

Exclusive production of η and ω in pp at 4.5 GeV with HADES

Szymon Treliński

Motivation

- Measure cross-section and angular differential cross-section for exclusive η/ω production:
 - Expand cross-section database for given energy scale
 - Input for Heavy-ion transport models (GIBUU, SMASH)
 - Test models prepared by IFJ PAS theory group
- Studies of Dalitz plots:
 - \circ pp \rightarrow pp η measure resonance contribution, FSI
 - \circ $\eta \rightarrow \pi^+ \pi^- \pi^0$ decay dynamics, FSI,
 - $\omega \rightarrow \pi^+ \pi^- \pi^0$ decay dynamics, FSI,
- For ω production:
 - Partial wave analysis, resonance contributions
 - Extract spin-density matrix, study polarization

Previous measurements

Eta study:

- WASA@COSY (1.4 GeV)
- DISTO Collaboration (2.115, 2.5, 2.85 GeV)
- HADES Collaboration (2.2, 3.5 GeV)

Omega study:

- DISTO Collaboration (2.82 GeV)
- HADES Collaboration (3.5 GeV)

This measurement: 4.5 GeV

Close to threshold:

- General FSI needed to take into account
- very important role played by baryonic resonances, mostly N(1535)

Higher energies (>20 GeV):

- pomeron-pomeron exchange
- □ reggeon exchange
- □ diffraction processes

R. Shyam, PRC 75, 055201 (2007)

Data samples

- Proton-proton collision at 3.46 GeV center of mass energy
- Two theoretical models, phase space reference and real data
- Eta: Models 1 and 2 include:
 - Production via nucleon resonance N(1535) (by the π^0 and σ meson exchange)
 - VV-fusion mechanism (by the $\rho^0 \rho^0$ and $\omega \omega$ mesons exchange)
 - Difference between models: coupling ρ^0 -proton-N(1535)
 - Prepared by IFJ PAN theory group (A. Szczurek, P. Lebiedowicz)

Eta, Omega: Pluto MC generator

• Phase space

Data

- February 2022 Beamtime
- Gen 3
- Luminosity used: 208 nb⁻¹
 (total luminosity of the beamtime: 5900 nb⁻¹)

Analysis setup

ECAL

0.5°

RICH Start 、 Beam

Target

CASE II

proton

FRPC

Forward Detector

STS1 STS2

Straw Tracker

proton_{MS}

- 4-particle hypothesis: 2 protons, π^+ , π^-
- Two cases:
 - Both protons from HADES
 - \circ $\,$ $\,$ One proton from HADES, one from Forward Tracker $\,$
- Momentum vs beta PID cuts
- Using Forward Detector
- Using Kinematic Fit

 $pp \rightarrow pp\eta \rightarrow pp\pi^{+}\pi^{-}\pi^{0}$ $pp \rightarrow pp\omega \rightarrow pp\pi^{+}\pi^{-}\pi^{0}$

 π^0 obtained from kinematic fit (missing particle constraint)

Input and performance of kinematic fit

Detector resolution parametrization

- Based on white simulations of protons, $\pi^+\pi^-$
- Error parametrization as a function of theta and momentum

Control plots of Kinematic fit

Proper distributions:

- Pull distributions gaussian like with μ = 0, σ = 1
- Probability distributions flat at whole range [0, 1] except peak at 0 originating from background events

Missing Mass(pp) distributions

Similar mesons mass resolutions in data as in simulations

PDG masses: η (547.7), ω (782,7)					
		Mean mass	σ	Signal/BKG	
		$[{\rm MeV/c^2}]$	$[{\rm MeV/c^2}]$	ratio	
η	Case I	547.0	9.6	1.08	
	Case II	546.8	9.1	0.35	
ω	Case I	782.3	18.9	0.55	
	Case II	779.0	16.7	0.21	

Main BKG channels			
Process	Cross-section $[\mu b]$		
$pp \rightarrow pp\pi^+\pi^-$	2840		
$pp \rightarrow pp\pi^+\pi^-\pi^0$	1840		
$pp \to pp\pi^+\pi^-\pi^0\pi^0$	300		
$pp \to pp\pi^+\pi^+\pi^-\pi^-$	227		

Background subtraction

- 4-th order polynomial fitted as background
- Reconstruction of signal observables by subtracting background in consecutive bins

Angular distributions of η/ω

- Extracted shapes of distributions seem to roughly agree with phase space simulation in Case I → similar detector acceptance influence
- In Case II big differences between data and phase space simulations
 → possible not rejected background, further studies of purity needed

Dalitz plots $\eta/\omega \rightarrow \pi^+\pi^-\pi^0$

Preliminary study in HADES Acc

11

Data In 4π - uniform Model1,2, phase space (all have roughly same distributions distribution) Case I Case II In HADES acceptance - visible maxima → **Detector** Meson η 1500 100 acceptance 0.5 0.5 0.5 1000 1000 influence 50 500 -0.5 -0.5 -0.5 -1--1 -0.5 0.5 -0.5 0.5 0 0 1 -1 1 -0.5 0 0.5 $X = \sqrt{3} \frac{(T_{\pi^+} - T_{\pi^-})}{Q},$ $Y = 3 \frac{T_{\pi^0}}{Q} - 1,$ 8000 Meson ω 0.5 0.5 0.5 6000 200 -0.5 -0.5 -0.5 $Q = T_{\pi^+} + T_{\pi^-} + T_{\pi^0},$ -1<u>⊨.</u> _1 _1⊑ _1 -0.5 0 0.5 -1 -0.5 0.5 0 -0.5 0.5 1 0

Study of Eta - Angular distributions of η in center-of-mass frame

Study of Eta - Helicity frame (pp rest frame)

- Resonance contribution seen in data
- Underestimated non-resonant production in models?

Summary

- Mean mass of mesons from fit consistent with PDG
- Similar influence of detector acceptance on both data and simulation evidence of signal in data
- Eta models greater than expected contribution from non-resonant production?

Outlook

- Check purity of kinematic fit
- Perform multivariable reconstruction efficiency studies

Backup - Dalitz $pp \rightarrow pp\eta$

