

Inclusive production of η and ω in pp@4.5GeV with HADES

Adam Strach

Supervised by Piotr Salabura and Izabela Ciepał

- Neutral pseudoscalar meson.
- Mass of (547.862±0.017) MeV [PDG]
- $I^G(J^{PC}) = 0^+(0^{-+})$
- η quark content: $\frac{1}{\sqrt{6}}(u\overline{u} + d\overline{d} 2s\overline{s})$

Decay channel	Branching ratio
γγ	(39.36 ± 0.18)%
$3\pi^0$	$(32.57 \pm 0.21)\%$
$\pi^+\pi^-\pi^0$	$(23.02 \pm 0.25)\%$
$\pi^+\pi^-\gamma$	$(4.28 \pm 0.07)\%$

Table of most popular η decay channels [PDG]

Nonet of pseudoscalar mesons [Wikipedia]

Importance of η

- Product of many mesons and baryon resonances decay:
 - $\circ \eta' \to \eta \pi^+ \pi^-$
 - $\circ a_0 \rightarrow \eta \pi$
 - $N^*(1535) \rightarrow N\eta$ and other N^*
- Cross section is important input for transport model calculations of p+p, p+A, A+A interactions (Feb 2022 p+p in HADES $\sqrt{s} = 3.46$ GeV)
- Inclusive cross section of η and η' is important for di-electron invariant mass spectra.
- Production mechanism of η and η'

di-electron invariant mass spectra Rayane Abou Yassine

ω meson

- Neutral vector meson
- Mass of (782.65±0.12) MeV [PDG]
- $I^G(J^{PC}) = 0^{-}(1^{--})$

•
$$\omega$$
 quark content: $\frac{1}{\sqrt{2}}(u\overline{u} + d\overline{d})$

Decay channel	Branching ratio
$\pi^+\pi^-\pi^0$	$(89.2 \pm 0.7)\%$
$\pi^0\gamma$	$(8.28 \pm 0.28)\%$
$\pi^+\pi^-$	$(1.53^{+0.11}_{-0.13})\%$

Table of most popular ω Decay channels [PDG]

Importance of ω

- ω is a product of many neutral and exotic mesons and some baryon resonances decay:
 - $\circ \eta' \to \omega \gamma$
 - $\circ \ b_1 \to \omega \pi^+$
 - $\circ \ N^*(1880) \to N\omega$
- Studies of ω interactions with nuclear matter
- Both η and ω decay parameters are used in development of chiral effective field theory and lattice QCD

F(AIR

GST

Cross sections of the ω meson production in p+p collisions. Source: HADES Collaboration

HADES experiment

- HADES High Acceptance DiElectron Spectrometer) is a fixed target experiment
- Located at GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt
- Proton-proton (e.g. pp 4.5 GeV 2022 run) and heavy ions (e.g. Au+Au 1.23 AGeV 2012 run)

ECAL

- Polar acceptance 10° to 45°
- 978 lead glass modules (divided into 6 sectors)
- For February 2022 run only 5 ECAL sectors were present

ECAL sector

ECAL cell

Analysis scheme

- Particle selection conditions (at least 2 γ , 1 π^+ , 1 π^-)
- Resolution parametrization
- $\pi^0 \rightarrow \gamma \gamma$ kinematic refit with π^0 mass constraint
- η/ω reconstruction
- Estimation of inclusive cross section for η/ω production

Particle selection conditions

- Photon selection: E > 100 MeV and $0.8 < \beta < 1.2$
- π^+ , π^- : graphical cuts on mass-charge*momentum spectrum
- Simulations (studies of kinematic refit performance): $pp \rightarrow pp\eta(\rightarrow \pi^+\pi^-\pi^0): 10^8 \text{ events}$
- Statistics corresponds to luminosity of $(6.47 \pm 0.06)\frac{1}{pb}$

θ, ϕ and energy resolution

- θ , ϕ : cell-wise Monte Carlo parametrization
- **Energy: Monte Carlo parametrization** by dependence on energy
- Reference energy resolution: $5.8\%\sqrt{E}$ single cell measurement

500

1000

no residual cut

θ residual<0.5, φ residual<0.5

0.058*sqrt(E) parametrization

Energy resolution [MeV]

80

60

40

20

π^0 and η reconstruction-simulations

 $\pi^{0} \rightarrow \gamma \gamma$ refit results-data

- Large improvement in π_0 mass resolution.

η reconstruction-data

- Background subtraction: fitting 3rd rank polynomial
- Gaussian fit result: $\mu_{\eta} = 547.26(10) \ \sigma_{\eta} = 9.30(10)$

• PDG:
$$\mu_{\eta} = 547.862(17) \frac{MeV}{c^2}$$

	η	$\sigma_{oldsymbol{\eta}}$
$\pm 1\sigma$	176000	1.15 mb
$\pm 2\sigma$	226000	1.72 mb

FAIR Est

ω reconstruction

- Background subtraction: fitting 3rd rank polynomial
- Gaussian fit result: $\mu_{\omega} = 776.77(14) \sigma_{\omega} = 15.00(12)$

• PDG:
$$\mu_{\omega} = 782.65(12) \frac{MeV}{c^2}$$

	ω	$\sigma_{\boldsymbol{\omega}}$
$\pm 1\sigma$	371000	0.381 mb
$\pm 2\sigma$	479000	0.573 mb

η preliminary cross section

- Cross sections for π^0 and η production in p-p collisions at various \sqrt{s} .
- Our results for ±1σ and ±2σ presented as green and orange circles respectively
- Other HADES data presented as solid triangles, circles squares.
- The dot-dashed blue curve: parametrization of inclusive η production from [W. Cassing A. Sibirtsev and U. Mosel].
- Figure [G. Agakishiev et al.].

ω preliminary cross section

- Cross sections for ω production production in p-p collisions at various \sqrt{s} .
- Our results for ±1σ and ±2σ presented as green and orange circles respectively
- Red empty circle is the HADES result obtained in pp@3.5 GeV.
- The dashed curve refers to the OBE calculations for the exclusive channels [W. Cassing A. Sibirtsev and U. Mosel].
- Figure [HADES Collaboration].

Summary and outlook

- New resolution parametrization for ECAL developed successfully
- Significantly improved eta/omega resolution
- Preliminary cross section has been obtained, they are consistent with previous measurement

Outlook

- Studies of systematic error
- Multi-differential cross sections for η and ω
- $\eta' \to \eta \pi^+ \pi^-$ with $\eta \to \pi^+ \pi^- \pi^0$ or $\eta \to \gamma \gamma$

resolution • $\chi^2 = (\vec{y} - \vec{x})^T V^{-1} (\vec{y} - \vec{x})$

 $\pi^0 \rightarrow \gamma \gamma$ lowers η/ω mass

 $\eta/\omega \to \pi^- \pi^+ \pi^0 [\to \gamma \gamma]$ Counts

Motivations of kinematic fit usage

 $\times 10^3$

 χ^2 minimized with

 $\vec{q}(y,\eta) = 0$ condition

Refited η integrated in $\pm 1\sigma$ -10000 \Rightarrow procedure efficiency=0.01% Refited η integrated in $\pm 2\sigma$ -14400 \Rightarrow procedure efficiency=0.0144%

Statistic losses-backup

