A dispersive estimate of the $a_0(980)$ contribution to hadronic light-by-light scattering in $(g-2)_{\mu}$

Oleksandra Deineka^{1,*}, Igor Danilkin^{1,}, and Marc Vanderhaeghen^{1,}

¹Institut für Kernphysik & PRISMA⁺ Cluster of Excellence, Johannes Gutenberg Universität, D-55099 Mainz, Germany

Abstract. A dispersive implementation of the $a_0(980)$ resonance to $(g - 2)_{\mu}$ requires the knowledge of the double-virtual *S*-wave $\gamma^* \gamma^* \rightarrow \pi \eta / K \bar{K}_{I=1}$ amplitudes. To obtain these amplitudes we used a modified coupled-channel Muskhelishvili–Omnès formalism, with the input from the left-hand cuts and the hadronic Omnès function. The latter were obtained using a data-driven N/D method in which the fits were performed to the different sets of experimental data on two-photon fusion processes with $\pi\eta$ and $K\bar{K}$ final states. This yields the preliminary dispersive estimate $a_{\mu}^{\text{HDL}}[a_0(980)]_{\text{resc.}} = -0.46(2) \times 10^{-11}$.

1 Introduction

The tension between the presently ultra-precise measurements of the anomalous magnetic moment of the muon $(g-2)_{\mu}$ and the theoretical calculations amounts to around 5.0 σ difference [1] when compared to the theoretical value from the 2020 White Paper [2]. The source of the current theoretical error solely arises from contributions from hadronic vacuum polarization (HVP) and hadronic light-by-light scattering (HLbL). Apart from the pseudo-scalar pole contributions, further nontrivial contributions to HLbL arise from the two-particle intermediate states such as $\pi\pi$, $\pi\eta$, and $K\bar{K}$. Currently, only the contributions from the $\pi\pi_{I=0.2}$ and $K\bar{K}_{I=0}$ channels have been considered in a dispersive manner [3, 4]. The isospin-0 part of this result can be understood as a model-independent implementation of the contribution from the $f_0(500)$ and $f_0(980)$ resonances. The contribution from the $a_0(980)$ resonance arises from the rescattering of the $\pi \eta / K \bar{K}_{I=1}$ states and necessitates knowledge of the double-virtual processes $\gamma^* \gamma^* \to \pi \eta / K \bar{K}_{I=1}$. On the experimental side, currently, data is only available for the real photon case from the Belle Collaboration [5, 6]. The measurement of the photonfusion processes with a single tagged photon is a part of the two-photon physics program of the BESIII Collaboration [7]. To describe the currently available data and provide theoretical predictions for the single- and double-virtual processes, we opt for the dispersive approach, which adheres to the fundamental properties of the S-matrix, namely, analyticity and coupled-channel unitarity.

^{*}e-mail: deineka@uni-mainz.de

2 Formalism

To compute the HLbL contribution of $a_0(980)$ to $(g - 2)_{\mu}$, we adopt the formalism outlined in [3]. This approach yields the following master formula:

$$a_{\mu}^{HLbL} = \frac{2\alpha^3}{3\pi^2} \int_0^{\infty} dQ_1 \int_0^{\infty} dQ_2 \int_{-1}^{1} d\tau \sqrt{1-\tau^2} Q_1^3 Q_2^3 \sum_{i=1}^{12} T_i(Q_1, Q_2, Q_3) \bar{\Pi}_i(Q_1, Q_2, Q_3), \quad (1)$$

where $\overline{\Pi}_i$ are scalar functions containing the dynamics of the HLbL amplitude, T_i denote known kernel functions, and τ is defined as $Q_3^2 = Q_1^2 + 2Q_1Q_2\tau + Q_2^2$. For the *S*-wave, the only contributing scalar functions can be written as

$$\bar{\Pi}_{3}^{J=0} = \frac{1}{\pi} \int_{s_{th}}^{\infty} ds' \frac{-2}{\lambda_{12}(s')(s'+Q_{3}^{2})^{2}} \left(4s' \mathrm{Im}\bar{h}_{++,++}^{(0)}(s') - (s'-Q_{1}^{2}+Q_{2}^{2})(s'+Q_{1}^{2}-Q_{2}^{2}) \mathrm{Im}\bar{h}_{00,++}^{(0)}(s') \right)$$

$$\bar{\pi}^{J=0} = \frac{1}{\pi} \int_{s_{th}}^{\infty} ds' \frac{-2}{\lambda_{12}(s')(s'+Q_{3}^{2})^{2}} \left(4s' \mathrm{Im}\bar{h}_{++,++}^{(0)}(s') - (s'-Q_{1}^{2}+Q_{2}^{2})(s'+Q_{1}^{2}-Q_{2}^{2}) \mathrm{Im}\bar{h}_{00,++}^{(0)}(s') \right)$$

$$\bar{\Pi}_{9}^{J=0} = \frac{1}{\pi} \int_{s_{th}} ds' \frac{4}{\lambda_{12}(s')(s'+Q_3^2)^2} \left(2 \operatorname{Im}\bar{h}_{++,++}^{(0)}(s') - (s'+Q_1^2+Q_2^2) \operatorname{Im}\bar{h}_{00,++}^{(0)}(s') \right),$$
(2)

plus crossed versions. Here $\lambda_{12}(s) \equiv \lambda(s, Q_1^2, Q_2^2)$ is a Källén triangle function.

Since $a_0(980)$ is known to have a dynamical coupled-channel $\pi \eta / K\bar{K}$ origin, the inclusion of $K\bar{K}$ intermediate states is necessary. In this case, the unitarity relation implies

$$\operatorname{Im}\bar{h}_{1,\lambda_{1}\lambda_{2},\lambda_{3}\lambda_{4}}^{(0)}(s) = \bar{h}_{1,\lambda_{1}\lambda_{2}}^{(0)}(s)\rho_{\pi\eta}(s)\bar{h}_{1,\lambda_{3}\lambda_{4}}^{(0)*}(s) + \bar{k}_{1,\lambda_{1}\lambda_{2}}^{(0)}(s)\rho_{KK}(s)\bar{k}_{1,\lambda_{3}\lambda_{4}}^{(0)*}(s),$$
(3)

where $\rho_{\pi\eta}(\rho_{KK})$ is the phase space factor of $\pi\eta(K\bar{K})$ system, and $\bar{h}_{1,\lambda\lambda'}^{(0)}(\bar{k}_{1,\lambda\lambda'}^{(0)})$ denotes the I = 1, J = 0 Born subtracted (e.g. $\bar{k} \equiv k - k^{\text{Born}}$) partial-wave (p.w.) amplitude of the $\gamma^*(Q_1^2)\gamma^*(Q_2^2) \rightarrow \pi\eta(K\bar{K})$ process. These p.w. amplitudes contain kinematic constraints and therefore it is important to find a transformation to a new basis of amplitudes which can be used in a modified Muskhelishvili-Omnès (MO) method [8]. For the *S*-wave, the amplitudes which are free from kinematic constraints can be written as [3]¹

$$\bar{h}_{i=1,2}^{(0)} = \frac{\bar{h}_{++}^{(0)} \mp Q_1 Q_2 \bar{h}_{00}^{(0)}}{s - s_{\rm kin}^{(\mp)}}, \quad s_{\rm kin}^{(\pm)} \equiv -(Q_1 \pm Q_2)^2, \tag{4}$$

with $Q_i \equiv \sqrt{Q_i^2}$. In Eq.(4) we omitted the isospin index for simplicity. In the case of a single virtual or real photons, this constraint arises from the requirement of the soft-photon theorem. Similarly to $\gamma^* \gamma^* \rightarrow \pi \pi / K\bar{K}$ process [9, 10], the coupled-channel dispersion relation for the $\gamma^* \gamma^* \rightarrow \pi \eta / K\bar{K}$ process with J = 0, I = 1 can be written as follows

$$\begin{pmatrix} h_i^{(0)}(s) \\ k_i^{(0)}(s) \end{pmatrix} = \begin{pmatrix} 0 \\ k_i^{(0), \text{ Born}}(s) \end{pmatrix} + \Omega^{(0)}(s) \left[-\int_{s_{th}}^{\infty} \frac{ds'}{\pi} \frac{\text{Disc}(\Omega^{(0)}(s'))^{-1}}{s' - s} \begin{pmatrix} 0 \\ k_i^{(0), \text{ Born}}(s') \end{pmatrix} \right],$$
(5)

where only kaon-pole left-hand cut is currently taken into account. The generalization of the kaon-pole left-hand contribution $k_i^{(0),\text{Born}}$ to the case involving off-shell photons is achieved by the product of the scalar QED result with the electromagnetic kaon form factors [11]. The latter is parameterized using the VMD model. We have verified that within the $Q^2 \leq 1 \text{ GeV}^2$

¹To maintain consistency with Eq.(2) we follow the conventions from [3], which slightly differ from those in [9].

Figure 1. Total cross sections ($|\cos \theta| < 0.8$) for the $\gamma\gamma \to \pi^0\eta$ (left) and $\gamma\gamma \to K_sK_s$ (right) processes compared to the fit results. The data are taken from [5, 6].

range, which is crucial for the a_{μ} calculation, VMD is consistent with a simple monopole fit to the existing data and the dispersive estimation from [12].

To obtain the Omnès matrix $\Omega^{(0)}(s)$, which encodes the hadronic $\pi \eta / K\bar{K}$ rescattering effects, we utilize the coupled-channel dispersion relation for the partial wave amplitude. The latter is numerically solved using the N/D ansatz [13], with input from the left-hand cuts. When bound states or Castillejo-Dalitz-Dyson (CDD) poles are absent, the Omnès matrix is the inverse of the D-matrix. We parameterize the left-hand cuts in a model-independent manner, expressing them as an expansion in a suitably constructed conformal mapping variable [14, 15], which is chosen to map the left-hand cut plane onto the unit circle. In the absence of experimental $\pi \eta / K \bar{K}$ data, the coefficients of this conformal expansion can be estimated theoretically from χ PT, as demonstrated in [16–18]. However, for the $\pi\eta/K\bar{K}$ system, it is necessary to rely on the slowly convergent $SU(3) \chi PT$. Instead, we directly determine the unknown coefficients by fitting to $\gamma \gamma \rightarrow \pi \eta / K_S K_S$ data [5, 6] and use χPT predictions only as additional constraints. Particularly, for the $\pi\eta \to K\bar{K}$ channel, we impose an Adler zero and ensure that the $\pi\eta \to K\bar{K}$ amplitude remains consistent with χPT at $s_{th} = (m_{\pi} + m_{\eta})^2$. Furthermore, for the $\pi\eta \to \pi\eta$ channel, we employ the χ PT scattering length as a constraint. In all cases, the NLO result with low-energy coefficients from [19] is considered as the central value, with an error range defined by the spread between LO and NLO results.

3 Results and Outlook

To reconstruct the physical $\gamma\gamma \rightarrow K_S K_S$ cross section, the input for I = 0, S-wave amplitude $k_{0,++}^{(0)}(s)$ is taken from the coupled-channel $\pi\pi/K\bar{K}_{I=0}$ analysis [20]. Since we are aiming to describe $\gamma\gamma \rightarrow \pi\eta/K_S K_S$ data in the region from threshold up to 1.4 GeV, we also incorporate the *D*-wave resonances $f_2(1270)$ and $a_2(1320)$ using the Breit-Wigner parametrization, similar to the approach in [21]. We find that with as few as (2, 2, 2) *S*-wave parameters in (11, 12, 22) channels $(1 = \pi\eta, 2 = K\bar{K})$ we obtain the fit with $\chi^2/d.o.f. = 0.83$. The resulting total cross sections for $\gamma\gamma \rightarrow \pi\eta/K_S K_S$ processes are illustrated in Fig. 1. Through analytical continuation into the complex plane we find the pole on the Riemann sheet II, corresponding to the $a_0(980)$ resonance with $\sqrt{s_{a_0(980)}} = 1.06 - i0.058$ GeV.

With the obtained $\gamma^* \gamma^* \to \pi \eta / K\bar{K}$ amplitudes in hand, we can now proceed to calculate the $a_0(980)$ contribution to the HLbL in (g - 2). The preliminary result is

$$a_{\mu}^{\text{HLbL}}[a_0(980)]_{\text{rescatering}} = -0.46(2) \times 10^{-11}$$
, (6)

where the uncertainty currently covers only the sum-rule violation (reflecting the choice of the HLbL basis [3]). It is useful to compare the obtained dispersive result with the outcome from the narrow width approximation $a_{\mu}^{\text{HLbL}}[a_0(980)]_{\text{NWA}} = -([0.3, 0.6]_{-0.1}^{+0.2}) \times 10^{-11}$ [4], where the range reflects the variation in the scale of transition form factor parametrisation taken from the quark model [22].

It is planned to further add new experimental data into the current analysis, in particular, $\gamma\gamma \rightarrow K^+K^-$ data from BESIII [23]. In addition, the hadronic $\pi\eta/K\bar{K}$ rescattering will be further constrained by including the existing data for the $\phi \rightarrow \gamma\pi\eta$ [24] and $\eta' \rightarrow \pi\pi\eta$ [25] decays.

References

- [1] D. P. Aguillard et al. [Muon g-2], Phys. Rev. Lett. 131 (2023) no.16, 161802
- [2] T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T. Blum, M. Bruno, I. Caprini, C. M. Carloni Calame, M. Cè and G. Colangelo, *et al.* Phys. Rept. **887** (2020), 1-166
- [3] G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Phys. Rev. Lett. 118 (2017) no.23, 232001, JHEP 04 (2017), 161
- [4] I. Danilkin, M. Hoferichter and P. Stoffer, Phys. Lett. B 820 (2021), 136502
- [5] S. Uehara et al. [Belle], Phys. Rev. D 80 (2009), 032001
- [6] S. Uehara et al. [Belle], PTEP 2013 (2013) no.12, 123C01
- [7] C. F. Redmer [BESIII], EPJ Web Conf. 166 (2018), 00017
- [8] R. Garcia-Martin and B. Moussallam, Eur. Phys. J. C 70 (2010), 155-175
- [9] I. Danilkin, O. Deineka and M. Vanderhaeghen, Phys. Rev. D 101 (2020) no.5, 054008
- [10] I. Danilkin and M. Vanderhaeghen, Phys. Lett. B 789 (2019), 366-372
- [11] G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, JHEP 09 (2015), 074
- [12] D. Stamen, D. Hariharan, M. Hoferichter, B. Kubis and P. Stoffer, Eur. Phys. J. C 82 (2022) no.5, 432
- [13] G. F. Chew and S. Mandelstam, Phys. Rev. 119 (1960), 467-477
- [14] A. Gasparyan and M. F. M. Lutz, Nucl. Phys. A 848 (2010), 126-182
- [15] I. V. Danilkin, A. M. Gasparyan and M. F. M. Lutz, Phys. Lett. B 697 (2011), 147-152
- [16] I. V. Danilkin, L. I. R. Gil and M. F. M. Lutz, Phys. Lett. B 703 (2011), 504-509
- [17] I. V. Danilkin, M. F. M. Lutz, S. Leupold and C. Terschlusen, Eur. Phys. J. C 73 (2013) no.4, 2358
- [18] I. Danilkin, O. Deineka and M. Vanderhaeghen, Phys. Rev. D 96 (2017) no.11, 114018
- [19] J. Bijnens and G. Ecker, Ann. Rev. Nucl. Part. Sci. 64 (2014), 149-174
- [20] I. Danilkin, O. Deineka and M. Vanderhaeghen, Phys. Rev. D 103 (2021) no.11, 114023
- [21] J. Lu and B. Moussallam, Eur. Phys. J. C 80 (2020) no.5, 436
- [22] G. A. Schuler, F. A. Berends and R. van Gulik, Nucl. Phys. B 523 (1998), 423-438
- [23] M. Küßner, Coupled channel partial wave analysis of two-photon reactions at BESIII (Ruhr U., Bochum, 2022)
- [24] F. Ambrosino et al. [KLOE], Phys. Lett. B 681 (2009), 5-13
- [25] M. Ablikim et al. [BESIII], Phys. Rev. D 97 (2018) no.1, 012003