# JLab Eta Factory (JEF) experiment

Presented by William J. Briscoe The George Washington University Washington DC (Contributions from the collaboration)

The Jlab Eta Factory (JEF) is a GlueX endorsed experiment which is supported by the USDOE and NSF.

Spokespersons: Liping Gan - University of North Carolina at Wilmington Alexander Somov – Jefferson Lab Simon Taylor – Jefferson Lab Zisis Papandreou – University of Regina

# Challenges in Physics at the 1Gev Scale

### **Confinement QCD**

- Nature of QCD confinement
- Relation to dynamical chiral symmetry breaking

Physics Beyond the Standard Model (BSM)

- New sources of CP violation
- Dark matter
- Dark energy

# η and η' decays provide sensitive probes to explore both fundamental issues

### The $\eta$ is a unique probe for QCD and BSM physics

- The η is a Goldstone boson due to spontaneous breaking of QCD chiral symmetry.
  - The η is key to bridging the understanding of low-energy hadron dynamics and underlying QCD.



Its strong and EM decays are forbidden in lowest order; it has a narrow decay width (Γ<sub>η</sub> = 1.3KeV compared to Γ<sub>ω</sub> = 8.5 MeV)
 Enhances higher-order contributions (factor of ~7000 compared to ω decays); sensitive to weakly interacting forces.

Eigenstate of P, C, CP, and G: I<sup>G</sup>J<sup>PC</sup>=0<sup>+</sup>0<sup>-+</sup>
 η provides tests of fundamental symmetries through rare decays

 quantum numbers ~ the same as Higgs or vacuum (except for parity); decays are flavor-conserving
 effectively free of SM backgrounds in BSM searchs.

## Rich $\eta$ ( $\eta$ ') Physics

 $\eta \rightarrow$  $\eta \rightarrow$ 

### Standard Model Tests:

- Chiral symmetry and anomalies ٠
- Extract  $\eta$ - $\eta$ ' mixing angle ٠
- Quark mass ratio .
- Theory inputs to HLbL for  $(g-2)_{\mu}$ ٠
- QCD scalar dynamics ٠

#### Fundamental Symmetry Tests:

- C, CP violations
- P, CP violations
- Lepton flavor violations

#### BSM Physics in Dark Sector:

- Vector bosons (B boson, dark ٠ photon and X boson)
- Dark scalars ٠
- Pseudoscalars (ALPs) ٠
- BSM weak decays ٠

| Channel                                     | Expt. branching ratio       | Discussion                                                                                 |
|---------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------|
| $\eta \rightarrow 2\gamma$                  | 39.41(20)%                  | chiral anomaly, $\eta$ - $\eta'$ mixing                                                    |
| $\eta \rightarrow 3\pi^0$                   | 32.68(23)%                  | $m_u - m_d$                                                                                |
| $\eta \to \pi^0 \gamma \gamma$              | $2.56(22) \times 10^{-4}$   | $\chi$ PT at $O(p^6)$ , leptophobic <i>B</i> boson,<br>light Higgs scalars                 |
| $\eta \to \pi^0 \pi^0 \gamma \gamma$        | $< 1.2 \times 10^{-3}$      | $\chi$ PT, axion-like particles (ALPs)                                                     |
| $\eta \rightarrow 4\gamma$                  | $< 2.8 \times 10^{-4}$      | < 10 <sup>-11</sup> [54]                                                                   |
| $\eta \to \pi^+ \pi^- \pi^0$                | 22.92(28)%                  | $m_u - m_d$ , $C/CP$ violation,<br>light Higgs scalars                                     |
| $\eta \to \pi^+ \pi^- \gamma$               | 4.22(8)%                    | chiral anomaly, theory input for singly-virtual TFF and $(g - 2)_{\mu}$ , $P/CP$ violation |
| $\eta \to \pi^+ \pi^- \gamma \gamma$        | $< 2.1 \times 10^{-3}$      | $\chi$ PT, ALPs                                                                            |
| $\eta \to e^+ e^- \gamma$                   | $6.9(4) \times 10^{-3}$     | theory input for $(g - 2)_{\mu}$ ,<br>dark photon, protophobic X boson                     |
| $\eta \to \mu^+ \mu^- \gamma$               | $3.1(4) \times 10^{-4}$     | theory input for $(g - 2)_{\mu}$ , dark photon                                             |
| $\eta \rightarrow e^+ e^-$                  | $< 7 \times 10^{-7}$        | theory input for $(g - 2)_{\mu}$ , BSM weak decays                                         |
| $\eta \to \mu^+ \mu^-$                      | $5.8(8) \times 10^{-6}$     | theory input for $(g - 2)_{\mu}$ , BSM weak decays,<br><i>P/CP</i> violation               |
| $\eta \to \pi^0 \pi^0 \ell^+ \ell^-$        |                             | C/CP violation, ALPs                                                                       |
| $\eta \to \pi^+ \pi^- e^{+} e^{-}$          | $2.68(11) \times 10^{-4}$   | theory input for doubly-virtual TFF and $(g - 2)_{\mu}$ ,<br>P/CP violation, ALPs          |
| $\eta \to \pi^+ \pi^- \mu^+ \mu^-$          | $< 3.6 \times 10^{-4}$      | theory input for doubly-virtual TFF and $(g - 2)_{\mu}$ ,<br>P/CP violation, ALPs          |
| $\eta \rightarrow e^+ e^- e^+ e^-$          | $2.40(22) \times 10^{-5}$   | theory input for $(g-2)_{\mu}$                                                             |
| $\eta \rightarrow e^+ e^- \mu^+ \mu^-$      | $< 1.6 \times 10^{-4}$      | theory input for $(g-2)_{\mu}$                                                             |
| $\eta \to \mu^+ \mu^- \mu^+ \mu^-$          | $< 3.6 \times 10^{-4}$      | theory input for $(g-2)_{\mu}$                                                             |
| $\eta \rightarrow \pi^+ \pi^- \pi^0 \gamma$ | $< 5 \times 10^{-4}$        | direct emission only                                                                       |
| $\eta \rightarrow \pi^{\pm} e^{\mp} v_e$    | $< 1.7 \times 10^{-4}$      | second-class current                                                                       |
| $\eta \rightarrow \pi^+ \pi^-$              | $< 4.4 \times 10^{-6}$ [55] | P/CP violation                                                                             |
| $\eta \rightarrow 2\pi^0$                   | $< 3.5 \times 10^{-4}$      | P/CP violation                                                                             |
| $n \rightarrow 4\pi^0$                      | $< 6.9 \times 10^{-7}$      | P/CP violation                                                                             |

# Low-Energy QCD Symmetries and Light Mesons



The  $\pi^0$ ,  $\eta$ ,  $\eta'$  system provides a rich laboratory to study the symmetry structure of QCD at low energies.

Transition Form Factor and  $(g-2)_{\mu}$ important hadronic light-by-light contribution:  $\eta^{(\prime)}$  pole terms singly / doubly virtual transition form factors (TFFs)  $F_{\eta^{(\prime)}\gamma^*\gamma^*}(q^2,0)$  and  $F_{\eta^{(\prime)}\gamma^*\gamma^*}(q_1^2,q_2^2)$ normalisation fixed by WZW anomaly **HLbL** 

**\*WZW - Wess–Zumino–Witten** 

### SM allowed $\eta \rightarrow \pi^0 \gamma \gamma$

Rare window to probe interplay of VMD & scalar resonances in ChPT to calculate the chiral Lagrangian of O(p<sup>6</sup>)

• Major contributions to  $\eta \rightarrow \pi^0 \gamma \gamma$  - two O(p<sup>6</sup>) counter-terms in chiral Lagrangian  $\longrightarrow$  unique probe for high-order ChPT.

L. Ametller, J, Bijnens, and F. Cornet, Phys. Lett., B276, 185 (1992)

Shape of Dalitz distribution sensitive to role of scalar resonances.



# **Discrete Symmetries**

| Class | Violated            | Conserved                | Interaction                               |
|-------|---------------------|--------------------------|-------------------------------------------|
| 0     |                     | C, P, T, CP, CT, PT, CPT | strong, electromagnetic                   |
| Ι     | C, P, CT, PT        | T, CP, CPT               | (weak, with no KM phase or flavor-mixing) |
| II    | P, T, CP, CT        | C, PT, CPT               |                                           |
| III   | C, T, PT, CP        | P, CT, CPT               |                                           |
| IV    | C, P, T, CP, CT, PT | CPT                      | weak                                      |

- class II: P-, CP-violation
  - $\triangleright$  QCD  $\theta$ -term; in general: electric dipole moments

 $\triangleright \eta^{(\prime)}$  decay examples:  $\eta^{(\prime)} \rightarrow 2\pi, \eta^{(\prime)} \rightarrow \pi^+ \pi^- \gamma^{(*)}$ 

class III: C-, CP-violation

far less discussed; in SMEFT, start at dimension 8 only

 $\triangleright \eta^{(\prime)}$  decay examples:  $\eta^{(\prime)} \to 3\gamma, \eta^{(\prime)} \to \pi^0 \gamma^* \dots$ 

Class III has weaker experimental constraint, offer an opportunity for new physics search.

n.b. - Kobayashi–Masakawa (KM)

# **BSM Physics in Dark Sector**



# Where to Search in the Dark Sector?



Sub-GeV region represents a good discovery opportunity

BBN - big bang nucleosynthesis

CDM - cold dark matter

### JLab Eta Factory (JEF) Experiment



- Simultaneously produce  $\eta/\eta'$  on LH<sub>2</sub> target with 8.4-11.7 GeV tagged photon beam via  $\gamma+p \rightarrow \eta/\eta'+p$  so decay products get forward boost.
- Reduce non-coplanar backgrounds by detecting recoil protons with GlueX detector.
- Upgraded Forward Calorimeter with High resolution, high granularity PWO insertion (FCAL-II) to detect multi-photons from the  $\eta/\eta'$  decays.
- The GlueX detector will detect charged products from the  $\eta/\eta'$  decays

# World Competition in n Decays



TAPS



forward drif

barrel time-of calorimeter -flight

з

### Uniqueness of JEF Experiment

Large background suppression compared to other experiments:
 a) η/η' energy boost; b) FCAL-II; c) exclusive detections

$$JEF: \gamma p \rightarrow \eta p (E_{\gamma} = 8.4-11.7 \text{ GeV}) \quad 1 \text{ day's running} \quad 0.46 \quad 0.48 \quad 0.5$$

$$N (PWO) > 2$$

$$\int_{0.5}^{0.46} \int_{0.48}^{0.5} \int_{0.52}^{0.52} \int_{0.54}^{0.54} \int_{0.56}^{0.58} \int_{0.58}^{0.66} \int_{0.62}^{0.62} \int_{0.64}^{0.48} \int_{0.64}^{0.28} \int_{0.64}^{0.48} \int_{0.64}^{$$

- Capability of running in parallel with GlueX and other experiments in Hall D
   high-statistics data set
- **3**. Simultaneously produce tagged  $\eta$  and  $\eta'$  with similar rates

# **Estimated Design Production Rate**

#### JEF for 100 days of beam:

|               | η                    | η'                |
|---------------|----------------------|-------------------|
| Tagged mesons | ~5 x 10 <sup>7</sup> | $\sim 5 \ge 10^7$ |

#### **Previous Experiments:**

| Experiment | Total η                                            | Total ղʻ           |
|------------|----------------------------------------------------|--------------------|
| CB at AGS  | 10 <sup>7</sup>                                    | -                  |
| CB MAMI-B  | 2x10 <sup>7</sup>                                  | -                  |
| CB MAMI-C  | 6x10 <sup>7</sup>                                  | 10 <sup>6</sup>    |
| WASA-COSY  | ~3x10 <sup>7</sup> (p+d), ~5x10 <sup>8</sup> (p+p) | -                  |
| KLOE-II    | 3x10 <sup>8</sup>                                  | 5x10 <sup>5</sup>  |
| BESIII     | ~10 <sup>7</sup>                                   | ~5x10 <sup>7</sup> |

JEF offers a competitive  $\eta/\eta'$  production rate with cleaner backgrounds. New estimates are in progress using more up to date cross sections.

### Main JEF Physics Objectives

### 1. Search for sub-GeV hidden bosons

vector:

• Leptophobic vector B'

 $\eta, \eta' \to B' \gamma \to \pi^0 \gamma \gamma, \ (0.14 < m_{B'} < 0.62 \text{ GeV});$  $\eta' \to B' \gamma \to \pi^+ \pi^- \pi^0 \gamma, \ (0.62 < m_{B'} < 1 \text{ GeV}).$ 

• Hidden or dark photon:  $\eta, \eta' \to X\gamma \to e^+e^-\gamma$ .

scalar S: 
$$\eta \to \pi^0 S \to \pi^0 \gamma \gamma, \ \pi^0 e^+ e^-, \ (10 \text{ MeV} < m_S < 2m_\pi);$$
  
 $\eta, \eta' \to \pi^0 S \to 3\pi, \ \eta' \to \eta S \to \eta \pi \pi, \ (m_S > 2m_\pi).$ 

Axion-Like Particles (ALP):  $\eta, \eta' \to \pi \pi a \to \pi \pi \gamma \gamma, \ \pi \pi e^+ e^-$ 

2. Directly constrain CVPC new physics:  $\eta^{(\prime)} \rightarrow 3\gamma$ ,  $\eta^{(\prime)} \rightarrow 2\pi^{0}\gamma$ ,  $\eta^{(\prime)} \rightarrow \pi^{+}\pi^{-}\pi^{0}$ 

#### 3. Precision tests of low-energy QCD:

- Interplay of VMD & scalar dynamics in ChPT:  $\eta \to \pi^0 \gamma \gamma$   $\eta' \to \pi^0 \gamma \gamma$
- Transition Form Factors of  $\eta^{(\prime)}: \eta^{(\prime)} \rightarrow e^+ e^- \gamma$

### 4. Improve the quark mass ratio via Dalitz distributions of $\eta \rightarrow 3\pi$

# Preliminary Estimate of JEF Experimental Reach for B'

Search for leptophobic dark B' boson coupled to baryon number; complementary to searches for a dark photon



### Projected\* JEF on SM Allowed $\eta \rightarrow \pi^0 \gamma \gamma$



We measure both BR and Dalitz distribution

model-independent determination of two LEC's of the O(p<sup>6</sup>) counter-terms
 probe role of scalar resonances to calculate other unknown O(p<sup>6</sup>) LEC's

\* N.B. New estimated projections are underway and will be ready for proceedings

### Estimated Experimental Improvement on C-violating $\eta \rightarrow 3\gamma$

- SM contribution: BR(η→3γ) <10<sup>-19</sup> via P-violating weak interaction.
- A calculation due to new physics by Tarasov suggests: BR(η→3γ)< 10<sup>-2</sup>

```
Sov.J.Nucl.Phys.,5,445 (1967)
```



Aim to Improve BR upper limit by about an order of magnitude to tighten constraint on CVPC physics

## Current Status of the JEF Experiment

- 1. Non-rare decay data has been collecting with GlueX since 2016.
- 2. Upgraded FCAL-II with new PWO insert.
  - Production of the 1600 PWO modules is complete.
  - Installation into the upgraded FCAL-II is almost complete.
  - Testing in progress and will be completed this fall (2024).
- 3. Rare decay data with FCAL-II expected in Spring 2025.







Undergraduate workforce



# Summary

- 12 GeV tagged photon beam with GlueX offers a unique η/η' factory to test SM and search for new BSM physics, with background reduction in the neutral rare decay mode.
- New estimated projections are underway and will be ready for proceedings
- Simultaneously measure  $\eta/\eta'$  decays with physics goals to:
  - Search for sub-GeV hidden bosons: vector, scalar, and ALP
  - Directly constrain new CVPC physics
  - Precision tests of low-energy QCD: role of scalar dynamics in ChPT; transition form factors of η/η' to calculate HLbL contributions in (g-2)<sub>μ</sub>
  - > Improve light quark mass ratio via  $\eta \rightarrow 3\pi$ ,  $\eta' \rightarrow 3\pi$
- Data collection for non-rare decays on-going with GlueX since 2016.
- Rare decays require upgraded FCAL-II with PWO insert.
- Installation almost complete & testing in progress; complete Fall 2024.
- Data taking starts in Spring 2025.
- Scan for acknowledgments

