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Abstract. We study the excitation spectrum of light and strange mesons in
diffractive scattering. We identify different hadron resonances through partial
wave analysis, which inherently relies on analysis models. Besides statistical
uncertainties, the model dependence of the analysis introduces dominant sys-
tematic uncertainties. We discuss several of their sources for the π−π−π+ and
K0

S K− final states and present methods to reduce them. We have developed a
new approach exploiting a-priori knowledge of signal continuity over adjacent
final-state-mass bins to stably fit a large pool of partial-waves to our data, al-
lowing a clean identification of very small signals in our large data sets. For
two-body final states of scalar particles, such as K0

S K−, mathematical ambigui-
ties in the partial-wave decomposition lead to the same intensity distribution for
different combinations of amplitude values. We will discuss these ambiguities
and present solutions to resolve or at least reduce the number of possible so-
lutions. Resolving these issues will allow for a complementary analysis of the
aJ-like resonance sector in these two final states.

1 Introduction

The study of light-meson resonances is part of the physics program of the COMPASS exper-
iment. They are produced as short-lived intermediate states in diffractive reactions between
a hadron beam and the target. The spectrometer measures the full kinematics of the decay
particles, allowing us to infer the light-meson spectrum by fitting the collected data. A thor-
ough statistical analysis is required to reduce systematic uncertainties originating from the
modelling procedure. It is therefore crucial to conduct detailed studies of the methodology.
We present our recent advances in partial-wave analysis (PWA) methods at COMPASS using
simulated data for two reactions, π− + p→ π−π−π+ + p and π− + p→ K0

S K− + p. In this pa-
per, we provide more details on the methods developed for the first reaction. A more in-depth
review of the second one will be given in [1].

∗e-mail: florian.kaspar@tum.de
∗∗e-mail: julien.beckers@tum.de
∗∗∗e-mail: jakob.knollmueller@tum.de



0.5 1 1.5 2 2.5 3 3.5

m3π [GeV/c2]

100

200

300

400

500

600

700

800

In
te

n
si

ty
/

(2
0

M
eV
/c

2
)

1++0+f0(980)πP
0.100 < t′ < 1.000 (GeV/c)2

MC input

Model curve

Mass-indep. fit

0.5 1 1.5 2 2.5 3 3.5

m3π [GeV/c2]

−150

−100

−50

0

50

100

150

∆
φ

[d
eg

]

[1++0+f0(980)πP ] - [1++0+ρπS]
0.100 < t′ < 1.000 (GeV/c)2

Model curve

Mass-indep. fit

MC input

Figure 1. Comparison of a binned
partial-wave analysis (black points)
of simulated data with a
resonance-model fit using the new
method (red curve). The input model
is in orange. Left: comparison of the
intensity. Right: comparison of the
relative phase.
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Figure 2. Left: Input resonant (blue)
and non-resonant (green)
components that coherently add up to
the total input model (orange). Right:
Results of the fit procedure.
Recovered resonant (blue) and
non-resonant (green) components.
The resulting total signal lies
perfectly on top of the input signal
(orange). The bands mark ± one
standard deviation. More examples
can be found in [1].

2 Partial-Wave Analysis

We model the observed data to extract information about the possible resonances. In the fol-
lowing, we summarize the method detailed in [2]. We assume pion diffractive dissociation as
the dominant production mechanism for the intermediate states and describe them as a coher-
ent superposition of contributions with distinct quantum numbers, so-called partial waves.
The total intensity is the magnitude squared of the sum of the complex-valued amplitudes
and an incoherent background |Tflat(mX)|2.

I(mX; τn) =

∣∣∣∣∣∣∣∑a

Ta(mX)ψa(mX , τn)

∣∣∣∣∣∣∣
2

+ |Tflat(mX)|2 (1)

For each partial wave a, we can model the decay amplitude ψa describing the final-state-
particle distribution in the phase-space variables τn. The corresponding production ampli-
tudes Ta, together, contain the information about the intermediate states X− and are inferred
from data.

From Eq. (1) and the data, we obtain a likelihood which we can maximize with respect to
the production amplitudes Ta, usually in kinematic bins of the invariant mass mX .

The amplitudes obtained in this quasi-model-independent way then serve as input for a
second fit, in which we extract the resonance parameters by modelling the amplitudes’ mass
dependence.

3 Continuity for Partial-Wave Analysis

The number of partial waves, and thereby the number of fit parameters, can be in the order
of hundreds. Determining Ta(mX) in separate bins may cause large statistical fluctuations
and instabilities due to local maxima of the likelihood. Introducing additional information



regularizes the fit and may thereby improve it. We expect the production amplitudes to be
continuous over the kinematic variables such as mX . Additionally, the reaction kinematics
suppress the amplitudes at threshold and at high values of mX .

We include this prior knowledge into our model of the production amplitudes with the
help of Information Field Theory (IFT) [3]. Instead of inferring Ta in individual bins of mX

independently, we construct a continuous model based on the correlated field model described
in [4] to determine a smooth, non-parametric solution in all bins simultaneously. By adjusting
the model parameters, we can choose, for example, how smooth the amplitude model should
be. Since IFT is defined in a Bayesian setting, all model parameters have prior distributions
that represent our degree of model uncertainty. We can draw samples from these prior dis-
tributions, set them as parameters of the model and thereby obtain an overall sample of the
model. With these prior predictive checks, we can decide if our choice of priors on the model
parameters leads to sensible amplitude models.

Additionally, we can extend our new model with explicit parameterizations for reso-
nances. In this case, the overall amplitude is a coherent sum of the correlated fields and
the parameterizations (e.g. a Breit-Wigner). The correlated fields then take the role of an
effective background model. We also set priors for the parameters of the resonance models.

We implemented this new analysis method using the NIFTy framework for Numerical
Information Field Theory [5]. We performed in-depth tests of the new method using input-
output studies. For this, we first draw a random sample from our priors and obtain a prior
sample for the amplitudes, which is the input of the study. According to this input we sim-
ulate events for the three-pion final state in bins of mX . We then tried to recover the known
input using both the usual method of independent bins and the new continuous PWA method.
Figure 1 shows a comparison of the two different fitting methods. We observe large statistical
fluctuations for the method of independent bins, while the fit with a continuous model re-
covers the input very well in both intensity and phase. Furthermore, Figure 2 shows that not
only are we able to recover the total input, but that the new method is also able to accurately
separate the resonant and non-resonant components.

We conclude that the additional information incorporated into this new PWA method
reduces the statistical uncertainty of the fit and even allows us to extract the resonance pa-
rameters directly in a single step, using a flexible and non-parametric background model.

4 Ambiguities in Two-Body Final States

For two-spinless-particle final states such as K0
S K−, the decomposition in Eq. (1) is not unique

in each mX bin (see e.g. [7]). By expressing the decay amplitudes,1 which are simply spher-
ical harmonics Y1

J , in terms of u ≡ tan (θ/2), the sum in Eq. (1) can be written as a poly-
nomial of degree J in u2. Only its absolute value enters Eq. (1), and the intensity hence
remains invariant under complex conjugation of any combination of the polynomial’s roots
(called Barrelet Zeros [6]). As their values depend non-linearly on the amplitude values {Ta},
this leads to different {Ta} which all yield the same intensity distribution in phase space.
We can compute all ambiguous amplitude values from a starting set {Ta} by obtaining the
roots numerically. We have studied the ambiguities using a continuous model in mX for four
partial-wave amplitudes. We first compute the exact distributions of the ambiguous ampli-
tudes, shown as continuous curves in Fig. 3. We note that they are also continuous. In a
second step, we simulate pseudodata according to the amplitude model and perform a PWA.2

1We use the reflectivity basis [8] and thus neglect contributions with M , 1 because of the dominance of Pomeron
exchange at COMPASS energies [2] and the suppression of higher M contributions.

2To find all solutions, we perform a large number of fitting attempts with random starting values.
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The results are shown in Fig. 3, and we see that overall, the result of the fit is compatible
with the calculated solutions, but the finite data reduces the number of solutions in some mX

bins. We also observe that the highest-spin wave (in our case, JP = 4+) is not affected by the
ambiguities.

5 Outlook

We are currently investigating the application of the continuity constraints to analyses of
two-body final states. Initial promising results on simulation data suggest that this approach
could separate the different ambiguous solutions. We are also actively applying the presented
methods to COMPASS data to obtain new spectroscopic results with improved precision.
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