

Prompt Gamma Spectroscopy Retrieval Algorithm for Element and Density Measurements

Jin-Long Wang

2023 7 6@YIWS

Contents

- Background PGNAA, Range, PGs, Elements
 - Prompt gamma spectroscopy retrieval algorithm Basics, Mathematical form
- Neutron Distribution Where and when

5

2

3

FLUKA Simulations and Results Element & Density

Summary and Discussion Experiment considerations

Background

prompt gamma-ray neutron activation analysis

100000

(PGNAA)

1

Prompt Gamma + Decay Gamma

A.A. Naqvi. Appl. Radiat. Isot. 70, 882-887 (2012).

Background Range and PGs

1

J Smeets 2012

J Smeets 2016

100000

Background PGs and elements

1

Jerimy C Polf 2013

.....

Background PGs and elements

Paulo Magalhaes Martins 2020

1

A linear relationship was demonstrated between the amounts of irradiated oxygen in tissue-equivalent samples and the total emission of prompt gamma radiation during irradiation by particles.

Contents

Background PGNAA, Range, PGs, Elements

Prompt gamma spectroscopy retrieval algorithm Basics, Mathematical form

Neutron Distribution Where and when

4

5

2

3

FLUKA Simulations and Results Element & Density

Summary and Discussion Experiment considerations

Basics & Mathematical form

Spectroscopy directly generated by $C(p, \gamma)C^*$

2

Spectroscopy directly generated by $O(p, \gamma)O^*$

Basics & Mathematical form

Formalize a mathematical model from a **phase-only perspective** which could be solved by the numerical method:

Basic assumptions:

- 1) the sample material has a relationship with its element molar gamma lines in prompt gamma spectroscopy
- 2) The dominant factor is the number of element atoms in the molecule
- 3) for carbon and oxygen, this relationship is linear, and

2

4) for hydrogen, this relationship is nonlinear and is based on a neutron absorption reaction

 $\varphi(C_5 H_8 O_2) = N_c \varphi(C) + N_O \varphi(O) + f(N_c, N_O) \varphi(H)$ (2)

The dominant factor is the number of element atoms in the molecule

Basics, Mathematical form

linear components Non-linear components neutron absorption

 $\varphi(C_{N_c}H_{N_H}O_{N_o}) = N_c\varphi(C) + N_0\varphi(O) + f_c(N_c, N_0, N_H)\varphi(HC) + f_o(N_c, N_0, N_H)\varphi(HO)$ (3)

2

$$f_c(N_c, N_O, N_H) = N_H \frac{N_c}{N_O + N_c} \frac{N_H}{N_O + N_c}$$
(4)

$$f_o(N_c, N_0, N_H) = N_H \frac{N_0}{N_0 + N_c} \frac{N_H}{N_0 + N_c}$$
(5)

- \square N_H : The dominant parameter is the number of hydrogen atoms N_H in the molecule;
- $\Box \frac{N_c}{N_o + N_c}$: Represents the factor of the neutron, i.e., the neutron absorption reaction (Equation 1), where the neutron is emitted from the $C(p, n)C^*$ reaction.
- $\square \frac{N_H}{N_O + N_c}$: is a hydrogen enhancement factor because when there are more hydrogens in a molecule with the same number of carbon or oxygen, the neutron absorption probability will increase.

Basics, Mathematical form

linear components Non-linear components neutron absorption

$$\varphi(C_{N_c}H_{N_H}O_{N_O}) = N_c\varphi(C) + N_O\varphi(O) + f_c(N_c, N_O, N_H)\varphi(HC) + f_o(N_c, N_O, N_H)\varphi(HO)$$
(3)

For hydrogen, there is **only one peak at 2.23 MeV** in its PGS, and it does not contribute to the other characteristic gamma lines in the carbon and oxygen spectra

Transform unknown material x

2

 $C_{N_c}H_{N_H}O_{N_O} \rightarrow x, \varphi(HC) \rightarrow \varphi_{HC}^{2.23}, \varphi(HO) \rightarrow \varphi_{HO}^{2.23}, \varphi_{HC}^{2.23}$ and $\varphi_{HO}^{2.23}$ are 2.23 MeV gamma counts originating from carbon and oxygen per molecule or per mol.

Mathematically separated linear and non-linear part

$$\varphi(x) - \varphi_x^{2.23} = N_c \varphi(C) + N_0 \varphi(O)$$

$$\varphi_x^{2.23} = f_c \varphi_{HC}^{2.23} + f_o \varphi_{HO}^{2.23}$$
(6)

Basics, Mathematical form

Shoot a single molecule target with a single proton

$$\varphi(x) - \varphi_x^{2.23} = N_c \varphi(C) + N_0 \varphi(O)$$

$$\varphi_x^{2.23} = f_c \varphi_{HC}^{2.23} + f_o \varphi_{HO}^{2.23}$$
(6)

Shoot target phantom has M mol molecules with proton beam

2

$$\psi_{x}^{FullEnergy} - \psi_{x}^{2.23} = M_{c}\varphi(C) + M_{0}\varphi(0)$$
(7a)
$$\psi_{x}^{2.23} = F_{C}\varphi_{HC}^{2.23} + F_{0}\varphi_{H0}^{2.23}$$
(7b)

$$\psi_{x}^{FullEnergy} = M * \varphi(x)$$

$$F_{C} = M * f_{C} = M_{H} \frac{M_{C}}{M_{O} + M_{C}} \frac{M_{H}}{M_{O} + M_{C}} (8)$$

$$F_{O} = M * f_{O} = M_{H} \frac{M_{O}}{M_{O} + M_{C}} \frac{M_{H}}{M_{O} + M_{C}} (9)$$

There are only two unknown variables M_c and M_0 in Equation (7a). Thus, for a binary linear equation, we need at least two peak points to solve the equation.

Basics, Mathematical form

$$\psi_x^{FullEnergy} - \psi_x^{2.23} = M_c \varphi(C) + M_0 \varphi(O)$$
 (7a)

2

Solve
$$M_c$$
 and M_0

To obtain a numerical solution, we discretize Equation 7(a)

Basics, Mathematical form

$$\psi_x^{2.23} = F_C \varphi_{HC}^{2.23} + F_0 \varphi_{HO}^{2.23} \quad (7b)$$

Solve *M_H*

ADDIDATE AND A

Bring coefficients F_C and F_O into Equation (7b):

$$\psi_x^{2.23} = M_H * \left(\frac{M_O}{M_O + M_C}\varphi_{HO}^{2.23} + \frac{M_C}{M_O + M_C}\varphi_{HC}^{2.23}\right) \frac{M_H}{M_O + M_C} (12)$$

Now, only M_H is an unknown variable, and the analytical solution of M_H is

2

$$M_{H} = (M_{0} + M_{C}) \sqrt{\frac{\psi_{x}^{2.23}}{M_{0}\varphi_{H0}^{2.23} + M_{C}\varphi_{HC}^{2.23}}}$$
(13).

$$\rho = \frac{Mass}{V} = \frac{12 * M_C + 16 * M_O + M_H}{S * R}$$
(15)

- > Where $\psi_x^{2.23}$ is the peak point count at 2.23 MeV for target material x, which is determined by neutron distribution (energy, time, and lateral distribution) inside the phantom.
- $\sim \varphi_{HC}^{2.23}$ and $\varphi_{HO}^{2.23}$ are the PG counts per mol hydrogen with **neutrons originating from** carbon and oxygen.

Contents

Background PGNAA, Range, PGs, Elements

Prompt gamma spectroscopy retrieval algorithm Basics, Mathematical form

3

2

Neutron Distribution Where and when

5

FLUKA Simulations and Results Element & Density

Summary and Discussion Experiment considerations

3 Neutron & Gamma Distributions Where and When

150 MeV proton to water phantom with 7 layers ranging from a radii of 2 cm to 14 cm

Neutron distribution inside the phantom:

- ▶ energy
- ➤ time
- Iateral distribution

2.23 MeV Gamma from the phantom:> Where> When

3 Neutron & Gamma Distributions Where and When

Photon PGS TOF=0-2ns Energy=10MeV R=2-14cm

> PGS at different layers have the same shape.

- most photons are generated in the center layer R=2 cm from 0.1 ns to 1.4 ns. The outside layers will start generating photons slightly later, within 0.6 ns, as neutron and other secondary particles require a short time to travel in the lateral direction in the water phantom;
- > 10ns is TOF window to select 2.23 MeV gamma.

3 Neutron & Gamma Distributions

Where and When

- Layer 1-4 >10 MeV proton has similar PGs
- ➤ Layer 5 at distal fall off region PGs decreases obviously.

Contents

- Background PGNAA, Range, PGs, Elements
 - Prompt gamma spectroscopy retrieval algorithm Basics, Mathematical form
- Neutron Distribution Where and when

5

2

3

FLUKA Simulations and Results Element & Density

Summary and Discussion Experiment considerations

4 FLUKA Simulations and Results Elements and Density

Molar PGS

□ hydrocarbons: *C*, *HC*, H_2C , H_3C , ..., $H_{20}C$ □ hyd*roxygens*: *O*, *HO*, H_2O , H_3O , ..., $H_{20}O$

Sample Materials x

PMMA: $C_5H_8O_2$

PMMA ($C_5H_8O_2$), 1.18 g/cm^3 pentanediol ($C_5H_{12}O_2$) 0.9939 g/cm^3 ethanediol ($C_2H_6O_2$). 1.1088 g/cm^3

 molar PGS for carbon and oxygen range mass
 molar PGS for hydrogen

target mass

Pentanediol: $C_5 H_{12} O_2$

Ethanediol: $C_2H_6O_2$

4 FLUKA Simulations and Results Elements and Density

PGS spectra from combinations of carbon and hydrogen

Molar PGS spectra from combinations of carbon and hydrogen

- Characteristic gamma lines from carbon decrease with an increasing number of hydrogen atoms,
- while 2.23 MeV gamma lines **increase** as the number of hydrogen atoms increases.
- Characteristic gamma lines from carbon come to the same level in molar PGS

 φ_0^1

 φ_o^2

 φ_o^3

 φ_o^ι

 except at energy of approximately 2.23 MeV

Extract peak gamma lines (2.00 MeV, 2.23 MeV, 2.88 MeV, 4.44 MeV and 6.12 MeV)

- ✓ 2.00 MeV, 2.88 MeV, 4.44 MeV and 6.12 MeV counts have a linear relationship with carbon concentration, which has been confirmed by experiments
- ✓ 2.23 MeV is **non-linear**

Full energy PGS spectra of PMMA ($C_5H_8O_2$ in dark), ethanediol ($C_2H_6O_2$ in green) and pentanediol ($C_5H_{12}O_2$ in blue)

4

4 Results Elements and Density

$C_5 H_8 O_2$ group	Мс	Мо	Mc/Mo	Mc/Mo
	[mol]	[mol]		relative error
All	10.1522	4.2419	2.3933	4.27%
Low	10.1350	4.2509	2.3842	4.63%
High	10.2351	4.2068	2.4330	2.68%
Medium-High	10.3469	4.1066	2.5196	0.78%
$C_5 H_{12} O_2$ group	Мс	Мо	Mc/Mo	Mc/Mo
	[mol]	[mol]		relative error
All	9.2649	4.0280	2.3001	7.99%
Low	9.1582	4.0814	2.2439	10.24%
High	9.7719	3.8373	2.5466	1.86%
Medium-High	9.5617	3.9140	2.4430	2.28%
$C_2 H_6 O_2$ group	Мс	Мо	Mc/Mo	Mc/Mo
	[mol]	[mol]		relative error
All	6.3268	6.6354	0.9535	4.65%
Low	6.1875	6.6743	0.9271	7.29%
High	6.8350	6.7923	1.0063	0.63%
Medium-High	6.6864	6.7517	0.9903	0.97%

Medium- and high-
energy points arepreferred for the
numerical solution asthese characteristic
gamma lines are
more distinct

4 Results Elements and Density

Sample material	Variable	PGSPA result	MC setup	Relative error
			value	
PMMA $\psi_{C_5H_8O_2}^{2.23} = 0.0349$	<i>M₀</i> [mol]	4.1066	4.1519	1.09%
	<i>M_C</i> [mol]	10.3469	10.3798	0.32%
	M_H [mol]	20.6003	21.3528	3.52%
	Sample Mass [g]	210.4682	207.5964	1.38%
	Density [g/cm ³]	1.17	1.18	1.38%
Pentanediol $\psi_{c_5H_{12}O_2}^{2.23} = 0.0365$	<i>M</i> ₀ [mol]	3.8373	3.7901	1.24%
	<i>M</i> _{<i>C</i>} [mol]	9.7719	9.4754	3.13%
	M_H [mol]	20.4229	22.7409	10.19%
	Sample Mass [g]	199.0820	197.0877	1.01%
	Density [g/cm ³]	1.0040	0.99	1.01%
Ethanediol $\psi_{C_2H_6O_2}^{2.23} = 0.0377$	<i>M</i> ₀ [mol]	6.7923	6.5758	3.29%
	<i>M_C</i> [mol]	6.8350	6.5758	3.94%
	M _H [mol]	19.8981	19.7273	0.87%
	Sample Mass [g]	210.5943	203.8484	3.31%
	Density [g/cm ³]	1.1455	1.11	3.31%

Although high atom number of hydrogen, but it has much lower weight than carbon and oxygen in materials. Thus, density error is dominated by carbon and oxygen.

1003111

4 Results Elements and Density

Peak at 6.1 MeV shows a small deviation from the MC curve.
2.23MeV shows a small deviation from the MC curve

Contents

- Background PGNAA, Range, PGs, Elements
 - Prompt gamma spectroscopy retrieval algorithm Basics, Mathematical form
 - Neutron Distribution Where and when

2

3

FLUKA Simulations and Results Element & Density

5

Summary and Discussion Experiment considerations

For a laboratory test, there are some suggestions:

- 1) Detectors must have a **good energy resolution**, such as LaBr3, HPGe, resolution could be 3.3%.
- Detectors must have a good time resolution of approximately 5 ns to distinguish the 2.23 MeV gamma-derived layer as a clinical target, which is approximately 30 cm in the lateral direction.
- 3) To obtain the molar PGS spectra, **simple substances** must be prepared, such as hydrocarbons and water.
- 4) The target should be a slender cylinder, and the beam range should be smaller than the target length.

Thanks for your attention

Contribution:

- Jin-Long Wang: theoretical model, FLUKA simulation, and manuscript.
- Xiao-Guang Wu: physics, prompt gamma analysis, and review.
- Zuo-Feng Li: medical physics, proton therapy, and review.
- Shu-Qing Xie: data analysis.
- Zi-Hao Zhao: detector.
- Da-Qian Hei: neutron adsorption.
- Andrii Rusanov: cloud computing, FLUKA.
-

Cite this work:

Wang J-L, Wu X-G, Li Z-F, Xie S-Q, Hei D-Q, Zhao Z-H, Rusanov A, Zheng Y, Li C-B, Li T-X, Zheng M, Wang X-D, Ding D-J and Ruan H-S (2022), Prompt gamma spectroscopy retrieval algorithm for element and density measurements accelerated by cloud computing. Front. Phys. 10:961162. doi: 10.3389/fphy.2022.961162