coupling of the η meson to the nucleon, Nucl. Phys. A 604 (1996) 385

K. Nakayama, J. Speth, and T.-S. H. Lee, η meson production in NN collisions, Phys.Rev. C65 (2002) 045210

K. Nakayama, J. Haidenbauer, C. Hanhart, and J. Speth, Analysis of the reaction $pp \rightarrow$ ppη near threshold, Phys. Rev. C 68 (2003) 045201

L. P. Kaptari and B. Kämpfer, Di-electrons from η-meson Dalitz decay in proton-proton collisions, Eur. Phys. J. A 33 (2007) 157

R. Shyam, η-meson production in nucleonnucleon collisions within an effective Lagrangian model, Phys. Rev. C 75 (2007) 055201

where the upper (lower) sign and factor in bracket correspond to negative (positive)-parity resonances.

The $MNN^*_{3/2}$ vertices involving spin-3/2 nucleon resonances can be written

as

$$
\mathcal{L}_{\pi NN_{3/2}^*} = \frac{g_{\pi NN^*}}{m_{\pi}} \bar{N}^{*\mu} \Theta_{\mu\nu}(z) \begin{pmatrix} \gamma_5 \\ 1 \end{pmatrix} \partial^{\nu} (\tau \Phi_{\pi}) N + \text{h.c.},
$$

$$
\mathcal{L}_{\eta NN_{3/2}^*} = \frac{g_{\eta NN^*}}{m_{\eta}} \bar{N}^{*\mu} \Theta_{\mu\nu}(z) \begin{pmatrix} \gamma_5 \\ 1 \end{pmatrix} \partial^{\nu} \Phi_{\eta} N + \text{h.c.},
$$

where $\Theta_{\mu\nu}(z) = g_{\mu\nu} - (A(1+4z)/2+z)\gamma_{\mu}\gamma_{\nu}$. The choice of the so-called "off-shell" parameter" z is arbitrary and it is treated as a free parameter to be determined by fitting to the data. We take $A = -1$ and $z = -1/2$ for simplicity.

The partial decay widths of nucleon resonances with $J = 1/2$, $3/2$ could be calculated by the Lagrangian couplings, as following

$$
\Gamma(N_{1/2}^* \to NM) = f_{\text{ISO}} \frac{g_{MNN^*}^2}{4\pi} p_N \frac{E_N \pm m_N}{m_{N^*}},
$$

$$
\Gamma(N_{3/2}^* \to NM) = f_{\text{ISO}} \frac{g_{MNN^*}^2}{12\pi} \frac{p_N^3}{m_M^2} \frac{E_N \mp m_N}{m_{N^*}},
$$

where $p_N = |\mathbf{p}_N|$ and E_N denote the absolute value of the three-momentum and energy of the nucleon in the rest frame of N^* , respectively. The isospin factor f_{ISO} is equal to 3 for decays into mesons with isospin one (π) , 1 otherwise (η) . The absolute value of coupling constants g_{MNN^*} $(M = \pi, \eta)$, could be determined by the experimental decay widths of $\Gamma(N^* \to NM)$ in the compilation of PDG.

Table 1: Coupling constants for the MNN^* ($M = \pi, \eta, \eta'$) vertices. The coupling constants g_{MNN^*} are dimensionless. The symbol "(-)" indicates the negative sign of the g_{MNN^*} coupling constant. The hadronic Breit-Wigner parameters for N^* resonances and the branching ratios (\mathcal{B}) are taken from PDG.

N^*J^P	Mass (MeV)	Width (MeV)	Decay channel	$\mathcal{B}(\%)$ [PDG]	$g_{MNN^*}^2/4\pi$
$N(1520)3/2^-$	1515	110	$\overline{\pi N}$	65 $[60 \pm 5]$	0.204
			ηN	0.08 [0.08 ± 0.01]	$3.945\,$
			$\pi\pi N$	34.92 [30 ± 5]	
$N(1535)1/2^-$	1530	150	πN	$50[42 \pm 10]$	0.042
			ηN	42 [42.5 \pm 12.5]	0.290
			$\pi\pi N$	$8[17.5 \pm 13.5]$	
$N(1650)1/2^-$	1650	$\overline{125}$	$\overline{\pi N}$	60 $[60 \pm 10]$	0.037
			ηN	25 [25 \pm 10]	$(-)$ 0.076
			$\pi\pi N$	15 [39 \pm 19]	
$N(1700)3/2^-$	1720	$\overline{200}$	$\overline{\pi N}$	$12 [12 \pm 5]$	0.021
			ηN	2 [seen]	0.916
			$\pi\pi N$	86 [> 89]	
$N(1710)1/2^+$	1710	140	πN	$12.5 \cdots 20$ [12.5 ± 7.5]	$0.101 \cdots 0.161$
			ηN	$30 \cdots 50 [30 \pm 20]$	$2.021\,\cdots\,\,3.368$
			$\pi\pi N$	$57.5 \cdots 30 \; [31 \pm 17]$	
$N(1720)3/2^+$	1720	250	$\overline{\pi N}$	11 [11 \pm 3]	0.002
			ηN	$3[3 \pm 2]$	0.079
			$\pi\pi N$	86 [> 50]	
$N(1895)1/2^-$	1900	120	$\overline{\pi N}$	$5[10 \pm 8]$	0.0025
			ηN	30 [30 \pm 15]	0.058
			$\eta' N$	25 [25 \pm 15]	0.510
			$\pi\pi N$	40 [45.5 \pm 28.5]	
$N(1900)3/2^+$	1920	$\overline{200}$	$\overline{\pi N}$	10.5 [10.5 \pm 9.5]	0.001
			ηN	$8 [8 \pm 6]$	0.064
			$\eta' N$	6 $[6 \pm 2]$	9.862
			$\pi\pi N$	75.5 [> 56]	
$N(2100)1/2^+$	2100	260	$\overline{\pi N}$	$20[20 \pm 12]$	0.138
			ηN	25 [25 ± 20]	0.750
			$\eta' N$	$8 [8 \pm 3]$	0.942
			$\pi\pi N$	47 [> 55]	

8

Each vertex obtained from the interaction Lagrangian is multiplied by a phenomenological cutoff function

$$
F_{MNN^*}(q^2, p^2, p'^2) = F_M(q^2)F_B(p^2)F_B(p'^2)
$$

where q denotes the four-momentum of the meson $M = \pi^0, \eta, \eta',$ p' and p are the four-momenta of the two baryons.

$$
F_M(q^2) = \frac{\Lambda_{MNN^*}^2 - m_M^2}{\Lambda_{MNN^*}^2 - q^2}, \qquad \Lambda_{MNN} = 1.0 \text{ GeV}, \quad \Lambda_{MNN^*} = 1.3 \text{ GeV}
$$

$$
F_B(p^2) = \frac{\Lambda_B^4}{(p^2 - m_B^2)^2 + \Lambda_B^4}, \quad B = N, N_{1/2}^*, \qquad \Lambda_N = 1.0 \text{ GeV}, \quad \Lambda_{N^*} = 1.2 \text{ GeV}
$$

For spin-3/2 nucleon resonances $(B = N_{3/2}^*)$ we use the multidipole form:

$$
F_B(p^2) = \frac{\Lambda_B^4}{(p^2 - m_B^2)^2 + \Lambda_B^4} \left(\frac{m_B^2 \tilde{\Gamma}_B^2}{(p^2 - m_B^2)^2 + m_B^2 \tilde{\Gamma}_B^2} \right)^2 \; \text{where} \; \tilde{\Gamma}_B = \Gamma_B/\sqrt{2^{1/3} - 1}
$$

T. Vrancx, L. De Cruz, J. Ryckebusch, and P. Vancraeyveld, Consistent interactions for high-spin fermion fields, Phys. Rev. C 84 (2011) 045201, arXiv:1105.2688 [nucl-th]

 σ (mb)

π ρ → ηn reaction

The differential cross section is given by

$$
\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} \frac{|\mathbf{k}_{\eta}|}{|\mathbf{k}_{\pi}|} \frac{1}{2} \sum_{\text{spins}} |\mathcal{M}_{\pi^- p \to \eta n}|^2
$$

where k_{π} and k_{η} are the c.m. three-momenta of the initial π^{-} and the final η mesons, respectively.

$$
\mathcal{M}_{\pi^- p \to \eta n} = \mathcal{M}_s^{(n)} + \mathcal{M}_u^{(p)} + \sum_{N_{1/2}^*} \mathcal{M}_s^{(N_{1/2}^*)} + \sum_{N_{3/2}^*} \mathcal{M}_s^{(N_{3/2}^*)}
$$

"Model 1" uses the PS-type couplings. π ⁻ $p \rightarrow$ n n π p \rightarrow n n "Model 2" assumes PV-type couplings total, model 1 model 1 for the N(1710) resonance. model 1 w/o N(1520) $N(1520)$ model 1 w/o N(1650) N(1535° model 1 w/o $N(1710)$ The N(1535) resonance gives a major $N(1650)$ N(1700) $-$ model 2 contribution. $N(1710)$ N(1720) Complete result indicates a large interference effect between a different contributions, for instance, between N(1535) and N(1650). For $W > 1.65$ GeV a large contribution is possible from N(1710). However, there the reaction mechanism is under debate. 1.7 1.8 1.9 $\overline{2}$ 1.5 1.6 1.7 1.8 1.9 \mathcal{D} 1.5 1.6 $W_{\pi p}$ (GeV) $W_{\pi p}$ (GeV)

"Model 1" uses the PS-type couplings. "Model 2" assumes PV-type couplings for the N(1710) resonance.

Data are from:

S. Prakhov et al., (Crystal Ball Collaboration), Measurement of πp → ηn from threshold to pπ = 747 MeV/c, Phys. Rev. C 72 (2005) 015203, R. M. Brown et al., Differential cross sections for the reaction πp → ηn between 724 and 2723 MeV/c, Nucl. Phys. B 153 (1979) 89, and at backward scattering region from:

N. C. Debenham et al., Backward πp reactions between 0.6 and 1.0 GeV/c, Phys. Rev. D 12 (1975) 2545

The Lagrangians for vector meson-nucleon interactions are

$$
\mathcal{L}_{\rho NN} = -g_{\rho NN} \bar{N} \Big[\gamma_{\mu} - \kappa_{\rho} \frac{\sigma_{\mu\nu} \partial^{\nu}}{2m_N} \Big] (\tau \Phi^{\mu}_{\rho}) N
$$

$$
\mathcal{L}_{\omega NN} = -g_{\omega NN} \bar{N} \Big[\gamma_{\mu} - \kappa_{\omega} \frac{\sigma_{\mu\nu} \partial^{\nu}}{2m_N} \Big] \Phi^{\mu}_{\omega} N
$$

 κ_V : tensor-to-vector coupling ratio, $\kappa_V = f_{VNN}/g_{VNN}$

We use
$$
g_{\rho pp} = 3.0
$$
, $\kappa_{\rho} = 6.1$
 $g_{\omega pp} = 9.0$, $\kappa_{\omega} = 0$

The effective Lagrangians describing the interactions of the nucleon resonance of $J^P = 1/2^-$, e.g. $N(1535)$, with the nucleon and the meson ρ^0 .

$$
\mathcal{L}_{\rho NN^*_{1/2^-}} = -\frac{1}{2m_N}\bar{N}^*\gamma_5\Big[g_{\rho NN^*}\Big(\frac{\gamma_\mu\partial^2}{m_{N^*}+m_N} - i\partial_\mu\Big) - f_{\rho NN^*}\sigma_{\mu\nu}\partial^\nu\Big](\boldsymbol{\tau}\boldsymbol{\Phi}^\mu_\rho)N + \text{h.c.}
$$

The VV-fusion amplitude $(VV = \rho^0 \rho^0, \omega\omega)$ is

$$
\mathcal{M}_{pp \to pp\eta} = \mathcal{M}_{pp \to pp\eta}^{(\omega\omega \text{ fusion})} + \mathcal{M}_{pp \to pp\eta}^{(\rho\rho \text{ fusion})} - (p_1, \lambda_1 \leftrightarrow p_2, \lambda_2)
$$
\n
$$
\mathcal{M}_{\lambda_a\lambda_b \to \lambda_1\lambda_2\eta}^{(VV \text{fusion})} = (-i)\bar{u}(p_1, \lambda_1)i\Gamma_{\mu_1}^{(Vpp)}(p_1, p_a)u(p_a, \lambda_a)
$$
\n
$$
\times i\tilde{\Delta}^{(V)\mu_1\nu_1}(s_1, t_1) i\Gamma_{\nu_1\nu_2}^{(VV\eta)}(q_1, q_2) i\tilde{\Delta}^{(V)\nu_2\mu_2}(s_2, t_2)
$$
\n
$$
\times \bar{u}(p_2, \lambda_2)i\Gamma_{\mu_2}^{(Vpp)}(p_2, p_b)u(p_b, \lambda_b)
$$

Here $\Gamma^{(VV\eta)}$ and $\Gamma^{(Vpp)}$ are the $VV\eta$ and Vpp vertex functions, respectively, and $\tilde{\Delta}^{(V)}$ is the propagator for the reggeized vector meson V.

The $VV\eta$ vertices are derived from an effective Lagrangians

$$
\mathcal{L}_{\rho\rho\eta} = \frac{g_{\rho\rho\eta}}{2m_{\rho}} \varepsilon_{\mu\nu\alpha\beta} \left(\partial^{\mu} \Phi^{\nu}_{\rho} \partial^{\alpha} \Phi^{\beta}_{\rho} \right) \Phi_{\eta}
$$

$$
\mathcal{L}_{\omega\omega\eta} = \frac{g_{\omega\omega\eta}}{2m_{\omega}} \varepsilon_{\mu\nu\alpha\beta} \left(\partial^{\mu} \Phi^{\nu}_{\omega} \partial^{\alpha} \Phi^{\beta}_{\omega} \right) \Phi_{\eta}
$$

$$
q_1 = p_a - p_1, \quad q_2 = p_b - p_2, \quad k = q_1 + q_2
$$

\n
$$
t_1 = q_1^2, \quad t_2 = q_2^2, \quad m_\eta^2 = k^2
$$

\n
$$
s = (p_a + p_b)^2 = (p_1 + p_2 + k)^2, \text{ c.m. energy squared}
$$

\n
$$
s_1 = (p_1 + k)^2, \quad s_2 = (p_2 + k)^2
$$

The $VV\eta$ vertex, including form factor, with q_1 , μ and q_2 , ν the momenta and vector indices of the incoming V mesons, is given by

$$
i\Gamma_{\mu\nu}^{(VV\eta)}(q_1, q_2) = i\frac{g_{VV\eta}}{2m_V} \varepsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} F^{(VV\eta)}(q_1^2, q_2^2, k^2)
$$
 Here : $\Gamma_{\mu\nu}^{(VV\eta)}(q_1, q_2) q_1^{\mu} =$

In our case, the form factor should be normalised to 1 at $F^{(VV\eta)}(0, m_V^2, m_\eta^2)$ consistent with the kinematics at which the coupling constant g_{VVn} is determined; this is, from the radiative meson decays $V \to \eta \gamma$ in conjunction with the VMD assumption. We use, therefore, the form factor

$$
F^{(VV\eta)}(t_1, t_2, m_\eta^2) = \frac{\Lambda_V^2}{\Lambda_V^2 - t_1} \frac{\Lambda_V^2 - m_V^2}{\Lambda_V^2 - t_2}
$$

and $\Lambda_V = \Lambda_{V,\text{mon}} = 1.3$ GeV motivated by analysis of the $\gamma p \to \eta p$ reaction.

The form factor $F_{VNN}(t)$ describing the *t*-dependence of the *V*-proton coupling can be parametrised as

$$
F_{VNN}(t) = \frac{\Lambda_{VNN}^2 - m_V^2}{\Lambda_{VNN}^2 - t}
$$

where $\Lambda_{VNN} > m_V$ and $t < 0$. We take $\Lambda_{VNN} = 1.4$ GeV for both ρ^0 - and ω proton coupling. From the Bonn potential model [Machleidt] $\Lambda_{\rho NN} = 1.4 \text{ GeV}$ and $\Lambda_{\omega NN} = 1.5$ GeV are required for a fit to NN scattering data.

 $\overline{0}$ $\Gamma_{\mu\nu}^{(VV\eta)}(q_1,q_2) q_2^{\nu} = 0$

The standard form of the vector-meson propagator:

$$
i\Delta_{\mu\nu}^{(V)}(q) = i\left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2 + i\epsilon}\right)\Delta_T^{(V)}(q^2) - i\frac{q_{\mu}q_{\nu}}{q^2 + i\epsilon}\Delta_L^{(V)}(q^2)
$$

$$
\Delta_T^{(V)}(t) = (t - m_V^2)^{-1}
$$

For higher values of s_1 and s_2 we must take into account reggeization effect.

$$
\Delta_T^{(V)}(t_i) \to \tilde{\Delta}_T^{(V)}(s_i, t_i) = \Delta_T^{(V)}(t_i) \left(\exp(i\phi(s_i)) \frac{s_i}{s_{\text{thr}}} \right)^{\alpha_V(t_i) - 1}
$$

$$
\phi(s_i) = \frac{\pi}{2} \exp\left(\frac{s_{\text{thr}} - s_i}{s_{\text{thr}}}\right) - \frac{\pi}{2}
$$

see e.g.

Lebiedowicz, Nachtmann, Szczurek, Central exclusive diffractive production of K+K-K+K- via the intermediate ϕϕ state in proton-proton collisions, Phys.Rev.D 99 (2019) 9, 094034

where s_{thr} is the lowest value of s_i possible in the MN system: $s_{\text{thr}} = (m_p + m_\eta)^2$

We use the linear form for the vector meson Regge trajectories :

$$
\alpha_V(t) = \alpha_V(0) + \alpha'_V t \,, \quad \alpha_V(0) = 0.5 \,, \ \alpha'_V = 0.9 \text{ GeV}^{-2}
$$

Results $\gamma p \rightarrow np$ and $\gamma p \rightarrow \eta' (958) p$ reactions

 $\gamma(q)$ $n, n^{\prime}(k)$ $\overline{q_t}$ $p(p_b)$ $p(p_2)$

Coupling constants obtained from radiative decay rates $\eta' \rightarrow V\gamma$ and $V \rightarrow \eta\gamma$

$$
\Gamma_{\mu\nu}^{(\gamma V \widetilde{M})}(q,q_t) = -ie \frac{g_{\gamma V \widetilde{M}}}{m_V} \varepsilon_{\mu\nu\alpha\beta} q^{\alpha} q_t^{\beta} F^{(\gamma V \widetilde{M})}(q^2, q_t^2, k^2)
$$

$$
F^{(\gamma V \widetilde{M})}(0, q_t^2, m_{\widetilde{M}}^2) = \left(\frac{\Lambda_V^2 - m_V^2}{\Lambda_V^2 - q_t^2}\right)^n
$$

where
$$
n = 1
$$
 for $\widetilde{M} = \eta$ and $n = 2$ for $\widetilde{M} = \eta'$.

Reggeized V-meson exchange mechanism is dominant at higher energies and forward angles.

16 CLAS Collaboration, M. Williams et al., PRC 80 (2009) 045213, T. Hu et al., PRC 102 (2020)065203; **for η': R. Dickson et al., PRC 93 (2016) 065202**

Results $(p p \rightarrow p p n)$

To restore the energy dependence of the cross section for the N and N(1535) contributions via the ρ^0 -meson exchange, the relevant amplitudes were multiplied by the suppression function:

$$
f(s) = \exp\left(-\frac{s - s_{\text{thr}}}{\Lambda^2}\right)
$$
, here : $s_{\text{thr}} = (2m_p + m_\eta)^2$

Results $(p \ p \rightarrow p \ p \ n)$ Data:

G. Agakishiev et al., (HADES Collaboration), Study of exclusive one-pion and oneeta production using hadron and dielectron channels in pp reactions at kinetic beam energies of 1.25 GeV and 2.2 GeV with HADES, Eur. Phys. J. A 48 (2012) 74

K. Teilab, (HADES Collaboration), ω and η meson production in $p + p$ reactions at Ekin = 3.5 GeV, Int. J. Mod. Phys. A 26 (2011) 694

K. Teilab, Ph.D. thesis: The production of n and ω mesons in 3.5 GeV p+p interaction in HADES, Frankfurt U., 2011. Available at <https://hades.gsi.de/node/4>

F. Balestra et al., (DISTO Collaboration), Exclusive η production in proton-proton reactions, Phys. Rev. C 69 (2004) 064003

WA102, Phys.Lett. B 467 (1999) 165 A. Kirk, Phys. Lett. B 489 (2000) 29 $pp \rightarrow pp\eta$ $\sigma_{\rm exp} = (3.86 \pm 0.37) \mu b$ From WA102 at $\sqrt{s} = 29.1$ GeV

Results $(p p \rightarrow p p p)$

Results (p $p \rightarrow p$ p η' (958))

• Data: Experiment SATURNE-213 F. Balestra et al. (DISTO Collaboration) PLB 491 (2000) 29

$$
\sigma_{pp \to pp \eta'}^{\rm DISTO} = 1.12 \pm 0.15^{+0.42}_{-0.31}~\mu{\rm b}
$$

The ratio of total cross section for η' and η is $R=\sigma_{pp\to pp\eta'}/\sigma_{pp\to pp\eta}=(0.83\pm0.11^{+0.23}_{-0.18})\times10^{-2}$

Results ($p p \rightarrow p p \eta'(958)$)

Results (p p → p p η'(958))

Results (p $p \rightarrow p$ p η' (958))

Results (p $p \rightarrow p$ p η' (958))

Conclusions

- We have given predictions for experiments at FAIR energies.
- Comparison of the full model (including nucleonic contributions, N^* resonances, VV-fusion processes and interferences between them) with ongoing experimental results from HADES, PANDA, SIS100 (both total cross-section and differential distributions) should help to learn more about the production mechanism of η , η' , $f_{_1}$. We shall learn about the coupling strengths ηNN , $\eta' NN$, $\eta NN*(1535)$, $\eta' NN*(1895)$, πºNN*, ρ ºNN*, $\rho\rho$ M, ωωM etc. The production of η and η' mesons in $\rho\rho$ collisions is of particular importance because of their coupling to baryonic resonances.
- We are looking forward to first experimental results on the production of η , η' , and $f_{1}(1285)$ mesons in pp@4.5 GeV with HADES.

VV-fusion mechanism (p $p \rightarrow p$ p f_1)

 $p(p_a, \lambda_a) + p(p_b, \lambda_b) \rightarrow p(p_1, \lambda_1) + f_1(k, \lambda_f) + p(p_2, \lambda_2)$ $p_{a,b}, p_{1,2}$ and $\lambda_{a,b}, \lambda_{1,2} = \pm \frac{1}{2}$: the four-momenta and helicities of protons k and $\lambda_{f_1} = 0, \pm 1$: the four-momentum and helicity of the f_1 meson $\begin{array}{lll}\n\bullet \mathbb{P}^{(p_1)} & q_1 = p_a - p_1, & q_2 = p_b - p_2, & k = q_1 + q_2 \\
\hline\nV & \searrow & f_1(k) & t_1 = q_1^2, & t_2 = q_2^2, & m_{f_1}^2 = k^2 \\
\hline\nV & \searrow & \searrow & s = (p_a + p_b)^2 = (p_1 + p_2 + k)^2, & \text{c.m. energy squared}\n\end{array}$ $p(p_a)$ $s_1 = (p_1 + k)^2$, $s_2 = (p_2 + k)^2$ $p(p_b)$ \blacktriangleright $p(p_2)$ VV-fusion amplitude: $\mathcal{M}_{pp\to ppf_1}^{(VV\text{ fusion})} = \mathcal{M}_{pp\to ppf_1}^{(\rho\rho\text{ fusion})} + \mathcal{M}_{pp\to ppf_1}^{(\omega\omega\text{ fusion})}$ $\mathcal{M}^{(VV~\text{fusion})}_{\lambda_a\lambda_b\to\lambda_1\lambda_2\lambda_f} = (-i) \left(\epsilon^{\alpha}(\lambda_{f_1})\right)^* \bar{u}(p_1,\lambda_1) i\Gamma^{(Vpp)}_{\mu_1}(p_1,p_a) u(p_a,\lambda_a)$ $\times i\tilde{\Delta}^{(V)\mu_1\nu_1}(s_1,t_1) i\Gamma_{\nu_1\nu_2\rho\alpha}^{(VVf_1)}(q_1,q_2) i\tilde{\Delta}^{(V)\nu_2\mu_2}(s_2,t_2)$ $\times \bar{u}(p_2, \lambda_2) i\Gamma_{\mu_2}^{(Vpp)}(p_2, p_b) u(p_b, \lambda_b)$ $i\Gamma^{(Vpp)}_{\mu}(p',p)=-i\Gamma^{(V\bar{p}\bar{p})}_{\mu}(p',p)=-ig_{Vpp}\,F_{VNN}(t)\left[\gamma_{\mu}-i\frac{\kappa_{V}}{2m_{\pi}}\sigma_{\mu\nu}(p-p')^{\nu}\right]$ $g_{\rho \rho \rho} = 3.0$, $\kappa_{\rho} = 6.1$, $g_{\omega \rho \rho} = 9.0$, $\kappa_{\omega} = 0$ κ_V : tensor-to-vector coupling ratio, $\kappa_V = f_{VNN}/g_{VNN}$ $F_{VNN}(t) = \frac{\Lambda_{VNN}^2 - m_V^2}{\Lambda^2 - t}$

For the proton-antiproton collisions we have

$$
\bar{u}(p_2, \lambda_2) i \Gamma_{\mu_2}^{(Vpp)}(p_2, p_b) u(p_b, \lambda_b) \rightarrow \bar{v}(p_b, \lambda_b) i \Gamma_{\mu_2}^{(V\bar{p}\bar{p})}(p_2, p_b) v(p_2, \lambda_2) \n= -\bar{u}(p_2, \lambda_2) i \Gamma_{\mu_2}^{(Vpp)}(p_2, p_b) u(p_b, \lambda_b) \n\mathcal{M}_{p\bar{p} \to p\bar{p}M}^{(VV\text{ fusion})} = -\mathcal{M}_{pp \to ppM}^{(VV\text{ fusion})}
$$

The standard form of the vector-meson propagator:

$$
i\Delta_{\mu\nu}^{(V)}(q) = i\left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2 + i\epsilon}\right)\Delta_T^{(V)}(q^2) - i\frac{q_{\mu}q_{\nu}}{q^2 + i\epsilon}\Delta_L^{(V)}(q^2)
$$

$$
\Delta_T^{(V)}(t) = (t - m_V^2)^{-1}
$$

For higher values of s_1 and s_2 we must take into account reggeization: $\Delta_T^{(V)}(t_i) \rightarrow \tilde{\Delta}_T^{(V)}(s_i, t_i) = \Delta_T^{(V)}(t_i) \left(\exp(i \phi(s_i)) \frac{s_i}{s_i} \right)^{\alpha_V}$ $\phi(s_i) = \frac{\pi}{2} \exp\left(\frac{s_{\text{thr}} - s_i}{s_{\text{thr}}}\right) - \frac{\pi}{2}$

where s_{thr} is the lowest value of s_i possible here: $s_{\text{thr}} = (m_p + m_{f_1})^2$ We use the linear form for the vector meson Regge trajectories :

$$
\alpha_V(t) = \alpha_V(0) + \alpha'_V t
$$
, $\alpha_V(0) = 0.5$, $\alpha'_V = 0.9 \text{ GeV}^{-2}$

$$
VVf_1 \text{ coupling, corresponds to } (1, S) = (2, 2)
$$
\n
$$
\mathcal{L}'_{VVf_1}(x) = \frac{1}{M_0^4} g_{VVf_1} (V_{\kappa\lambda}(x) \partial_\mu \partial_\nu V_{\rho\sigma}(x)) (\partial_\alpha U_\beta(x) - \partial_\beta U_\alpha(x)) g^{\kappa\rho} g^{\mu\sigma} \varepsilon^{\lambda\nu\alpha\beta}
$$
\n
$$
V_{\kappa\lambda}(x) = \partial_\kappa V_\lambda(x) - \partial_\lambda V_\kappa(x), U_\alpha(x) \text{ and } V_\kappa(x) \text{ are the fields of the } f_1 \text{ and the vector meson } V, M_0 \equiv 1 \text{ GeV and } g_{VVf_1} \text{ is a dimensionless coupling constant}
$$
\n
$$
i\Gamma_{\mu\nu\alpha}^{(VVf_1)}(q_1, q_2) = \frac{2g_{VVf_1}}{M_0^4} [(q_1 - q_2)^\rho (q_1 - q_2)^\sigma \varepsilon_{\lambda\sigma\alpha\beta} k^\beta
$$
\n
$$
\times (q_{1\kappa} \delta^\lambda_{\ \mu} - q_1^\lambda g_{\kappa\mu}) (q_2^\kappa g_{\rho\nu} - q_{2\rho} \delta^\kappa_{\ \nu}) + (q_1 \leftrightarrow q_2, \mu \leftrightarrow \nu)]
$$
\n
$$
\times F^{(VVf_1)}(q_1^2, q_2^2, k^2)
$$
\nsatisfies gauge invariance relations:
$$
\Gamma_{\mu\nu\alpha}^{(VVf_1)}(q_1, q_2) q_1^\mu = 0, \Gamma_{\mu\nu\alpha}^{(VVf_1)}(q_1, q_2) q_2^\nu = 0
$$
\nand
$$
\Gamma_{\mu\nu\alpha}^{(VVf_1)}(q_1, q_2) k^\alpha = 0
$$
\n
$$
F^{(VVf_1)}(q_1^2, q_2^2, m_{f_1}^2) = \tilde{F}_V(q_1^2) \tilde{F}_V(q_2^2) F(m_{f_1}^2) = \frac{\Lambda_V^4}{\Lambda_V^4 + (t_1 - m_V^2)^2} \frac{\Lambda_V^4}{\Lambda_V^4 + (t_2 - m_V^2)^2}
$$
\nwith
$$
F(m_{f_1}^2) = 1
$$

Results

R. Dickson et al. (CLAS Collaboration), PRC 93 (2016) 065202

• The $\rho \rho f_1$ coupling constant is extracted from the radiative decay rate $f_1 \rightarrow \rho^0 \gamma$ using the VMD approach.

from PDG: $\Gamma(f_1(1285) \rightarrow \gamma \rho^0) = 1384.7^{+305.1}_{-283.1}$ keV

from CLAS : $\Gamma(f_1(1285) \to \gamma \rho^0) = (453 \pm 177) \text{ keV}$ we use We consider decay $f_1 \rightarrow \rho^o \gamma \rightarrow \pi^+ \pi \gamma$ taking ρ^o mass distribution. We estimate the cotoff parameter Λ_{ρ} in the $f_1 \rho \rho$ form factor:

 $F_{\rho\rho f_1}(k_o^2, k_\gamma^2, k^2) = F_{\rho\rho f_1}(k_o^2, 0, m_f^2) = \tilde{F}_{\rho}(k_o^2) \tilde{F}_{\rho}(0) F(m_f^2) = \tilde{F}_{\rho}(k_o^2) \tilde{F}_{\rho}(0)$

Photoproduction process:

We assume $g_{\omega \omega f_1} = g_{\rho \rho f_1}$ based on arguments from the quark model and VMD. We assume $\Lambda_o = \Lambda_\omega = \Lambda_V$ and $\Lambda_{\rho NN} = \Lambda_{\omega NN} = \Lambda_{\nu NN}$. Reggeization effect included

The t-channel V-exchange mechanism play a crucial role in reproducing the forward-peaked angular distributions, especially at higher energies. From the comparison of differential cross sections to the CLAS data we estimate:

 $(C7): \Lambda_{VNN} = 1.35 \text{ GeV} \text{ for } \Lambda_V = 0.65 \text{ GeV}, |g_{VVf_1}| = 20.03$ $(C9)$: $\Lambda_{VNN} = 1.01$ GeV for $\Lambda_V = 0.8$ GeV, $|q_{VVf_1}| = 12.0$ $(C10)$: $\Lambda_{VNN} = 0.9$ GeV for $\Lambda_V = 1.0$ GeV, $|q_{VVf_1}| = 8.49$ $(C11)$: $\Lambda_{VNN} = 0.834$ GeV for $\Lambda_V = 1.5$ GeV, $|q_{VVf_1}| = 6.59$ (C11) is excluded due to small Λ_{VNN} , we stay with (C7) – (C10)

Missing N^* resonances and s/u-channel proton exchange Possible N(2300) contribution

 \rightarrow postulated in Y.-Y. Wang et al., PRD 95 (2017) 096015

Results (*p* $p \rightarrow p p f_1$)

No data for the $pp \rightarrow pp \; f_{1}$ and $pp \rightarrow pp \; f_{1}$ reactions at low energies

← Integrated cross section for VV→ f1 fusion with different parameters.

In our procedure of extracting the model parameters from the CLAS data the dominant sensitivity of cross section is on coupling constants not on the cut-off parameters in form factors.

Reggeization effect must be included, it reduces

Diffractive contribution (IPIP fusion) is very small for the HADES and PANDA energy range → IPIP-fusion contribution should be regarded as an upper limit [PL, Leutgeb, Nachtmann, Rebhan, Szczurek, PRD 102 (2020) 114003]. If at the WA102 c.m. energy (29.1 GeV) there are important contributions from subleading Reggeon exchanges (IP f_{2IR} , f_{2IR} IP, f_{2IR} , f_{2IR} , a_{2IR} , a_{2IR} , $\omega_{IR}\omega_{IR}$, ρ_{IR} , etc.) the IPIP contribution could be smaller (by a factor of up to 4).

The narrow width of the η meson allows to set a mass cut on the $\pi^+\pi^-\pi^0$ invariant mass and suppresses the multi-pion background efficiently.

and our predictions for $f_1(1285)$ signal at SIS100 ($\sqrt{s} = 7.61 \text{ GeV}$)

 $\sigma(pp \to pp\pi^+\pi^-\pi^+\pi^-\pi^0) = (660 \pm 130) \,\mu b$ [3]; $\sigma(pp \to pp\pi^+\pi^-\omega) = (200 \pm 40) \,\mu b$ [4]

Experimental data for P = 24 GeV (\sqrt{s} = 6.84 GeV)

 $\sigma(pp \to pp f_1 [\to \pi^+\pi^-\eta(\to \pi^+\pi^-\pi^0)]) = 0.03 - 0.15 \,\mu b$

[1] G. Alexander et al., Phys. Rev. 154 (1967) 1284 [2] S. Danieli et al., Nucl. Phys. B27 (1971) 157

 31

[3] Blobel et al., NPB 135 (1978) 379 [4] Blobel et al., NPB 111 (1976) 397 $\mathcal{BR}(\omega(782) \to \pi^+ \pi^- \pi^0) = (89.3 \pm 0.6) \%$ $BR(\eta \to \pi^+ \pi^- \pi^0) = (22.92 \pm 0.28) \%$ $\mathcal{BR}(f_1(1285) \to \pi^+\pi^-\eta) = (35 \pm 15)$ %

Results

 \sqrt{s} = 3.46 GeV (top) and 5.0 GeV (bottom)

• At near threshold energy (HADES) the values of small $\vert t_{\scriptscriptstyle 1}\vert$ and $\vert t_{\scriptscriptstyle 2}\vert$ are not accessible kinematically **HADES and PANDA experiments** have a good opportunity to study physics of large four-momentum transfer squared $|t_{\scriptscriptstyle 1,2}^{\scriptscriptstyle -}| \to$ probes corresponding form factors at relatively large values of $\vert t_{_{1,2}}\vert$ and far from their on mass-shell values $t_{1,2} = m_V^2$ at where they were normalised • $\rho^0 \rho^0$ - and $\omega \omega$ -fusion processes have different kinematic dependences. Both terms play similar role. With increasing c.m. energy the averages of $|t_{1,2}|$ decrease (damping by form factors), hence the ωω term becomes more important We predict a strong preference for the outgoing nucleons to be produced with their transverse

momenta being back-to-back, $d\sigma/d\phi_{pp}$ at $\phi_{pp} = \pi$

32

Results

 \sqrt{s} = 3.46 GeV (top) and 5.0 GeV (bottom)

- Since **f1(1285)** and **η(1295)** are close in mass and both decaying to **π+π-η channel**, care must be taken for potential overlap of these resonances with each other in the measurement
- η(1295) has about 2 times larger total width than $f_1(1285)$
- In order to distinguish both resonances the distribution in azimuthal angle may be used

- With the couplings of V to protons we see that the helicity flipping tensor coupling of the ρ to the protons is large whereas the tensor coupling of the ω is small (taken to be zero)
- At higher energies, available in the future at PANDA and SIS100, ωω fusion giving η(1295) should dominate over ρρ fusion
- The distribution for η(1295) should (nearly) vanish for $\phi_{pp} = 0$ and π