Recent results from the GlueX collaboration

Yannick Wunderlich

HISKP, University of Bonn

September 20th, 2024

I.) Introduction

- II.) The GlueX experiment
- III.) 2-meson photoproduction and extraction of spin-density matrix elements (SDMEs)
- IV.) Results from GlueX:
 - SDMEs for ho(770) and $\Delta^{++}(1232)$ photoproduction
 - *a*₂(1260)-photoproduction at GlueX
 - Upper limits for production of the $\pi_1(1600)$

Introduction & motivation

The spectrum of hadrons is generated by the $SU(3)_c$ gauge-theory of QCD

- *) Standard quark-model classification: $|\text{meson}\rangle = |q\bar{q}\rangle$, $|\text{baryon}\rangle = |qqq\rangle$; \hookrightarrow many found; consistent with QCD
- *) However: multiquark-configurations $(|q\bar{q}q\bar{q}\rangle)$, $|qqqq\bar{q}\rangle,\ldots)$ are in principle allowed as well
- *) Nonlinear QFT-dynamics (!)
 - \Rightarrow hybrid configurations $|q\bar{q}g\rangle$ allowed as well, ...
 - \Rightarrow ... as are glueballs $|gg\rangle$.

glueball

hybrid meson

Introduction & motivation

The spectrum of hadrons is generated by the $SU(3)_c$ gauge-theory of QCD

- *) Standard quark-model classification: $|meson\rangle = |q\bar{q}\rangle$, $|baryon\rangle = |qqq\rangle$; \hookrightarrow many found; consistent with QCD
- *) However: multiquark-configurations $(|q\bar{q}q\bar{q}\rangle, |qqqqq\bar{q}\rangle, ...)$ are in principle allowed as well
- *) Nonlinear QFT-dynamics (!)
 - $\Rightarrow\,$ hybrid configurations $|q\bar{q}g
 angle$ allowed as well, \ldots
 - \Rightarrow ... as are glueballs $|gg\rangle$.

glueball

hybrid meson

*) In standard quark-model, one has, for a $|q\bar{q}\rangle$ -state: $\vec{J} = \vec{L} \oplus \vec{S}$, $P(q\bar{q}) = (-1)^{L+1}$ and $C(q\bar{q}) = (-1)^{L+S}$.

- ⇒ Allowed: $J^{PC} = 0^{-+}, 0^{++}, 1^{--}, 1^{+-}, ...$; Forbidden: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, ...$
- *) Spin-exotic quantum numbers are "smoking gun" for states inconsistent with a pure $|q\bar{q}\rangle$ -system \hookrightarrow GlueX: hybrid searches ...

Hybrid mesons from Lattic QCD

Excited spectrum of isoscalar mesons using lattice QCD (hadspec collaboration): spin-exotic P = +13000 P = -12500 4^{-+} 2^{+-} 4^{++} 3^{+-} 3++ 2000 $m \,/\, {\rm MeV}$ 2^{-+} 1500 2^{++} 1000 $m_{\pi} = 392 \,\mathrm{MeV}$ $24^{3} \times 128$ isoscalar n — 500 isovector 0^{-+}

[J. J. Dudek et al. [Hadron Spectrum], Phys. Rev. D 88, no.9, 094505 (2013)]

CEBAF facility at Jefferson Lab

The GlueX experiment (Hall D)

Linearly polarized photon-beam ($P \simeq 40$ %) via coherent bremsstrahlung on a thin diamond:

Phases of GlueX:

Phase	$\int \mathcal{L} \left[pb^{-1} \right]$
GlueX-I (2017-2018)	330 (E_{γ} > 8 GeV)
GlueX-II (2020-2025)	\simeq 320 (so far \ldots)
GlueX-III (?)	$\simeq 800$

Almost complete phase-space coverage for measurements of neutral and charged particles:

- *) Acceptance: $\theta^{\text{LAB}} \in [1, \dots, 120]^{\circ}$
- *) Charged particles: $\frac{\sigma_p}{p} \simeq 1, \dots, 3\%$

Determine photon-energy via tagged recoil-electrons:

Merits of (2-meson) photoproduction

Photoproduction is a useful tool, because:

- *) Diffractive production well-understood (exchange mechanisms)
- *) Photoproduction yields complementary information to pion-induced data (e.g. COMPASS)
- *) Current world photoproduction-data scarce at GlueX-energies
- *) Use polarization to constrain production mechanisms

Merits of (2-meson) photoproduction

Photoproduction is a useful tool, because:

- *) Diffractive production well-understood (exchange mechanisms)
- *) Photoproduction yields complementary information to pion-induced data (e.g. COMPASS)
- *) Current world photoproduction-data scarce at GlueX-energies
- *) Use polarization to constrain production mechanisms
- *) Can produce a large variety of quantum numbers:

'Re	ggeon'	Exotic fi	nal states
P	0++	b, h, h'	2+-, 0+-
π^0	0^{-+}	b_2, h_2, h'_2	2^{+-}
π^{\pm}	0^{-+}	π_{1}^{\pm}	1-+
ω	$1^{}$	π_1, η_1, η_1'	1^{-+}

Merits of (2-meson) photoproduction

Photoproduction is a useful tool, because:

- *) Diffractive production well-understood (exchange mechanisms)
- *) Photoproduction yields complementary information to pion-induced data (e.g. COMPASS)
- *) Current world photoproduction-data scarce at GlueX-energies
- *) Use polarization to constrain production mechanisms
- *) Can produce a large variety of quantum numbers:

'Reg	ggeon'	Exotic fi	nal states
P	0++	b, h, h'	2+-, 0+-
π^0	0^{-+}	b_2, h_2, h'_2	2^{+-}
π^{\pm}	0^{-+}	π_{1}^{\pm}	1-+
ω	$1^{}$	π_1, η_1, η_1'	1^{-+}

Focus on decays to $\eta\pi$ and $\eta'\pi$ ('golden channels')

⇒ 'flagship reactions' involving recoil against either a proton or a Δ -isobar (e.g. $\gamma p \longrightarrow \eta \pi^0 p$, ...)

Extraction of spin-density matrix elements (SDMEs)

Assume: Only one 2-body subsystem, with certain spin, is known to propagate (e.g. due to cuts applied to data), i.e.:

Extraction of spin-density matrix elements (SDMEs)

Assume: Only one 2-body subsystem, with certain spin, is known to propagate (e.g. due to cuts applied to data), i.e.:

⇒ This fixes angular dependence of the intensity (cf. helicity-formalism, tensorformalism, ...), e.g. for ρ -meson photoproduction (for polarized $\vec{\gamma}$):

$$\begin{split} I(\Omega, \Phi) &= I^0(\Omega) - P_\gamma \cos(2\Phi) I^1(\Omega) - P_\gamma \sin(2\Phi) I^2(\Omega), \\ I^0(\Omega) &= \frac{3}{4\pi} \left[\frac{1}{2} \left(1 - \rho_{00}^0 \right) + \frac{1}{2} \left(3\rho_{00}^0 - 1 \right) \cos^2 \theta - \sqrt{2} \text{Re} \rho_{10}^0 \sin 2\theta \cos \phi - \rho_{1,-1}^0 \sin^2 \theta \cos 2\phi \right], \\ I^1(\Omega) &= \frac{3}{4\pi} \left[\rho_{11}^1 \sin^2 \theta + \rho_{00}^1 \cos^2 \theta - \sqrt{2} \text{Re} \rho_{10}^1 \sin 2\theta \cos \phi - \rho_{1,-1}^1 \sin^2 \theta \cos 2\phi \right], \\ I^2(\Omega) &= \frac{3}{4\pi} \left[\sqrt{2} \text{Im} \rho_{10}^2 \sin 2\theta \sin \phi + \text{Im} \rho_{1,-1}^2 \sin^2 \theta \sin 2\phi \right]. \end{split}$$

Extraction of spin-density matrix elements (SDMEs)

Assume: Only one 2-body subsystem, with certain spin, is known to propagate (e.g. due to cuts applied to data), i.e.:

⇒ This fixes angular dependence of the intensity (cf. helicity-formalism, tensorformalism, ...), e.g. for ρ -meson photoproduction (for polarized $\vec{\gamma}$): $I(\Omega, \Phi) = I^0(\Omega) - P_{\gamma} \cos(2\Phi)I^1(\Omega) - P_{\gamma} \sin(2\Phi)I^2(\Omega),$

$$I^{0}(\Omega) = \frac{3}{4\pi} \left[\frac{1}{2} \left(1 - \rho_{00}^{0} \right) + \frac{1}{2} \left(3\rho_{00}^{0} - 1 \right) \cos^{2}\theta - \sqrt{2} \operatorname{Re} \rho_{10}^{0} \sin 2\theta \cos \phi - \rho_{1,-1}^{0} \sin^{2}\theta \cos 2\phi \right],$$

$$I^{1}(\Omega) = \frac{3}{4\pi} \left[\rho_{11}^{1} \sin^{2}\theta + \rho_{00}^{1} \cos^{2}\theta - \sqrt{2} \operatorname{Re} \rho_{10}^{1} \sin 2\theta \cos \phi - \rho_{1,-1}^{1} \sin^{2}\theta \cos 2\phi \right],$$

$$I^{2}(\Omega) = \frac{3}{4\pi} \left[\sqrt{2} \mathrm{Im} \rho_{10}^{2} \sin 2\theta \sin \phi + \mathrm{Im} \rho_{1,-1}^{2} \sin^{2} \theta \sin 2\phi \right].$$

 $\Rightarrow \text{ Fit SDMEs } \rho_{jk}^{i} \text{ out of the data and compare to models;} \\ \text{SDMEs are bilinear: } \rho_{m,m'}^{0} = \mathcal{T}_{m}^{(\ell)} \mathcal{T}_{m'}^{(\ell)*}, \ldots$

Y. Wunderlich

Recent results from GlueX

Example I: SDMEs for $\rho(770)$ -production

[GlueX, Phys. Rev. C 108, 5, 055204 (2023)] Reaction: *) °28 م 20.16 - Glue X $\vec{\gamma} p \longrightarrow \rho(770) p$ SLAC (Ballam et al.) 0.1 - SCHC + NPE IPAC Model 0.0 0.0 0.05 0.0 0.0 *) SDMEs are orders of -0.05 -0.0° magnitude more -0.1-0.10precise than previous -t (GeV²/c²) -t (GeV2/c2) -t (GeV²/ c^2) measurements, with 2 2010 only a fraction of the 0.1 0.14 full GlueX dataset. 0.05 0.0; 0.0 0.0 0.00 *) Uncertainties are -0.0 -0.0-0.04 dominated by -0.1-0.14systematics, 0001020304050607080910 0001020304050607080910 -t (GeV²/c²) -t (GeV2/c2) -t (GeV²/c²) Agreement with *) 2 10.10 10 35 0.5 Regge-model 0.5 0.0 -0.40[JPAC, PRD 97, 094003 (2018)] 0.4 0.0 -0.45is good up to 0.4 -0.0 $-t \simeq 0.5 \text{GeV}^2/c^2$ 0.3 -0.140.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 In progress: ϕ , ω -t (GeV2/c2) -t (GeV2/c2) -t (GeV2/c2) *

Example II: SDMEs for $\Delta^{++}(1232)$ -production

- *) Reaction: $\vec{\gamma} p \rightarrow \pi^{-} \underbrace{\Delta^{++}(1232)}_{\rightarrow \pi^{+}p}$
- *) Statistics superior to previously measured data (SLAC),
- Data useful for constraining bottom vertex of the reaction

Example II: SDMEs for $\Delta^{++}(1232)$ -production

- *) Reaction: $\vec{\gamma} p
 ightarrow \pi^- \Delta^{++}$ (1232) $\rightarrow \pi^+ p$
- Statistics superior to *) previously measured data (SLAC),
- Data useful for *) constraining bottom vertex of the reaction

Natural-parity *) exchange described well by JPAC model [JPAC, PLB 779, 77 (2018)]

Y. Wunderlich

Recent results from GlueX

al.

$a_2(1320)$ -photoproduction - I

- *) Strong evidence for spin-exotic $\pi_1(1600)$ -contribution from COMPASS; \Rightarrow Key GlueX-channel to compare to: $\gamma p \longrightarrow \pi \eta N$,
- *) Clear signals seen in the data, at $a_0(980)$ and $a_2(1320)$ -masses,

$a_2(1320)$ -photoproduction - I

- *) Strong evidence for spin-exotic $\pi_1(1600)$ -contribution from COMPASS; \Rightarrow Key GlueX-channel to compare to: $\gamma p \longrightarrow \pi \eta N$,
- *) Clear signals seen in the data, at $a_0(980)$ and $a_2(1320)$ -masses,

- *) Angular dist. of the *a*₂(1320)-signal different between charged- and neutral channels,
 - \hookrightarrow Different spin-*m* projections populated,
- *) Need amplitude analysis for strong $a_2(1320)$ signal, as 'referencewave' for interference off (smaller) π_1 -signal,

$a_2(1320)$ -photoproduction - II

Semi mass-dependent method: use Breit-Wigner parametrization for the $a_2(1320)$ \oplus mass-independent 'parametrization' for the *S*-wave amplitudes; \hookrightarrow Fit performed only with 'coherent' *S*- and *D*-waves,

$a_2(1320)$ -photoproduction - III

- *) Agreement with JPAC TMD-model [JPAC, PRD 102, 014003 (2020)] at least reasonable,
- *) Dominance of natural parity exchanges (ho, ω, \ldots) observed,
- *) Statistical errors from bootstrapping; elaborate systematics studies performed in addition,
- \Rightarrow [Publication currently in preparation ...]

$\pi_1(1600)$ upper limits - I

Use GlueX-measurements for 3 ω -photoproduction reactions:

 $\gamma p \longrightarrow \omega \pi^+ \pi^- p, \ \gamma p \longrightarrow \omega \pi^0 \pi^0 p \text{ and } \gamma p \longrightarrow \omega \pi^- \pi^0 \Delta^{++}.$

$\pi_1(1600)$ upper limits - I

 *) Upper limit on π(1600)-production is set using isospin-separation, assuming no *I* = 2:

$$\sigma \left(\omega \pi \pi\right)_{I=1}^{0} = \sigma \left(\omega \pi^{+} \pi^{-}\right) - 2\sigma \left(\omega \pi^{0} \pi^{0}\right),$$

$$\sigma \left(\omega \pi \pi\right)_{I=1}^{-} = \sigma \left(\omega \pi^{-} \pi^{0}\right).$$

⇒ Fit $\sigma (\omega \pi \pi)_{I=1}$ using known resonance parameters for the $a_2(1320)$ (from PDG) and the $\pi_1(1600)$ (JPAC),

$\pi_1(1600)$ upper limits - II

- *) Fit-range: $M (\omega \pi \pi)_{I=1} < 1.6 \text{ GeV}/c^2$
- *) Adjust a2-shape to measured cross section, with known BR,
- *) π_1 -BR from Lattice QCD,
- *) π_1 -magnitude is only free parameter (!),
- $\Rightarrow \text{ Upper limits for } \pi_1 \text{ roughly} \\ \text{similar in size to } a_2 \\ \text{cross-sections.} \end{cases}$

$\pi_1(1600)$ upper limits - II

- *) Fit-range: $M (\omega \pi \pi)_{I=1} < 1.6 \text{ GeV}/c^2$
- *) Adjust a2-shape to measured cross section, with known BR,
- *) π_1 -BR from Lattice QCD,
- *) π_1 -magnitude is only free parameter (!),
- $\Rightarrow \text{ Upper limits for } \pi_1 \text{ roughly} \\ \text{similar in size to } a_2 \\ \text{cross-sections} \\ \end{cases}$

- *) $\pi_1 \rightarrow \eta \pi$: small,
- *) $\pi_1 \rightarrow \eta' \pi$: dominates the spectrum,
- \Rightarrow Important constraints for amplitude analyses, ...

Conclusions & Outlook

- *) GlueX has begun to explore new territory in previously unknown kinematic regions, taking data of unprecedented statistical quality
- *) Initial production-process studies (SDMEs) go hand in hand with the development and refinement of PWA tools (collaboration with JPAC)
- *) Interesting physics-results:
 - Studies of SDMEs,
 - First measurement of *a*₂(1320) cross section,
 - Upper limits set for the $\pi_1(1600)$,
 - ...
- *) ... and many more things to come!

 \Rightarrow Exciting treasures to be lifted from upcoming GlueX-II and -III data!

Thank You!

Additional Slides

2-meson photoproduction formalism

Intensity is the amplitude squared: $I(\Omega) = \sum_{L,M} \left\{ H^0(L,M) + \boldsymbol{P}_{\gamma} \cdot \boldsymbol{H}(L,M) \right\} Y_L^M(\Omega)$.

$a_2(1320)$ -photoproduction - amplitudes

- *) Kinematics: 3 angles (cos θ_η, φ_η, Φ) (cf. the above) in rest-frame of decaying resonance (e.g. Gottfried-Jackson frame),
- *) Amplitudes are eigenstates of the so-called reflectivity $\epsilon = \pm 1$,

[JPAC, PRD 100, 5, 054017 (2019)]

*) In high-energy limit: partial-waves with $\epsilon = \pm 1$ are dominated by *t*-channel exchanges with 'naturality' $\eta = \pm 1$;

Naturality: $\eta := P(-1)^J$, thus: natural parity $\eta = +1$ for: $J^P = 0^+, 1^-, 2^+, \dots$

unnatural parity $\eta = -1$ for: $J^P = 0^-, 1^+, 2^-, \dots$

- *) For $\eta\pi$: positive (negative) reflectivity \equiv natural- (unnatural-) parity exchange,
- *) Expand intensity in terms of basis-functions $Z_{\ell}^m(\Omega, \Phi) := Y_{\ell}^m(\Omega) e^{i\Phi}$:

$$I(\Omega, \Phi, M) = 2\kappa \left\{ \left(1 - P_{\gamma}\right) \left[\sum_{\ell, m} \left[\ell\right]^{(-)}(M, \vec{x}) \operatorname{Re}\left[Z_{\ell}^{m}(\Omega, \Phi)\right]\right]^{2} + \left(1 - P_{\gamma}\right) \left[\sum_{\ell, m} \left[\ell\right]^{(+)}(M, \vec{x}) \operatorname{Im}\left[Z_{\ell}^{m}(\Omega, \Phi)\right]\right]^{2} + \left(1 + P_{\gamma}\right) \left[\sum_{\ell, m} \left[\ell\right]^{(+)}(M, \vec{x}) \operatorname{Re}\left[Z_{\ell}^{m}(\Omega, \Phi)\right]\right]^{2} + \left(1 + P_{\gamma}\right) \left[\sum_{\ell, m} \left[\ell\right]^{(-)}(M, \vec{x}) \operatorname{Im}\left[Z_{\ell}^{m}(\Omega, \Phi)\right]\right]^{2} \right\}$$