

Hadron physics results at KLOE-2

Elena Perez del Rio for the KLOE-2 Collaboration

22nd - 27th June 2023, Krakow, Poland

Outline

• KLOE-2 at $DA\Phi NE$

- KLOE-2 Physics Program
- Hadron Physics results of the KLOE-2 collaboration
 - The $\eta \rightarrow \pi^0 \gamma \gamma$ decay
 - Dark Matter searches
 - Leptophobic B boson
 - Measurement of $\phi \rightarrow \eta \pi^+ \pi^-$ and $\phi \rightarrow \eta \mu^+ \mu^-$ decays
 - $\gamma\gamma \rightarrow \pi^0$ measurement
 - ω cross section measurement in the e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}\pi^{0}\gamma_{\rm ISR}$
- Summary

KLOE @ DAΦNE

- Drift Chamber
- Low-mass gas mixture 90% Helium + 10% isobutane
- $\delta p_{\perp} / p_{\perp} < 0.4\% \ (\theta > 45^{\circ})$
- $\sigma_{xy} = 150 \ \mu m$; $\sigma_z = 2 \ mm$
- 12582 cells
- Stereo geometry
- 4m diameter, 3.3m long

- <u>Calorimeter</u>
- 98% coverage full solid angle
- $\sigma_{\rm E} / E = 5.7\% / \sqrt{E({\rm GeV})}$
- $\sigma_{\rm T}$ = 54 ps / $\sqrt{\rm E(GeV)}$ \oplus 100 ps
- Barrel + 2 end-caps:
 - Pb/scintillating fiber read out by 4880 PMTs

Magnetic field B = 0.52 T

- $e^+ e^-$ collider $\sqrt{s} = M_{\Phi} = 1019.4 \text{ MeV}$
 - 2 interaction regions
 - e⁺ e⁻ separated rings
 - 105 + 105 bunches spaced by 2.7 ns

KLOE-2

- LET (Low Energy Tagger) & HET (High Energy Tagger)
 - e+e--taggers for γγ-physics
- CCALT & QCALT
 - 2 new calorimeters (for small angle γ s & quadrupole coverage from K_L decays)
- IT (Inner Tracker)
 - 4 layers of Cylindrical-GEM
- better vertex reconstruction and Track parameters

KLOE/KLOE-2 Experiment

- 1999: KLOE experiment starts
- 2000 2006: KLOE data-taking campaign
 - 2.5 fb⁻¹@ $\sqrt{s}=M_{\phi}$
 - + 250 pb⁻¹ off-peak @ \sqrt{s} =1000 MeV
- 2008: DAøNE upgrade: new interaction scheme
- Dec.2012-July 2013: installation of the new detectors
- 2014-2018: KLOE-2 data-taking campaign

5.5 fb⁻¹ collected $@\sqrt{s}=M_{\phi}$

KLOE + KLOE-2 data sample ~ 8 fb⁻¹ represents the largest sample collected at a Φ-factory

About 2.4 x 10¹⁰ φ-mesons

KLOE-2 Physics Program

Light meson Physics:

- η decays, ω decays Transition Form Factors
- C,P,CP violation: improve limits on $\eta \rightarrow \gamma \gamma \gamma$, $\pi^+ \pi^-$, $\pi^0 \pi^0$, $\pi^0 \pi^0 \gamma$
- improve $\eta \rightarrow \pi^+ \pi^- e^+ e^-$
- $\chi p \hat{T} : \eta \rightarrow \pi^0 \gamma \gamma$
- Light scalar mesons: $f_0(500)$ in $\phi \rightarrow K_s K_s \gamma$
- $\gamma\gamma$ Physics: $\gamma\gamma \rightarrow \pi^0$ and π^0 TFF $e^+e^- \rightarrow \pi^0\gamma\gamma_{\rm ISR}$ (π^0 TFF)
- search for axion-like particles

Dark force searches:

- Improve limits on
- $U\gamma$ associate production

 $e^+e^- \rightarrow U\gamma \rightarrow \pi\pi\gamma, \mu\mu\gamma$

Higgsstrahlung:

 $e^+e^- \rightarrow Uh' \rightarrow \mu^+\mu^- + miss.$ energy

- Leptophobic B boson search:
 - $\phi \rightarrow \eta B, B \rightarrow \pi^0 \gamma, \eta \rightarrow \gamma \gamma$
 - $\eta \rightarrow B\gamma, B \rightarrow \pi^0 \gamma, \eta \rightarrow \pi^0 \gamma \gamma$
- Search for U invisible decays

Kaon Physics:

- CPT and QM tests with kaon interferometry
- Direct T and CPT tests using entanglement
- CP violation and CPT test: $K_s \rightarrow 3\pi^0$

direct measurement of $\text{Im}(\epsilon'\!/\epsilon)$

• CKM V_{us}:

K_s semileptonic decays and A_s

- (CP and CPT test)
- $K_{\mu3}$ form factors, K_{13} radiative corrections
- $\chi pT : K_s \rightarrow \gamma \gamma$
- Search for rare K_s decays

Hadronic cross section:

- ISR studies with 3π , 4π final states
- F_{π} with increased statistics

Measurement of a_{μ}^{HLO} in the space-like region using Bhabha process

KLOE-2 Coll., EPJC68(2010)619 http:// agenda.infn.it/event/kloe2ws Proceedings: EPJ WoC 166 (2018)

- $\eta \rightarrow \pi^0 \gamma \gamma$ (from $\phi \rightarrow \eta \gamma$): χPT golden mode,
 - $O(p^2)$ null, $O(p^4)$ suppressed \Rightarrow sensitive to $O(p^6)$
- Mass of non- π^0 photons can be used as a test of theoretical models

Previous measurements:

- BR = $(22.1 \pm 2.4 \pm 4.7) \times 10^{-5}$ CB@AGS (2008) [PRC 78 (2008) 015206]
- BR = $(25.6 \pm 2.4) \times 10^{-5}$ CB@MAMI (2014) A2 MAMI [*PRC 90 (2014) 025206*]
 - Sample of ~6·10⁷ η's
 - ~1200 $\eta \rightarrow \pi^0 \gamma \gamma$ events found
- Old KLOE preliminary: (8.4 ± 2.7 ±1.4) x 10⁻⁵
 - (L = 450 pb⁻¹ ~ 70 signal events) [B. Di Micco et al, Acta Phys. Slov. 56, 403 (2006)]

- Latest theoretical studies by Escribano et al. *PRD 90 (2020) 034026*:
 - Calculated BR = $1.30(8) \cdot 10^{-4}$
- Many previous predictions differ by a factor ~2

Fit $\chi^2/(ndf=98)=1.223$ (fit prob=22%) •

 $\frac{BR(\eta \rightarrow \pi^{\circ} \gamma \gamma)}{BR(\eta \rightarrow 3\pi^{\circ})} = \frac{N_S / \varepsilon_S}{N_{3\pi^{\circ}} / \varepsilon_{3\pi^{\circ}}}$

BR normalization to $3\pi^0$

Similar analysis as for $\eta \rightarrow \pi^0 \gamma \gamma$ channel, but this time $\phi \rightarrow \eta (\rightarrow 3\pi^{\circ})\gamma \rightarrow 7\gamma$ in the final state

- Very pure channel, backgrounds well bellow
- When used, can reduce part of systematic

 $BR = (0.99 \pm 0.11_{stat} \pm 0.24_{syst}) \cdot 10^{-4}$

 $\eta \rightarrow \pi^{\nu} \gamma \gamma$

- Separate fits to $M^2(\gamma\gamma)$ slices
- Bin 0.011-0.0275 GeV²/c⁴ missing due to $\pi^{\circ}\pi^{\circ}$ veto
- about 1/2 compared with other experiments and confirms old KLOE preliminary result
- Latest theoretical prediction by Escribano et al. From 2020 (BR=1.30(8)·10⁻⁴) reproduce our data [PRD 102 (2020) 034026]

Leptophobic B-boson

• Dark Force mediator coupled to baryon number (B-boson) with the same quantum numbers of the $\omega(782) \Rightarrow I^{G}=0^{-1}$

$$\mathcal{L} = \frac{1}{3} \mathbf{g}_{\mathbf{B}} \bar{\mathbf{q}} \gamma^{\mu} \mathbf{q} \mathbf{B}_{\mu} \qquad \alpha_{\mathbf{B}} = \frac{\mathbf{g}_{\mathbf{B}}^2}{4\pi} \lesssim \mathbf{10^{-5}} \times (\mathbf{m}_{\mathbf{B}} / \mathbf{100 MeV})$$

- Dominant decay channel ($m_B < 600 \text{ MeV}$): $B \rightarrow \pi^0 \gamma$
- Can be studied in:

 $\begin{array}{ll} \varphi {\rightarrow} \eta B \ \Rightarrow \eta \pi^0 \gamma \ \Rightarrow 5 \ prompt \ \gamma \ final \ state \\ \eta {\rightarrow} B \gamma \ \Rightarrow \pi^0 \gamma \gamma \qquad `` \ `` \ '' \ e^+ e^- {\rightarrow} \pi^0 \gamma \ \gamma_{\text{ISR}} \end{array}$

Decay \rightarrow	$B ightarrow e^+ e^-$	$B o \pi^0 \gamma$	$B \to \pi^+ \pi^- \pi^0$	
Production \downarrow	$m_B \sim 1 - 140 \text{ MeV}$	140-620 MeV	620–1000 MeV	$B \rightarrow \eta \gamma$
$\pi^0 \rightarrow B\gamma$	$\pi^0 ightarrow e^+ e^- \gamma$			
$\eta \rightarrow B\gamma$	$\eta ightarrow e^+ e^- \gamma$	$\eta ightarrow \pi^0 \gamma \gamma$		
$\eta' ightarrow B\gamma$	$\eta' ightarrow e^+ e^- \gamma$	$\eta' ightarrow \pi^{o} \gamma \gamma$	$\eta' ightarrow \pi^+ \pi^- \pi^0 \gamma$	$\eta' \rightarrow \eta \gamma$
$\omega \rightarrow nB$	$\omega \rightarrow \eta e^+ e^-$	$\omega \rightarrow n\pi^0 \gamma$	•••	
$\phi \rightarrow \eta B$	$\phi \rightarrow \eta e^+ e^-$	$\phi \rightarrow \eta \pi^0 \gamma$		

Leptophobic B-boson

$\Phi \rightarrow \eta \pi^+ \pi^-$ and $\Phi \rightarrow \eta \mu^+ \mu^-$

- In VMD model, $e^+e^- \rightarrow \eta \pi^+\pi^-$ proceeds via ρ resonances, mainly via $\rho\eta$ intermediate state. KLOE/KLOE-2 data allow to measure the line shape around ϕ
- $\phi \rightarrow \eta \pi^+ \pi^-$ violates the OZI rule and G-parity
 - VMD predicts the Br~ 0.35×10⁻⁶.
 - Br<1.8×10⁻⁵ @ 90% CL @ CMD-2 *PLB491(2000)81*
- The same sample can be used to search for the Dalitz decay $\phi \rightarrow \eta \mu^+ \mu^-$
 - Br<0.94×10⁻⁵ @ 90% CL @ CMD-2 *PLB501(2001)191*
 - Investigate the transition form factor

$$\frac{1}{\Gamma(\phi \to \gamma \eta)} \frac{d\Gamma(\phi \to \eta \mu^+ \mu^-)}{dq^2} = \left| F_{\phi\eta}(q^2) \right|^2 \times \frac{\alpha}{3\pi} \frac{1}{q^2} \sqrt{\left| 1 - \frac{4M_{\mu}^2}{q^2} \left(1 + \frac{2M_{\mu}^2}{q^2} \right) \times \left[\left(1 + \frac{q^2}{M_{\phi}^2 - M_{\eta}^2} \right)^2 - \frac{4M_{\phi}^2 q^2}{\left(M_{\phi}^2 - M_{\eta}^2\right)^2} \right]^{3/2}} \right]^{3/2}$$

$\Phi \rightarrow \eta \pi^+ \pi^-$ and $\Phi \rightarrow \eta \mu^+ \mu^-$

- 1.635 fb⁻¹ data analyzed •
- Clear signals for both $e^+e^- \rightarrow \eta \pi^+\pi^-$ and $\phi \rightarrow \eta \mu^+\mu^-$
- **Ongoing analysis**

clear $\phi \rightarrow \eta \pi^+ \pi^-$ and $\eta \mu^+ \mu^-$ signals

 $\Phi \rightarrow \eta \mu^+ \mu^-$

 $\eta \rightarrow \gamma \gamma$

 $\eta \rightarrow 3\pi^0$

Fit with MC shape convoluted with Gaussian + 3-rd poly

Ongoing check on systematic uncertainties

$y^*y^* \rightarrow \pi^0$ Analysis (High Energy Tagger - HET)

 $[\mathbf{C}(\mathbf{X}) = +1]$ $\mathbf{X} = \pi^{\mathbf{0}}, \pi\pi, \eta$ $e^+ e^- \rightarrow e^+ e^- \gamma^* \gamma^* \rightarrow e^+ e^- X$ to taggers in **KLOE** Measurement concept: Eur. Phys. J. C 72 (2012) 1917

Bernstein & Holstein, Rev. Mod. Phys., 85 (2013) 49

- Precision measurement of $\Gamma(\pi^0 \rightarrow \gamma \gamma)$
- Transition form factor $F_{\pi\gamma\gamma^*}(q^2,0)$ at space-like q^2 $(|q^2| < 0.1 \text{ GeV}^2)$, impact on value and precision of $a_{\mu}^{LbyL;\pi 0}$

First bending dipoles of DA Φ NE act as spectrometers for scattered leptons $(420 \le E \le 495 \text{ MeV})$

Scintillator hodoscope + PMTs, inserted in Roman pots pitch: 5 mm, ~ 11 m from IP ($\sigma_{\rm F}$ ~2.5 MeV $\sigma_{\rm f}$ ~500 ps)

HET is acquired asynchronously w.r.t. the KLOE-2 DAQ (Xilinx Virtex 5 - FPGA), synchronization with the "Fiducial» signal from DAΦNE (each 325 ns)and the KLOE trigger

HET acquisition window corresponds to about 2.5 DA Φ NE revolutions, data are recorded only when a KLOE trigger is asserted

The analysis is based on the HET-KLOE coincidences and the accidental-pure samples used for background modelling (shape and number)

γ*γ* → πº Analysis

Single-arm selection:

-Sample of 2 clusters associated with the same bunch crossing in the KLOE barrel calorimeter -Selected bunch crossing, and, independently selected HET signal, are in a time window of 40 ns around the KLOE trigger

Analysis Strategy:

-ML fits of A+/A samples.

-Fit to accidental-pure samples used to constrain the number of accidentals in A+

-Time coincidence window : $4 \div 5$ bunch crossings depending on the period

-Accidental pure sample (A) used to model background pdf

-Signal pdfs by Ekhara simulation, control samples and BDSIM transport of the leptons through the beam line

Simultaneous fit of A+ signal rich and A samples

Example of fit on one HET readout channel 6

γ*γ* → πº Analysis

- Number of π^0 candidates counting: final checks on weights ongoing
 - Normalize to Radiative Bhabha at very small angle
 - $\sigma^{\text{meas}}_{\text{Bha}}$ is measured at few % level
 - Luminosity measurement from KLOE online and cross-checks with $e+e-\rightarrow\gamma\gamma$
 - ε_{ana} : Analysis efficiency evaluation completed
 - $A_{Bha}/A_{\pi 0}$: Full simulation of signal and control sample, evaluated from Ekhara/BBBREM generator + BDSIM for lepton transport, evaluation of systematic uncertainties in progress

Tagged $\pi^{\scriptscriptstyle 0}$ in 3 fb⁻¹ of data

 $N_{\rm Bha}^{\rm meas} = \sigma_{\rm Bha}^{\rm meas} \int {f L} dt$

- $e^+e^- \rightarrow 3\pi$ is the second largest contribution on a_{μ}^{HVP} at the leading order, both in absolute values and uncertainties.
- Current cross section measurement of e+e-→ 3π comes from CMD-2/SND measurement with energy scan and by Babar/BES with ISR technique.
- For $\sqrt{s} < M\phi$ this measurement is feasible using ISR technique in KLOE/KLOE-2
- ISR KLOE measurement in low energy region, complementary to direct energy scans.

Further physics goals:

- to extract the peak cross section of the process $e^+e^- \rightarrow V \rightarrow 3\pi$, involving vector resonances $V = \varphi, \omega$
- to measure cross section of non-resonant process $e^+e^- \rightarrow \gamma^* \rightarrow 3\pi$.
- to measure product of branching fractions $B(\omega \rightarrow e^+e^-) \ge B(\omega \rightarrow 3\pi)$

- Analysis on ~1.7 fb⁻¹ on-peak and ~246 pb⁻¹ off-peak data samples.
- Selection based in at least 2 tracks with opposite curvature + 3 neutral clusters

 $\rightarrow \pi^0 \pi^+ \pi^- \gamma$

• Kinematic fit to improve resolution

- After considering the radiation correction, a simple BW is used to fit the background-free $M(\pi^+\pi^-\pi^0)$ distribution
- Systematics evaluation ongoing
- Recent result from BaBar [*PRD104(2021)112003*] B_{ee} x BR_{3 π} = (6.56 ± 0.10) · 10⁻⁵

KLOE results* compared with PDG

ISR

	$M_{\omega} [{\rm MeV/c^2}]$	Γ_{ω} [MeV]	$\mathcal{B}_{ee} \times \mathcal{B}_{3\pi} [10^{-5}]$
KLOE	782.73 ± 0.04	8.73 ± 0.11	6.38 ± 0.06
PDG	782.66 ± 0.13	8.68 ± 0.13	6.60 ± 0.16

* Only stat. uncertainty

Summary

- KLOE and KLOE-2 experiments have collected ~ 8 fb⁻¹, which represents the largest sample collected at a φ-factory.
 - Rich KLOE-2 program for Kaon and Hadron Physics.
- We are studying the golden χ -PT process $\phi \rightarrow \eta \gamma, \eta \rightarrow \pi^0 \gamma \gamma$
- We are studying 5 photon final state to set the first limit on the leptophobic B-Boson searching for the decay chain $\phi \to \eta B$, $B \to \pi^0 \gamma$.
- We have observed for the first time, clean signals for $\phi \to \eta \pi + \pi \text{ and } \phi \to \eta \mu + \mu \text{ decays.}$
- We are using π^0 's produced with $\gamma^*\gamma^*$ -fusion and tagged with our small angle tagging system (HET) to determine the $\Gamma(\pi^0 \to \gamma\gamma)$.
- A clean signal of 3π final state in the ω region through ISR method is established.
- The program of high precision investigation on light hadron physics and on fundamental symmetries is being continued with the analysis of KLOE/KLOE-2 data.

Backup

Measurement concept:

$$\frac{\sigma_{\pi^{0}}}{\sigma_{\text{Bha}}} = \frac{N_{\pi^{0}}}{\epsilon_{\text{ana}} \sigma_{\text{Bha}}^{\text{meas}} \int Ldt} \frac{A_{\text{Bha}}}{A_{\pi^{0}}}$$

Status of the measurement:

Number of π^0 tagged events. Preliminary results on the whole reconstructed data sample (electron station) obtained, 10% precision level.

 $\epsilon_{ana} \longrightarrow$ Analysis efficiency evaluation completed, only small refinement needed.

 N_{π^0}

Full simulation of signal ($\gamma\gamma \rightarrow \pi^0$ triggering KLOE DAQ and one lepton in the HET) and normalization channel (low angle e⁺e⁻ γ with one lepton reaching HET) events, obtained with EKHARA/BBBREM generators + BDSIM for lepton transport, completed.

Obtained from the KLOE online luminosity measurement. Product independent from luminometer scale, scaling behavior checked along data-taking periods.