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Abstract. When an exotic hadron locates near the threshold with the channel
couplings, the internal structure of the exotic hadron is related to the scattering
length. To incorporate the threshold effect, the Flatté amplitude has been often
used to determine the scattering length. It is however known that an additional
constraint is imposed on the Flatte amplitude near the threshold. We discuss this
problem by using the effective field theory for the coupled-channel scattering.

1 Introduction

Exotic hadrons, such as Tcc, X(3872), and f0(980), are currently attracting attention [1, 2].
Many exotic hadrons are known to appear near the threshold of two hadron scattering. In
such cases, the internal structure of exotic hadrons is strongly related to the scattering length.
When there is not only one scattering channel but also decay channels, it is also necessary to
consider the effect of the channel couplings. For the analysis of near-threshold exotic hadrons,
the Flatté amplitude [3] is now often used, which includes the threshold effect. Since each
component of the Flatté amplitude can be written in the form of the effective range expansion,
the scattering length aF can be determined from the Flatté amplitude.

However, the Flatté amplitude has the following problem; in the case of the two-channel
scattering, the Flatté amplitude has three parameters, but the number of parameters is reduced
to two near the threshold [4]. Thus, the Flatté amplitude is not a general amplitude in the
threshold region, and the Flatté scattering length aF may not be general. In more general
frameworks, how would the scattering length be described?

2 Comparison of Flatté and EFT

We take the case of the two-channel scattering as an example and compare the Flatté ampli-
tude with the general form of the scattering amplitude determined from the optical theorem.
We consider the case that the threshold of channel 2 is higher than that of channel 1. The
Flatté amplitude at energy E is written by

f F =
1

−2E + 2EBW − ig2
1 p − ig2

2k

(
g2

1 g1g2
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)
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where g1 and g2 represent the coupling contants and EBW is the bare energy. p(E) and k(E)
denote the momenta in channels 1 and 2, respectively. It is known that the Flatté amplitude
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satisfies the optical theorem. However, when f F is expanded up to the first order in k near
the channel 2 threshold, it is known that the amplitude depends only on R = g2

2/g
2
1 and

α = 2EBW/(g2
1 p0), reducing the number of independent parameters to two [4], where p0 =

p(E = 0) is the momentum of channel 1 at the threshold of channel 2.
On the other hand, K-matrix, M-matrix, etc. are known as general scattering amplitudes

satisfying the optical theorem [5]. In this study, we use the EFT amplitude [6] derived from
the non-relativistic effective field theory (EFT) with contact interactions:
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a11, a12, a22 are the parameters of the EFT amplitude in units of the length. The EFT am-
plitude, similarly to the Flatté amplitude, contains three parameters and satisfies the optical
theorem. We expand the EFT amplitude up to the first order in k and it is shown that the num-
ber of parameters of the EFT amplitude remains three even near the threshold. Therefore, the
use of the EFT amplitude solves the problem of the Flatté amplitude.

Although the EFT amplitude is found to be more general than the Flatté amplitude, the
relationship between the EFT amplitude and the Flatté amplitude is not clear. This is be-
cause the EFT amplitude has an inverse matrix, while the Flatté amplitude does not, and thus
the EFT amplitude and the Flatté amplitude cannot be directly mapped to each other. In or-
der to clarify the relationship between the two, we construct a scattering amplitude that can
represent both the EFT amplitude and the Flatté amplitude.

3 General amplitude

We introduce the general amplitude f G with a new parametrization based on the EFT ampli-
tude. f G is represented by dimensionless constants γ and ϵ and a parameter A22 in units of
the length:

f G =
1

− 1
A2

22
− i 1

A22
ϵp − i 1

A22
k − γpk

( 1
A22
ϵ + iγk 1

A22

√
ϵ − γ

1
A22

√
ϵ − γ 1

A22
+ iγp

)
. (3)

When γ = ϵ, the channel couplings vanish and f G is written by f G = (1/(−1/(A22ϵ) −
ip), 1/(−1/(A22) − ik)). From this, A22 represents the scattering length of channel 2 in the
absence of the channel couplings.

Next, we discuss the relation between the general amplitude, the EFT amplitude, and the
Flatté amplitude. When γ = 0, f G is given as follows:

f G =
1

− 1
A22
− iϵp0 − ik

(
ϵ

√
ϵ√

ϵ 1

)
. (4)

This amplitude is equivalent to the Flatté amplitude up to first order in k. In other words,
the general amplitude with γ = 0 reproduces the Flatté amplitude. Furthermore, the decreas
of the Flatté amplitude parameters near the threshold can be understood from the condition
γ = 0 in the general amplitude. In this case, the determinant of the general amplitude behaves
as limγ→0 det

(
f G

)
= 0. From this feature, the inverse of f G does not exist when γ = 0. Since

general amplitude is obtained by a different parametrization of the EFT amplitude, for γ , 0,
the general amplitude corresponds to the EFT amplitude. In other words, both the Flatté
amplitude and the EFT amplitude can be obtained from the general amplitude by choosing
the parameter γ.



Next, we perform the effective range expansion for f G in terms of k, and determine the
scattering length. We expand the denominator of f G

22 in powers of the momentum k:

f G
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This shows that, f G
22 can be written as the effective range expansion in k, and we can define

the scatterng length aG in the general amplitude as follows:

aG = A22
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 . (6)

In the same way, we expand f G
11 in k:
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Because the power series in Eq. (7) contains terms such as k3, f G
11 cannot be written in the form

of the effective range expansion. Also, the coefficients of each term in the denominator of f G
11

are different from those of f G
22 in Eq. (5). In particular, the constant term in the denominator

of f G
11 is different from the scattering length in Eq. (6). On the other hand, as can be seen

from Eq. (1), the coefficients of the power series of the Flatté amplitude are common for all
the components, and the constant terms of the denominator of the scattering amplitudes are
entirely given by the Flatté scattering length.

To summarize, from Eqs. (5) and (7), in general, the f22 component can be written as
the effective range expansion near the threshold of channel 2, but the f11 component cannot
be written and the scattering length cannot be defined. On the other hand, when γ = 0, f G

reduces to the Flatté amplitude, and the scattering length aG becomes the Flatté scattering
length aF as follows:

aG = A22
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Similarly, the constant term of the denominator of f G
11 in Eq. (7) becomes aF:
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In general, if γ is nonzero, the constant term in the denominator of f G
11 is different from the

correct scattering length aG, so an analysis using the Flatté amplitude where the scattering
length appears in f11 may not give the correct scattering length.

4 Application

In order to verify the effect of the value of γ on the scattering length aG, we fix the constant
term of the denominator of f G

11 and vary γ. In this study, we consider the ππ-KK̄ system with
f0(980), which has already been analyzed by the Flatté amplitude. In Ref. [7], the constant
term in the denominator of fππ corresponding to f G

11 is determined to be −1.0−1.0i GeV in the
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Figure 1. Real and imaginary parts of the scattering length when γ is varied from −0.04 to +0.04. The
cross represents the scattering length of the Flatté amplitude with γ = 0.

analysis using the Flatté amplitude. In this case, two conditions are imposed to the parameters
A22, γ, ϵ. In order to compare the scattering lengths aG and aF of the Flatté amplitude, we
calculate the scattering length aG with difference values of γ. The change of the scattering
length aG when γ is varied from −0.04 to +0.04 is shown in Fig.1.

In Fig. 1, the point represented by the cross (γ = 0) corresponds to the scattering length
aF of the Flatté amplitude, and the general scattering length aG deviates from aF by ∼ 0.5 fm
when γ is changed from −0.04 to +0.04. In the present case, the imaginary part of aG does
not depend on γ as seen in Fig. 1. This property can be analytically shown by the imaginary
part of Eq. (6). We find that the scattering length aG varies quantitatively for different γ.
Therefore, the scattering length determined from the Flatté amplitude aF with γ = 0 may
deviate from the correct scattering length aG with γ , 0 numerically.

5 Summary
In this study, we discuss the properties of general scattering amplitudes with the channel
couplings. First, the EFT amplitude and the Flatté amplitude are compared, showing that the
EFT amplitude does not reduce to the Flatté amplitude directly. Next, we solve this problem
by introducing a new parametrization of the EFT amplitude to construct the general amplitude
that includes both the EFT amplitude and the Flatté amplitude. Finally, by applying the
general amplitude to the ππ-KK̄ system and quantitatively comparing the correct scattering
length with the one determined from the Flatté amplitude, we show that the scattering length
of the Flatté amplitude may deviate from the correct scattering length by about 0.5 fm.
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