A dispersive estimate of the $a_{0}(980)$ contribution to hadronic light-by-light scattering in $(g-2)_{\mu}$

Oleksandra Deineka ${ }^{1, *}$, Igor Danilkin ${ }^{1,}$, and Marc Vanderhaeghen ${ }^{1,}$
${ }^{1}$ Institut für Kernphysik \& PRISMA ${ }^{+}$Cluster of Excellence, Johannes Gutenberg Universität, D-55099 Mainz, Germany

Abstract

A dispersive implementation of the $a_{0}(980)$ resonance to $(g-2)_{\mu}$ requires the knowledge of the double-virtual S-wave $\gamma^{*} \gamma^{*} \rightarrow \pi \eta / K \bar{K}_{I=1}$ amplitudes. To obtain these amplitudes we used a modified coupled-channel Muskhelishvili-Omnès formalism, with the input from the left-hand cuts and the hadronic Omnès function. The latter were obtained using a data-driven N / D method in which the fits were performed to the different sets of experimental data on two-photon fusion processes with $\pi \eta$ and $K \bar{K}$ final states. This yields the preliminary dispersive estimate $a_{\mu}^{\mathrm{HLbL}}\left[a_{0}(980)\right]_{\text {resc. }}=-0.46(2) \times 10^{-11}$.

1 Introduction

The tension between the presently ultra-precise measurements of the anomalous magnetic moment of the muon $(g-2)_{\mu}$ and the theoretical calculations amounts to around 5.0σ difference [1] when compared to the theoretical value from the 2020 White Paper [2]. The source of the current theoretical error solely arises from contributions from hadronic vacuum polarization (HVP) and hadronic light-by-light scattering (HLbL). Apart from the pseudo-scalar pole contributions, further nontrivial contributions to HLbL arise from the two-particle intermediate states such as $\pi \pi, \pi \eta$, and $K \bar{K}$. Currently, only the contributions from the $\pi \pi_{I=0,2}$ and $K \bar{K}_{I=0}$ channels have been considered in a dispersive manner [3, 4]. The isospin-0 part of this result can be understood as a model-independent implementation of the contribution from the $f_{0}(500)$ and $f_{0}(980)$ resonances. The contribution from the $a_{0}(980)$ resonance arises from the rescattering of the $\pi \eta / K \bar{K}_{I=1}$ states and necessitates knowledge of the double-virtual processes $\gamma^{*} \gamma^{*} \rightarrow \pi \eta / K \bar{K}_{I=1}$. On the experimental side, currently, data is only available for the real photon case from the Belle Collaboration [5, 6]. The measurement of the photonfusion processes with a single tagged photon is a part of the two-photon physics program of the BESIII Collaboration [7]. To describe the currently available data and provide theoretical predictions for the single- and double-virtual processes, we opt for the dispersive approach, which adheres to the fundamental properties of the S-matrix, namely, analyticity and coupled-channel unitarity.

[^0]
2 Formalism

To compute the HLbL contribution of $a_{0}(980)$ to $(g-2)_{\mu}$, we adopt the formalism outlined in [3]. This approach yields the following master formula:

$$
\begin{equation*}
a_{\mu}^{H L b L}=\frac{2 \alpha^{3}}{3 \pi^{2}} \int_{0}^{\infty} d Q_{1} \int_{0}^{\infty} d Q_{2} \int_{-1}^{1} d \tau \sqrt{1-\tau^{2}} Q_{1}^{3} Q_{2}^{3} \sum_{i=1}^{12} T_{i}\left(Q_{1}, Q_{2}, Q_{3}\right) \bar{\Pi}_{i}\left(Q_{1}, Q_{2}, Q_{3}\right), \tag{1}
\end{equation*}
$$

where $\bar{\Pi}_{i}$ are scalar functions containing the dynamics of the HLbL amplitude, T_{i} denote known kernel functions, and τ is defined as $Q_{3}^{2}=Q_{1}^{2}+2 Q_{1} Q_{2} \tau+Q_{2}^{2}$. For the S-wave, the only contributing scalar functions can be written as

$$
\begin{align*}
& \bar{\Pi}_{3}^{J=0}=\frac{1}{\pi} \int_{s_{l h}}^{\infty} d s^{\prime} \frac{-2}{\lambda_{12}\left(s^{\prime}\right)\left(s^{\prime}+Q_{3}^{2}\right)^{2}}\left(4 s^{\prime} \operatorname{Im} \bar{h}_{++,++}^{(0)}\left(s^{\prime}\right)-\left(s^{\prime}-Q_{1}^{2}+Q_{2}^{2}\right)\left(s^{\prime}+Q_{1}^{2}-Q_{2}^{2}\right) \operatorname{Im} \bar{h}_{00,++}^{(0)}\left(s^{\prime}\right)\right), \\
& \bar{\Pi}_{9}^{J=0}=\frac{1}{\pi} \int_{s_{t h}}^{\infty} d s^{\prime} \frac{4}{\lambda_{12}\left(s^{\prime}\right)\left(s^{\prime}+Q_{3}^{2}\right)^{2}}\left(2 \operatorname{Im} \bar{h}_{++,++}^{(0)}\left(s^{\prime}\right)-\left(s^{\prime}+Q_{1}^{2}+Q_{2}^{2}\right) \operatorname{Im} \bar{h}_{00,++}^{(0)}\left(s^{\prime}\right)\right), \tag{2}
\end{align*}
$$

plus crossed versions. Here $\lambda_{12}(s) \equiv \lambda\left(s, Q_{1}^{2}, Q_{2}^{2}\right)$ is a Källén triangle function.
Since $a_{0}(980)$ is known to have a dynamical coupled-channel $\pi \eta / K \bar{K}$ origin, the inclusion of $K \bar{K}$ intermediate states is necessary. In this case, the unitarity relation implies

$$
\begin{equation*}
\operatorname{Im} \bar{h}_{1, \lambda_{1} \lambda_{2}, \lambda_{3} \lambda_{4}}^{(0)}(s)=\bar{h}_{1, \lambda_{1} \lambda_{2}}^{(0)}(s) \rho_{\pi \eta}(s) \bar{h}_{1, \lambda_{3} \lambda_{4}}^{(0) *}(s)+\bar{k}_{1, \lambda_{1} \lambda_{2}}^{(0)}(s) \rho_{K K}(s) \bar{k}_{1, \lambda_{3} \lambda_{4}}^{(0) *}(s), \tag{3}
\end{equation*}
$$

where $\rho_{\pi \eta}\left(\rho_{K K}\right)$ is the phase space factor of $\pi \eta(K \bar{K})$ system, and $\bar{h}_{1, \lambda \lambda^{\prime}}^{(0)}\left(\bar{k}_{1, \lambda \mathcal{M}^{\prime}}^{(0)}\right)$ denotes the $I=1, J=0$ Born subtracted (e.g. $\bar{k} \equiv k-k^{\text {Born }}$) partial-wave (p.w.) amplitude of the $\gamma^{*}\left(Q_{1}^{2}\right) \gamma^{*}\left(Q_{2}^{2}\right) \rightarrow \pi \eta(K \bar{K})$ process. These p.w. amplitudes contain kinematic constraints and therefore it is important to find a transformation to a new basis of amplitudes which can be used in a modified Muskhelishvili-Omnès (MO) method [8]. For the S-wave, the amplitudes which are free from kinematic constraints can be written as [3] ${ }^{1}$

$$
\begin{equation*}
\bar{h}_{i=1,2}^{(0)}=\frac{\bar{h}_{++}^{(0)} \mp Q_{1} Q_{2} \bar{h}_{00}^{(0)}}{s-s_{\text {kin }}^{(\mp)}}, \quad s_{\text {kin }}^{(\pm)} \equiv-\left(Q_{1} \pm Q_{2}\right)^{2}, \tag{4}
\end{equation*}
$$

with $Q_{i} \equiv \sqrt{Q_{i}^{2}}$. In Eq.(4) we omitted the isospin index for simplicity. In the case of a single virtual or real photons, this constraint arises from the requirement of the soft-photon theorem. Similarly to $\gamma^{*} \gamma^{*} \rightarrow \pi \pi / K \bar{K}$ process [9, 10], the coupled-channel dispersion relation for the $\gamma^{*} \gamma^{*} \rightarrow \pi \eta / K \bar{K}$ process with $J=0, I=1$ can be written as follows

$$
\begin{equation*}
\binom{h_{i}^{(0)}(s)}{k_{i}^{(0)}(s)}=\binom{0}{k_{i}^{(0), \operatorname{Born}}(s)}+\Omega^{(0)}(s)\left[-\int_{s_{t h}}^{\infty} \frac{d s^{\prime}}{\pi} \frac{\operatorname{Disc}\left(\Omega^{(0)}\left(s^{\prime}\right)\right)^{-1}}{s^{\prime}-s}\binom{0}{k_{i}^{(0), \operatorname{Born}}\left(s^{\prime}\right)}\right], \tag{5}
\end{equation*}
$$

where only kaon-pole left-hand cut is currently taken into account. The generalization of the kaon-pole left-hand contribution $k_{i}^{(0), B o r n}$ to the case involving off-shell photons is achieved by the product of the scalar QED result with the electromagnetic kaon form factors [11]. The latter is parameterized using the VMD model. We have verified that within the $Q^{2} \lesssim 1 \mathrm{GeV}^{2}$

[^1]

Figure 1. Total cross sections $(|\cos \theta|<0.8)$ for the $\gamma \gamma \rightarrow \pi^{0} \eta$ (left) and $\gamma \gamma \rightarrow K_{s} K_{s}$ (right) processes compared to the fit results. The data are taken from [5, 6].
range, which is crucial for the a_{μ} calculation, VMD is consistent with a simple monopole fit to the existing data and the dispersive estimation from [12].

To obtain the Omnès matrix $\Omega^{(0)}(s)$, which encodes the hadronic $\pi \eta / K \bar{K}$ rescattering effects, we utilize the coupled-channel dispersion relation for the partial wave amplitude. The latter is numerically solved using the N / D ansatz [13], with input from the left-hand cuts. When bound states or Castillejo-Dalitz-Dyson (CDD) poles are absent, the Omnès matrix is the inverse of the D-matrix. We parameterize the left-hand cuts in a model-independent manner, expressing them as an expansion in a suitably constructed conformal mapping variable [14, 15], which is chosen to map the left-hand cut plane onto the unit circle. In the absence of experimental $\pi \eta / K \bar{K}$ data, the coefficients of this conformal expansion can be estimated theoretically from $\chi \mathrm{PT}$, as demonstrated in [16-18]. However, for the $\pi \eta / K \bar{K}$ system, it is necessary to rely on the slowly convergent $S U(3) \chi \mathrm{PT}$. Instead, we directly determine the unknown coefficients by fitting to $\gamma \gamma \rightarrow \pi \eta / K_{S} K_{S}$ data [5, 6] and use χ PT predictions only as additional constraints. Particularly, for the $\pi \eta \rightarrow K \bar{K}$ channel, we impose an Adler zero and ensure that the $\pi \eta \rightarrow K \bar{K}$ amplitude remains consistent with χ PT at $s_{t h}=\left(m_{\pi}+m_{\eta}\right)^{2}$. Furthermore, for the $\pi \eta \rightarrow \pi \eta$ channel, we employ the $\chi \mathrm{PT}$ scattering length as a constraint. In all cases, the NLO result with low-energy coefficients from [19] is considered as the central value, with an error range defined by the spread between LO and NLO results.

3 Results and Outlook

To reconstruct the physical $\gamma \gamma \rightarrow K_{S} K_{S}$ cross section, the input for $I=0, S$-wave amplitude $k_{0,++}^{(0)}(s)$ is taken from the coupled-channel $\pi \pi / K \bar{K}_{I=0}$ analysis [20]. Since we are aiming to describe $\gamma \gamma \rightarrow \pi \eta / K_{S} K_{S}$ data in the region from threshold up to 1.4 GeV , we also incorporate the D-wave resonances $f_{2}(1270)$ and $a_{2}(1320)$ using the Breit-Wigner parametrization, similar to the approach in [21]. We find that with as few as $(2,2,2) S$-wave parameters in $(11,12,22)$ channels $(1=\pi \eta, 2=K \bar{K})$ we obtain the fit with $\chi^{2} /$ d.o.f. $=0.83$. The resulting total cross sections for $\gamma \gamma \rightarrow \pi \eta / K_{S} K_{S}$ processes are illustrated in Fig. 1. Through analytical continuation into the complex plane we find the pole on the Riemann sheet II, corresponding to the $a_{0}(980)$ resonance with $\sqrt{s_{a_{0}(980)}}=1.06-i 0.058 \mathrm{GeV}$.

With the obtained $\gamma^{*} \gamma^{*} \rightarrow \pi \eta / K \bar{K}$ amplitudes in hand, we can now proceed to calculate the $a_{0}(980)$ contribution to the HLbL in $(g-2)$. The preliminary result is

$$
\begin{equation*}
a_{\mu}^{\mathrm{HLbL}}\left[a_{0}(980)\right]_{\text {rescatering }}=-0.46(2) \times 10^{-11}, \tag{6}
\end{equation*}
$$

where the uncertainty currently covers only the sum-rule violation (reflecting the choice of the HLbL basis [3]). It is useful to compare the obtained dispersive result with the outcome from the narrow width approximation $a_{\mu}^{\mathrm{HLLL}}\left[a_{0}(980)\right]_{\mathrm{NWA}}=-\left([0.3,0.6]_{-0.1}^{+0.2}\right) \times 10^{-11}[4]$, where the range reflects the variation in the scale of transition form factor parametrisation taken from the quark model [22].

It is planned to further add new experimental data into the current analysis, in particular, $\gamma \gamma \rightarrow K^{+} K^{-}$data from BESIII [23]. In addition, the hadronic $\pi \eta / K \bar{K}$ rescattering will be further constrained by including the existing data for the $\phi \rightarrow \gamma \pi \eta$ [24] and $\eta^{\prime} \rightarrow \pi \pi \eta$ [25] decays.

References

[1] D. P. Aguillard et al. [Muon g-2], Phys. Rev. Lett. 131 (2023) no.16, 161802
[2] T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T. Blum, M. Bruno, I. Caprini, C. M. Carloni Calame, M. Cè and G. Colangelo, et al. Phys. Rept. 887 (2020), 1-166
[3] G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Phys. Rev. Lett. 118 (2017) no.23, 232001, JHEP 04 (2017), 161
[4] I. Danilkin, M. Hoferichter and P. Stoffer, Phys. Lett. B 820 (2021), 136502
[5] S. Uehara et al. [Belle], Phys. Rev. D 80 (2009), 032001
[6] S. Uehara et al. [Belle], PTEP 2013 (2013) no.12, 123C01
[7] C. F. Redmer [BESIII], EPJ Web Conf. 166 (2018), 00017
[8] R. Garcia-Martin and B. Moussallam, Eur. Phys. J. C 70 (2010), 155-175
[9] I. Danilkin, O. Deineka and M. Vanderhaeghen, Phys. Rev. D 101 (2020) no.5, 054008
[10] I. Danilkin and M. Vanderhaeghen, Phys. Lett. B 789 (2019), 366-372
[11] G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, JHEP 09 (2015), 074
[12] D. Stamen, D. Hariharan, M. Hoferichter, B. Kubis and P. Stoffer, Eur. Phys. J. C 82 (2022) no.5, 432
[13] G. F. Chew and S. Mandelstam, Phys. Rev. 119 (1960), 467-477
[14] A. Gasparyan and M. F. M. Lutz, Nucl. Phys. A 848 (2010), 126-182
[15] I. V. Danilkin, A. M. Gasparyan and M. F. M. Lutz, Phys. Lett. B 697 (2011), 147-152
[16] I. V. Danilkin, L. I. R. Gil and M. F. M. Lutz, Phys. Lett. B 703 (2011), 504-509
[17] I. V. Danilkin, M. F. M. Lutz, S. Leupold and C. Terschlusen, Eur. Phys. J. C 73 (2013) no.4, 2358
[18] I. Danilkin, O. Deineka and M. Vanderhaeghen, Phys. Rev. D 96 (2017) no.11, 114018
[19] J. Bijnens and G. Ecker, Ann. Rev. Nucl. Part. Sci. 64 (2014), 149-174
[20] I. Danilkin, O. Deineka and M. Vanderhaeghen, Phys. Rev. D 103 (2021) no.11, 114023
[21] J. Lu and B. Moussallam, Eur. Phys. J. C 80 (2020) no.5, 436
[22] G. A. Schuler, F. A. Berends and R. van Gulik, Nucl. Phys. B 523 (1998), 423-438
[23] M. Küßner, Coupled channel partial wave analysis of two-photon reactions at BESIII (Ruhr U., Bochum, 2022)
[24] F. Ambrosino et al. [KLOE], Phys. Lett. B 681 (2009), 5-13
[25] M. Ablikim et al. [BESIII], Phys. Rev. D 97 (2018) no.1, 012003

[^0]: *e-mail: deineka@uni-mainz.de

[^1]: ${ }^{1}$ To maintain consistency with Eq.(2) we follow the conventions from [3], which slightly differ from those in [9].

