High precision calculation of the hadronic vacuum polarisation contribution to the muon anomaly

Fabian J. Frech for the BMW collaboration

Workshop at 1GeV scale: From mesons to axions Jagiellonian University, Krakow

September 20, 2024

- Muons are charged particles with spin
- Interaction with external magnetic fields via

$$U=-\vec{\mu}\cdot\vec{B}$$

• Magnetic moment

$$\vec{\mu} = g \frac{e}{2m} \vec{S}$$

- Muons are charged particles with spin
- Interaction with external magnetic fields via

$$U = -\vec{\mu}\cdot\vec{B}$$

• Magnetic moment

$$\vec{\mu} = g \frac{e}{2m} \vec{S}$$

Classical:
$$g \leq 1$$

μ s

- Muons are charged particles with spin
- Interaction with external magnetic fields via

$$U = -\vec{\mu} \cdot \vec{B}$$

• Magnetic moment

$$\vec{\mu} = g \frac{e}{2m} \vec{S}$$

Dirac: g = 2

TAYLOR SERIES EXPANSION IS THE WORST.

QED: $2 + \frac{\alpha}{\pi} + ...$

- Particle creation and annihilation effects by QFT
- Perturbative expansion \Rightarrow desired precision
- Standard Model effects
- Even more?

$$\begin{split} a_{\mu} &= \frac{g_{\mu}-2}{2} \\ &= a_{\mu}^{qed} + a_{\mu}^{HVP} + \dots \end{split}$$

Beyond Standard Model?

Corrections to a_{μ} from X:

$$a_{\mu}^{X} = \frac{1}{45} \left(\frac{m_{\mu}}{m_{X}}\right)^{2} \left(\frac{\alpha}{\pi}\right)^{2} + \dots$$

- If theory and experiment do not agree it is a hint for beyond Standard Model effects
- Muon 40,000 times more sensitive than electron

So what is the muon anomaly?

g-2 experiment

[Fermi National Accelerator Laboratory 2017]

• BNL (2004) results inconsistent with theory

[Fermi National Accelerator Laboratory 2017]

- BNL (2004) results inconsistent with theory
- Brought experiment to Fermilab ⇒ cleaner muon beam

[Fermi National Accelerator Laboratory 2017]

- BNL (2004) results inconsistent with theory
- Brought experiment to Fermilab
 ⇒ cleaner muon beam
- Started runs in 2017
- Finished in 2023
- Results not yet fully published

 Polarized (spin momentum parallel) muon on storage ring

- Polarized (spin momentum parallel) muon on storage ring
- Spin and momentum rotate differently around the magnetic field

$$\Delta \omega = \omega_s - \omega_r = a_\mu \frac{eB}{m_\mu}$$

- Polarized (spin momentum parallel) muon on storage ring
- Spin and momentum rotate differently around the magnetic field

$$\Delta\omega = \omega_s - \omega_r = a_\mu \frac{eB}{m_\mu}$$

• Precise measurement of $\Delta \omega$ and *B* leads to a_{μ}

Experiment

Experiment

 g_{μ}

Experiment

 g_{μ}

Experiment

 g_{μ}

 a_{μ}^{HVP}

Experiment

 g_{μ}

 a_{μ}^{HVP}

- All six runs done
- More than 20 times the statistics of BNL
- First three runs published
- Further reduction of error by a factor of two expected
 - \Rightarrow Goal for theorists

[Fermilab '21]

DATA-DRIVEN THEORY PREDICTION (R-RATIO)

Muon anomaly

Contributions to a_{μ}

a)	$a_{\mu}^{QED} imes 10^{10}$	11658471.8931	\pm	0.0104
b)	$a_{\mu}^{EW} imes 10^{10}$	15.36	\pm	0.1
c)	$a_{\mu}^{HVP} imes 10^{10}$	684.6	\pm	4.0
d)	$a_{\mu}^{HLbL} \times 10^{10}$	9.2	\pm	1.8

R-Ratio (optical theorem)

• The unitarity of the *S*-matrix implies:

$$\operatorname{Im}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\right] & \sim \end{array}\right] \sim \left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\right] & \sim \end{array}\right] + \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\right] & \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\right] & \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\right] & \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\end{array}{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\end{array}{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\end{array}{\mathbf{nn}}\left[\begin{array}{cc} \operatorname{\mathbf{nn}}\left[\operatorname{\mathbf{nn}$$

R-Ratio (optical theorem)

• The unitarity of the *S*-matrix implies:

Im
$$\left[\begin{array}{c} \mathbf{m} \end{array} \right] \sim \left| \begin{array}{c} \mathbf{m} \end{array} \right|^2 \sim R(s)$$

• a_{μ} from R-Ratio:

$$a_{\mu}^{HVP} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_0^\infty \frac{\mathrm{d}s}{s^2} \underbrace{\hat{K}(s)}_{\text{th.}} \underbrace{R(s)}_{\text{exp.}}$$

R-Ratio/Experimental input

- Input from from electron-positron scattering
- $R = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$
- BaBar (picture) and KLOE for 2020 value
- Tau and CMD-3


```
R-Ratio (integrand)
```


Results

LATTICE COMPUTATION

Lattice QCD

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\not\!\!D - m)\psi \quad F_{\mu\nu} = [D_{\mu}, D_{\nu}]$$

Lattice QCD

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\not\!\!D - m)\psi \quad F_{\mu\nu} = [D_{\mu}, D_{\nu}]$$

- Ab-initio calculations
- Simulate Path-Integral of QCD
- Replace space-time by a finite lattice
- Solve integral with Monte-Carlo methods

Lattice computing

HAWK at HPCC Stuttgart

 10^{10} -dimensional integrals

100,000 years on a laptop corresponds to 1 year on a supercomputer

Seven years of progress

- 2020: 3.4× increase in precision compared to 2017
- 2024: 1.7× increase in precision compared to 2020
- Many improvements needed to attain this precision
- Made possible thanks to the work of many groups around the world

Error improvement

- Finite volume/spacing
- Statistical evaluation of path integral
- Matching parameters

Error improvement

- Finite volume/spacing
- Statistical evaluation of path integral
- Matching parameters

- Adding larger volumes and finer lattices
- Algorithmic improvements
- Separation of window contributions
- Use perturbation theory and data-driven methods

Lattice Setup

- 28 ensembles with 7 different lattice spacings
- Meson masses from lattice are matched to those from experiment
- Physical volume is fixed to $L^3 \times T = 6^3 \times 9 \, \mathrm{fm}^4$

$$G(t) = -\frac{1}{3e^2} \sum_{\mu=1}^3 \int \mathrm{d}^3 x \, \langle J_\mu(\vec{x}, t) J_\mu(0) \rangle$$
$$J_\mu/e = \frac{2}{3} \bar{u} \gamma_\mu u - \frac{1}{3} \bar{d} \gamma_\mu d - \frac{1}{3} \bar{s} \gamma_\mu s + \frac{2}{3} \bar{c} \gamma_\mu c - \frac{1}{3} \bar{b} \gamma_\mu b + \frac{2}{3} \bar{t} \gamma_\mu t$$
$$a_\mu^{HVP} = \alpha^2 \int_0^\infty \mathrm{d}t \, K(tm_\mu) G_{1\gamma I}(t)$$

$$G(t) = -\frac{1}{3e^2} \sum_{\mu=1}^3 \int \mathrm{d}^3 x \, \langle J_\mu(\vec{x}, t) J_\mu(0) \rangle$$
$$J_\mu/e = \frac{2}{3} \bar{u} \gamma_\mu u - \frac{1}{3} \bar{d} \gamma_\mu d - \frac{1}{3} \bar{s} \gamma_\mu s + \frac{2}{3} \bar{c} \gamma_\mu c - \frac{1}{3} \bar{b} \gamma_\mu b + \frac{2}{3} \bar{t} \gamma_\mu t$$
$$a_\mu^{HVP} = \alpha^2 \int_0^\infty \mathrm{d}t \, K(tm_\mu) G_{1\gamma I}(t)$$

• Short dist. (0.0 - 0.4) fm

$$G(t) = -\frac{1}{3e^2} \sum_{\mu=1}^3 \int \mathrm{d}^3 x \, \langle J_\mu(\vec{x}, t) J_\mu(0) \rangle$$
$$J_\mu/e = \frac{2}{3} \bar{u} \gamma_\mu u - \frac{1}{3} \bar{d} \gamma_\mu d - \frac{1}{3} \bar{s} \gamma_\mu s + \frac{2}{3} \bar{c} \gamma_\mu c - \frac{1}{3} \bar{b} \gamma_\mu b + \frac{2}{3} \bar{t} \gamma_\mu t$$
$$a_\mu^{HVP} = \alpha^2 \int_0^\infty \mathrm{d}t \, K(tm_\mu) G_{1\gamma I}(t)$$

- Short dist. (0.0 0.4) fm
- Intermediate dist. $(0.4 1.0) \,\mathrm{fm}$

$$G(t) = -\frac{1}{3e^2} \sum_{\mu=1}^3 \int \mathrm{d}^3 x \, \langle J_\mu(\vec{x}, t) J_\mu(0) \rangle$$
$$J_\mu/e = \frac{2}{3} \bar{u} \gamma_\mu u - \frac{1}{3} \bar{d} \gamma_\mu d - \frac{1}{3} \bar{s} \gamma_\mu s + \frac{2}{3} \bar{c} \gamma_\mu c - \frac{1}{3} \bar{b} \gamma_\mu b + \frac{2}{3} \bar{t} \gamma_\mu t$$
$$a_\mu^{HVP} = \alpha^2 \int_0^\infty \mathrm{d}t \, K(tm_\mu) G_{1\gamma I}(t)$$

- Short dist. (0.0 0.4) fm
- Intermediate dist. $(0.4 1.0) \,\mathrm{fm}$
- Long dist. (1.0 2.8) fm

$$G(t) = -\frac{1}{3e^2} \sum_{\mu=1}^3 \int \mathrm{d}^3 x \, \langle J_\mu(\vec{x}, t) J_\mu(0) \rangle$$
$$J_\mu/e = \frac{2}{3} \bar{u} \gamma_\mu u - \frac{1}{3} \bar{d} \gamma_\mu d - \frac{1}{3} \bar{s} \gamma_\mu s + \frac{2}{3} \bar{c} \gamma_\mu c - \frac{1}{3} \bar{b} \gamma_\mu b + \frac{2}{3} \bar{t} \gamma_\mu t$$
$$a_\mu^{HVP} = \alpha^2 \int_0^\infty \mathrm{d}t \, K(tm_\mu) G_{1\gamma I}(t)$$

- Short dist. (0.0 0.4) fm
- Intermediate dist. $(0.4 1.0) \,\mathrm{fm}$
- Long dist. (1.0 2.8) fm
- Tail (2.8∞) fm

$$G(t) = -\frac{1}{3e^2} \sum_{\mu=1}^3 \int \mathrm{d}^3 x \, \langle J_\mu(\vec{x}, t) J_\mu(0) \rangle$$
$$J_\mu/e = \frac{2}{3} \bar{u} \gamma_\mu u - \frac{1}{3} \bar{d} \gamma_\mu d - \frac{1}{3} \bar{s} \gamma_\mu s + \frac{2}{3} \bar{c} \gamma_\mu c - \frac{1}{3} \bar{b} \gamma_\mu b + \frac{2}{3} \bar{t} \gamma_\mu t$$
$$a_\mu^{HVP} = \alpha^2 \int_0^\infty \mathrm{d}t \, K(tm_\mu) G_{1\gamma I}(t)$$

- Short dist. (0.0 0.4) fm
- Intermediate dist. $(0.4 1.0) \,\mathrm{fm}$
- Long dist. (1.0 2.8) fm
- Tail (2.8∞) fm

Cont. extrapolations (intermediate dist.)

• Problem: Lattice QCD results are very noisy for $t>2.8\,{
m fm}$

- Problem: Lattice QCD results are very noisy for $t>2.8\,{
 m fm}$
- Solution: Use R-Ratio in this regime (< 5% of total result)

- Problem: Lattice QCD results are very noisy for $t>2.8\,{
 m fm}$
- Solution: Use R-Ratio in this regime (< 5% of total result)
- What about problems with data-driven input?

- Problem: Lattice QCD results are very noisy for $t>2.8\,{
 m fm}$
- Solution: Use R-Ratio in this regime (< 5% of total result)
- What about problems with data-driven input?
- Experimental disagreements do not appear in this region

Unblinding

Lattice results

- QED, EW and QCD combined with a remarkably precision
- Reached a Standard Model prediction of 0.32 ppm
- Found agreement within 1σ between theory and experiment

Thank you for your attention!

ANY QUESTIONS?

Window results

Short distance results

Intermediate distance results

Comparison of intermediate window

Comparison of tail

Lattice strategy

Free parameters:

 $T/a, L/a, \beta, \{am_f\}_{f \in l,s,c,\ldots}$

- β : different spacings
- m_f : scatter around the physical point
- T, L = const.

 $\mathcal{O}(10^3)$ configurations per ensemble

- measure observable on every configuration and ensemble
- estimate mean value and standard deviation for every ensemble
- extrapolate to physical masses and a = 0

Continuum extrapolations (short distance)

