RUB

¹Ruhr-Universität Bochum ²GSI Helmholtzzentrum ³Forschungszentrum Jülich

Study of the reaction $pp \rightarrow ppKK$ and exclusive K^+K^-/ϕ

<u>Valentin Kladov^{1,2}</u>, Johan Messchendorp², James Ritman^{1,2,3}

- Study the production mechanisms of the resonances with strangeness.
- Develop techniques for future exclusive analyses.

Motivation

Is there anything interesting?

Complementary research

 ϕ/K^- ratio

...

- K^- rescattering study
- Differential cross section measurements
 - Detailed partial wave analysis

Selection strategy

General strategy: Exclusive study, identifying and reconstructing 4-momenta of all four final state particles.

- $0 < \beta < 1$, P > 50 MeV/c, klsUsed. • *HParticle cuts:*
- $N_p \ge 2 (HF), N_{K^+} \ge 1(H), N_{K^-} \ge 1(H).$ • *Multiplicity:*
- Neural network, π^{\pm} , K^{\pm} , p separation. PID in HADES:
- $\chi^2 \operatorname{cut} \& \chi^2_{KK} < \chi^2_{\pi\pi}.$ • *Kinematic fit:*
- Beta correction (high energy pions), energy loss (H), beamTilt (HF)...

p

Image source: https://doi.org/10.48550/arXiv.1505.07818

Intermediate features trained to be indifferent to the input type (Sim/Exp)

Original DANN article and image: https://doi.org/10.48550/arXiv.1505.07818

Valentin Kladov

Workshop at 1GeV scale

Particle identification

Fine-tuning options

- Exp/sim size balance;
- Weighting of classes;
- Weighting of losses;

Prioritize suppression

of pions in experiment.

Particle identification

 β vs P

Kinematic fit for $pp \rightarrow ppKK$

Original KinFit package: https://doi.org/10.1007/s41781-023-00112-x

Valentin Kladov

Workshop at 1GeV scale

Minimization:	$\chi^2 = ($	$\vec{y} - \vec{\eta})^T V^{-1} (\vec{y} - \vec{\eta})$
Constraint:	4C	$\sum P_i - P_{beam} = 0$

Probability distribution should flatten at high values.

Error segmentation: $p - \phi$ for Hades, p for Forward

Valentin Kladov

Errors for KinFit

- 3C over constraint: $\sum P_i P_{beam} = 0$, $|p_F|$ as not measured.
- 4c depends on all errors (p, θ, φ) , 3c only on angles. ullet
- If probability distribution is not flat adjust the errors separately.

Hades:	No scaling needed for flat probability distribution
Forward:	Small scaling of forward errors is still needed

Error segmentation: $p - \phi$ for Hades, p for Forward

Valentin Kladov

Errors for KinFit

- 3C over constraint: $\sum P_i P_{beam} = 0$, $|p_F|$ as not measured. •
- 4c depends on all errors (p, θ, φ) , 3c only on angles. lacksquare
- If probability distribution is not flat adjust the errors separately. ullet

Hades:	No scaling needed for flat probability distribution
Forward:	Small scaling of forward errors is still needed

Wide-range error parametrization: Szymon, Adam, Iza

White sim for Kaons can fix the issue!

Universal tool for HADES?

Raw invariant mass distributions

*PDG

 $\phi(1020) \rightarrow KK$

 $\mu = 1019.9 \pm 0.5 MeV$ (1019.461±0.016 MeV*)

(50% of total available dataset)

 $\Lambda(1520) \to pK$

 $\mu = 1520.0 \pm 0.5 MeV$ ($\approx 1519 \text{ MeV}^*$)

Mass distributions

Reconstruction efficiency & acceptance play big roles.

Efficiency corrected yield

- Efficiency and acceptance corrected spectrum based on simulation.
- Efficiency = selected / generated \bullet bin by bin.
- Prone to simulation systematics. ullet

Effects of FSI & different efficiency corrections

- Need different efficiency corrections for different distributions.
- Background shape can be described in terms of KK FSI.
- Other effects can also contribute to the shape of KK.

Inside ϕ peak $1.01 < M_{KK} < 1.03 \ GeV/c^2$

Data can be described by a pure phase space distribution (only HH)

Workshop at 1GeV scale

Valentin Kladov

Final state interactions (FSI): K⁻ rescattering

Outside ϕ peak $M_{KK} < 1.01 \ GeV/c^2$ $M_{KK} > 1.03 \ GeV/c^2$

Is it an attraction between p and K^- (FSI) or under-threshold resonance?

Final state interactions (FSI): K⁻ rescattering

- Similar pattern at low masses, different energy region. ullet
- Looks more like under-threshold production. $\Lambda(1405)$

ϕ/K share & *pKK* system

- $\phi/K \approx 0.195$ (no background corrected)
- $\phi/K \approx 0.205$ (corrected for ~7% from χ^2)

For more accurate results we need to make a more model-independent efficiency correction.

- Several mechanisms possible:
- $pp \rightarrow pX \rightarrow pp\varphi / pK\Lambda$
- $pp \rightarrow pp\phi / pK\Lambda$
- $pp \rightarrow ppKK$

pKK mass distributions

- Hints on interesting dynamics in the amplitude.
- Shape partially can be approximated by FSI (backup).
- Similar inside and outside ϕ/Λ peaks....

20.09.2024

helicity angle distribution HH events

pKK helicity angle

- Resonance decaying into $p\phi$ and $K\Lambda$ is at least not dominant.
- Depends strongly on the choice of proton. (only one of 2 p)
- Depends on efficiency correction.
- However, hints on non-trivial dynamics are visible. (not uniform as for phase space simulation)

Summary & Outlook

- Neural network PID improved and uploaded to github.
- Need for KinFit errors scaling in Hades removed by error segmentation.
- Scaling of p and θ/ϕ errors for forward determined separately with 3C fit.
- Efficiency corrected spectra acquired, effects of different efficiency parametrizations studied.
- FSI fits to nonresonant part done.
- φ/K ratio estimated with potential for a more precise measurement.
- Signs of non-trivial dynamics found in *pKK* distributions.

Combined fit with simple amplitude models using GENBOD.

> Partial wave analysis attempt.

Backup

FRPC new gen check

1.3C KinFit \rightarrow Expected momentum.

2. Momentum + track distance \rightarrow Expected ToF.

3. Compare with measured ToF in FRPC.

hTDiffvsVpos

Properly working ToF measurements in the whole area of FRPC. *No access to old data.

Raw invariant mass distributions

- 4C kinematic refit is very powerful in this case.
- NN PID significantly increases computation speed by lowering the amount of kinematic fit combinations.
- Will be more helpful for inclusive reaction studies without possibility to apply 4C fit.

Efficiency corrected yield

Different efficiency methods

Difference Hades - Forward

Efficiency corrected yield

Particle identification performance

- Good peaked probabilities ~100% average
- Strong pion-kaon overlapping

- Good distributions with tails
- Prone to mixing

0.2

Efficiencies and situation with simulations

	K^+	<i>K</i> ⁻	p	Total
Acceptance	34%	36%	31%	1%
Identification	60%	70%	95%	30%
Kinfit		_		86.5%

0.2%

Pull = -

Should be normal for signal events

Kinematic fit for $pp \rightarrow ppKK$

$$\frac{\eta - y}{\sqrt{\sigma^2(y) - \sigma^2(\eta)}}$$

Other distributions for kinfit

		Ρμ	Ρ σ	θμ	$\theta \sigma$	φμ	$arphi \sigma$
Pulls	p1	0.13	1.12	-0.26	1.27	0.01	1.28
	p2	0.01	1.08	-0.20	1.29	-0.04	1.28
	kn	0.30	1.22	-0.35	1.29	-0.01	1.25
	kp	0.25	1.17	-0.32	1.26	0.05	1.28

Mass distributions

Reconstruction efficiency plays a big role

Valentin Kladov

HADES CM, Warsaw

