Hadron spectroscopy on the Lattice

Daniel Mohler

Technische Universität Darmstadt

Krakow, 22. June, 2023

E DQA

Outline

Introduction

- 2 Positive-parity heavy-light hadrons
 - The σ -resonance from Lattice QCD
- 4 Coupled-channel scattering and the $\Lambda(1405)$

5 Conclusions and Outlook

A = A = A = A = A = A = A

My method of choice: Lattice QCD

• Lattice QCD: Regularization of QCD by a 4-d Euclidean space-time lattice. Provides a calculational method.

Euclidean correlator of two Hilbert-space operators \hat{O}_1 and \hat{O}_2 .

$$\begin{split} \left\langle \hat{O}_{2}(t)\hat{O}_{1}(0) \right\rangle &= \sum_{n} e^{-t\Delta E_{n}} \langle 0|\hat{O}_{2}|n\rangle \langle n|\hat{O}_{1}|0\rangle \\ &= \frac{1}{Z} \int \mathcal{D}[\psi,\bar{\psi},U] e^{-S_{E}} O_{2}[\psi,\bar{\psi},U] O_{1}[\psi,\bar{\psi},U] \end{split}$$

- Path integral over the Euclidean action S_{E,QCD}[ψ, ψ̄, U];
 (a sum over quantum fluctuations)
- Can be evaluated with *Markov Chain Monte Carlo* (using methods well established in statistical physics)

Daniel Mohler (TU Darmstadt)

Lattice QCD and quark-model puzzles

- Various kind of exotic/unconventional states (examples)
 - light scalar resonances (σ and κ)
 - $D_{s0}^{*}(2317), D_{s1}(2460)$ and b-quark cousins
 - XYZ states
 - Roper resonance; $\Lambda(1405)$
 - Pentaquark states
- Various possible structures: regular mesons/baryons; molecules; tetraquarks/pentaquarks; hybrid hadrons; glueballs
- Simple Lattice QCD calculations with $\bar{q}q$ and qqq interpolating fields struggle to make contact to experiment
 - \rightarrow Interpolating fields for multi-hadron states needed
- Lattice QCD has moved from naive finite-volume energies using $\bar{q}q$ and qqq structures to the determination of hadronic scattering amplitudes

Progress from an old idea: Lüscher's finite-volume method

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237.

Basic observation: Finite-volume, multi-particle energies are shifted with regard to the free energy levels due to the interaction

$$E = E(p_1) + E(p_2) + \Delta_E$$

- Energy shifts encode scattering amplitude(s)
- Original method: Elastic scattering in the rest-frame in multiple spatial volumes L^3
- Coupled 2-hadron channels well understood
- 2 ↔ 1 and 2 ↔ 2 transitions well understood (example ππ → πγ*)
- Significant progress for 3-particle scattering

Lattice QCD challenges

• Hierarchy of difficulties

- Meson systems are simpler than baryons (exponentially degrading signal to noise)
- Cost of correlation functions much larger for systems with baryons
- Complicated scattering amplitudes need many data points (volumes, frames)

1 two-hadron channel; coupled two-hadron channels; three-hadron scattering

• Hierarchy of projects:

- Proof of principle (often single ensemble)
- Explore quark mass dependence
- Full spectroscopy calculation including continuum limit
- Structure observables (transitions, form factors, ...)
- Hierarchy of difficulties not the same as in experiment

Systematic calculations and gauge field ensembles

Important lattice systematics from

- Taking the *continuum limit*: $a(g,m) \rightarrow 0$
- Taking the *infinite volume limit*: $L \to \infty$
- Calculation at (or extrapolation to) physical quark masses

Example: CLS gauge-field library

Bruno et al. JHEP 1502 043 (2015); Bali et al. PRD 94 074501 (2016)

Systematic calculations and gauge field ensembles

Important lattice systematics from

- Taking the *continuum limit*: $a(g,m) \rightarrow 0$
- Want to exploit (power law) finite volume effects (keeping exponential effects small)
- Calculation at (or extrapolation to) physical quark masses

Example: CLS gauge-field library

Bruno et al. JHEP 1502 043 (2015); Bali et al. PRD 94 074501 (2016)

Daniel Mohler (TU Darmstadt)

Hadron spectroscopy on the Lattice

Krakow, 22. June, 2023 7/28

Cautionary tale: The H-Dibaryon and discretization effects

- First study of baryon-baryon scattering in the continuum limit
- Strategy: Global fits to the energy levels with parameterizations that account for discretization effects
- Binding energy at SU(3) point with $m_{\pi} = 420$ MeV

$$B_H^{SU(3)_f} = 4.56 \pm 1.13 \pm 0.63 \text{ MeV}$$

• Very large discretization effects in the binding energy.

Daniel Mohler (TU Darmstadt)

Exotic D_s and B_s candidates?

Established s and p-wave hadrons:

 $D_{s} (J^{P} = 0^{-})$ and $D_{s}^{*} (1^{-})$ 300 250 $D_{s0}^{*}(2317) (0^{+}), D_{s1}(2460) (1^{+}),$ 200 150 100 $D_{s1}(2536) (1^+), D_{s2}^*(2573) (2^+)$ n 2.2 2.3 2.4 140 b) $B_s (J^P = 0^-)$ and $B_s^* (1^-)$ vents/5 MeV/c³ 100 not yet seen 80 $B_{s1}(5830) (1^+), B^*_{s2}(5840) (2^+)$

- Corresponding $D_0^*(2400)$ and $D_1(2430)$ are broad resonances
- Perceived peculiarity: $M_{c\bar{s}} \approx M_{c\bar{d}}$ (an old dispute; likely not the case)
- Additional exotic states are expected (in the sextet representation)

See for example Kolomeitsev, Lutz, PLB 582, 39 (2004)

EL OQO

24 25

m(D, π°) GeV/c²

 $D_{s0}^{*}(2317)$: PRL 90 242001 (2003)

400

a)

2.5

Positive-parity heavy-light mesons: Some older calculations

• $D_{s0}^*(2317)$ and $D_{s1}(2460)$ using finite-volume methods

```
DM et al. PRL 111 222001 (2013)
Lang, DM et al. PRD 90 034510 (2014)
```

- Combined basis of quark-antiquark and $D^{(*)}K$ interpolating fields
- Spectrum qualitatively agrees with experiment (unlike earlier studies)
- Very few energy levels; only 2 pion masses; single lattice spacing;
- $D_{s0}^*(2317)$ and $D_{s1}(2460)$ in multiple volumes Bali, Collins, Cox, Schäfer, PRD 96 074501 (2017)
 - Allows to test effective-range approximation (more levels)
 - Checks for neglected finite-volume effects
- P-wave B_{s0}^* and B_s1 states

Lang, DM, Prelovsek, Woloshyn PLB 750 17 (2015)

- Prediction for physical states from Lattice QCD
- Systematic uncertainties somewhat crudely estimated

DK and $D\bar{K}$ scattering and the $D_{s0}^*(2317)$

Hadron spectrum collaboration, Cheung et al. JHEP 02 100 (2021)

• Use of moving frames results in large number of energy levels; allows for exploring various amplitude parameterizations

Daniel Mohler (TU Darmstadt)

Hadron spectroscopy on the Lattice

Krakow, 22. June, 2023

DK and $D\bar{K}$ scattering and the $D_{s0}^*(2317)$

Hadron spectrum collaboration, Cheung et al. JHEP 02 100 (2021)

• Use of moving frames results in large number of energy levels; allows for exploring various amplitude parameterizations

Daniel Mohler (TU Darmstadt)

Hadron spectroscopy on the Lattice

Krakow, 22. June, 2023

The lightest $J^P = 0^+$ mesons

$$D_0^*(2300)$$
 $I(J^P) = \frac{1}{2}(0^+)$ M.-L. Du et al., PRL 126 192001 (2021)

- Unitarized ChiPT leads to a much lower mass than indicated by the PDG
- Authors compare data from LHCb to PDG (Breit Wigner) and Unitarized ChiPT scenarios

• Recent Lattice QCD results from HSC also obtain a much lighter state HSC L. Gayer *et al.*, JHEP 07 (2021) 123

Isospin $\frac{1}{2} D\pi$ scattering amplitude at $m_{\pi} = 239$ MeV

Hadron Spectrum collaboration, Gayer et al., JHEP 07 123 (2021)

- Extracts pole position from various simple parameterizations
- Perceived peculiarity: $M_{c\bar{s}} \approx M_{c\bar{d}}$ not present!

A = A = A = A = A = A

Isospin $\frac{1}{2} D\pi$ scattering amplitude at $m_{\pi} = 239$ MeV

Hadron Spectrum collaboration, Gayer et al., JHEP 07 123 (2021)

- Extracts pole position from various simple parameterizations
- Perceived peculiarity: $M_{c\bar{s}} \approx M_{c\bar{d}}$ not present!

Daniel Mohler (TU Darmstadt)

Physical predictions from EFT fits to lattice data

$$D_0^*(2300)$$
 $I(J^P) = \frac{1}{2}(0^+)$

Guo, Heo, Lutz, PRD 98 014510 (2018) also PRD 106 114038 (2022)

- Low energy constants from fits to heavy-light ground-state masses and elastic phase-shift from Lattice QCD
- Chiral EFT bridges the gap between lattice data at unphysical pion masses and physical (coupled-channel) system
- Future: Chiral EFT/Lattice/results from femtoscopy at physical m_{π}

Daniel Mohler (TU Darmstadt)

Hadron spectroscopy on the Lattice

B_s : Chiral – infinite volume extrapolation

R.J. Hudspith, DM, PRD 107, 114510 (2023)

- We explore the previously predicted $J^P = 0^+$ and 1^+ bound states
- Mainly the CLS TrM = const trajectory and 2 $m_S = const$ ensembles

Combined extrapolation:

$$\Delta_{B_{s0}^*/B_{s1}}(\Delta\phi_2, m_K L, a) = \Delta_{B_{s0}^*/B_{s1}}(0, \infty, a) \left(1 + A\Delta\phi_2 + Be^{-m_K L}\right)$$
$$\Delta\phi_2 = \phi_2^{\text{Lat}} - \phi_2^{\text{Phys}} \quad ; \qquad \phi_2 = 8t_0 m_\pi^2$$

Daniel Mohler (TU Darmstadt)

Systematic uncertainties and final result

R.J. Hudspith, DM, PRD 107, 114510 (2023)

Resulting binding energies:

$$\begin{split} &\Delta_{B_{s0}^*}(0,\infty,0) = -75.4(3.0)_{\text{Stat.}}(13.7)_{\text{a}} \text{ [MeV]}, \\ &\Delta_{B_{s1}}(0,\infty,0) = -78.7(3.7)_{\text{Stat.}}(13.4)_{\text{a}} \text{ [MeV]}. \end{split}$$

- Small uncertainty from statistics + combined extrapolation
- Largest systematics from usage of NRQCD/discretization effects
- Central value shifted by applying half the mass difference between two different lattice-spacings
- All other explored uncertainties (finite volume shapes, modified quark-mass dependence, etc.) small

Comparison to the literature

• Results agree well with models based on unitarized χPT

Improved uncertainty estimate over older Lattice calculations

Daniel Mohler (TU Darmstadt)

Hadron spectroscopy on the Lattice

Dispersive determination of the σ -resonance

Rodas, Dudek, Edwards, arXiv:2304.03762

- Based on $\pi\pi$ partial-wave scattering amplitudes with Isospins 0, 1, 2
- Four different pion masses from 391 MeV down to 239 MeV
- Based on a various K-Matrix fit models for each of the scattering amplitudes (ensures unitarity)
- Amplitudes are run through a dispersive framework
- Demanding consistency of input fits and dispersion relation output effectively selects amplitudes respecting analyticity/crossing symmetry
- Yields significantly reduced spread in pole position (with slightly increases statistical uncertainty)

Illustration of the method (example)

- Red combination of input amplitudes (top) yields incompatible output (blue)
- Green combination of input amplitudes (bottom) yields acceptable output

Daniel Mohler (TU Darmstadt)

Hadron spectroscopy on the Lattice

Resulting pole positions

- Orange results at $m_{\pi} = 239$ MeV show substantially reduced scatter
- Grey points show the results of dispersive extractions from experimental data

E SQA

An old puzzle: $\Lambda(1405), J^P = \frac{1}{2}^-$

• PDG (4 star resonance)

$$M_{\Lambda} = 1405^{+1.3}_{-1.0} MeV \qquad \qquad \Gamma_{\Lambda} = 50.5 \pm 2.0$$

(Some) quark models struggled to accommodate this state.

- However
 - Unitarized χ PT + Model input yields 2 poles with $\Re \approx 1400$ MeV \rightarrow Now new PDG state $\Lambda(1380)$
 - CLAS observes different line shapes for $\Sigma^{-}\pi^{+}$, $\Sigma^{+}\pi^{-}$ and $\Sigma^{0}\pi^{0}$ Interference between I = 0 and I = 1 amplitudes is the likely reason
 - Even the $\Sigma^0 \pi^0$ is badly described by a single Breit-Wigner
 - CLAS data consistent with popular 2-pole picture
 - No satisfactory lattice results (although claims exist)
- Relevant channels: $\Sigma \pi$, $N\bar{K}$ (and maybe $\Lambda \eta$); simulation in isospin limit
- Goal: Explore coupled-channel problem and extract scattering amplitudes from the low-lying energy spectrum

$\Lambda(1405)$ – Experimental developments

• Angular analysis of the process $\gamma + p \rightarrow K^+ + \Sigma + \pi$ by CLAS strongly favors the assignment of quantum numbers $J^P = \frac{1}{2}^-$

Moriya et al., PRC 87 035206 (2013)

• K^-p scattering length determined by the SIDDHARTHA collaboration

Bazzi et al., PLB 704 (2011) 113

• A glimpse of the future: Preliminary analysis at GlueX

Wickramaarachchi et al., arXiv:2209.06230

Gauge-field ensemble and rotational symmetry breaking

Current data on CLS gauge-field ensemble

<i>a</i> [fm]	$T \times L^3$	m_{π} [MeV]	$m_K [{ m MeV}]$	$m_{\pi}L$	N_{cnfg}
0.0633(4)(6)	128×64^3	200	480	4.3	2000

Lattice irreducible representations for a given J^P

see Morningstar et al. arXiv:1303.6816

J^P	[000]	[00n]	[0nn]	[nnn]	
$\frac{1}{2}^+$	G_{1g}	G_1	G	G	Λ , $\Lambda(1600)$
$\frac{1}{2}^{-}$	G_{1u}	G_1	G	G	$\Lambda(1405), \Lambda(1670)$
$\frac{3}{2}^{+}$	H_g	G_1, G_2	2G	F_1, F_2, G	$\Lambda(1690)$
$\frac{3}{2}^{-}$	H_u	G_1, G_2	2G	F_1, F_2, G	$\Lambda(1520), \Lambda(1690)$

Preferred amplitude and resulting poles (preliminary)

- Amplitudes evaluated with Akaike Information Criterion: $AIC = \chi^2 2dof$
- Sub-threshold levels pose strong constraints on the amplitude
- Limited data and therefore limited possibility to vary parameterizations

Daniel Mohler (TU Darmstadt)

Hadron spectroscopy on the Lattice

Some Variations of the used amplitude

- Results from varying parameterization/ omitting highest data point
- Amplitudes agnostic to the number of poles lead all yield 2 poles
- We also explored simple constraints for higher partial waves (negligible effect in range used)

Daniel Mohler (TU Darmstadt)

Hadron spectroscopy on the Lattice

Pole positions and expectations from the literature

• Poles labeled as (\pm, \pm)

depending on the signs of the imagianary part of $(k_{KN}, k_{\pi\Sigma})$

- Two poles are found on the (-, +) sheet, the closest to physical scattering between the thresholds
- Our (preliminary) result for the poles is

• Examples from the PDG review

approach	pole 1 [MeV]	pole 2 $[MeV]$
Refs. [14, 15], NLO	$1424^{+7}_{-23} - i\ 26^{+3}_{-14}$	$1381^{+18}_{-6} - i \ 81^{+19}_{-8}$
Ref. [17], Fit II	$1421^{+3}_{-2} - i \ 19^{+8}_{-5}$	$1388^{+9}_{-9} - i \ 114^{+24}_{-25}$
Ref. [18], solution $#2$	$1434^{+2}_{-2} - i \ 10^{+2}_{-1}$	$1330^{+4}_{-5} - i \ 56^{+17}_{-11}$
Ref. [18], solution $#4$	$1429^{+8}_{-7} - i \ 12^{+2}_{-3}$	$1325^{+15}_{-15} - i \ 90^{+12}_{-18}$

Status and prospects for Lattice QCD spectroscopy

Summary:

- Lattice calculations of scattering amplitudes are starting to mature
- Simple coupled channel systems are already feasible (also for baryons)
- We are starting to address some of the quark-model puzzles
- Once spectroscopy gets settled, we can start addressing structure (transitions, form factors, etc.)

Powerful **QCD** tools:

- Map out the quark mass dependence of amplitudes
- Investigate properties of short-lived excitations
- Investigate states hard to produce/detect at current/future facilities

Examples presented

- Prediction of $J^P = 0^+ B_{s0}^*$ and $J^p = 1^+ B_{s1}$ QCD bound states
- Results for the quark-mass dependence of the $D_0^*(2300)$ pole
- Dispersive analysis of the σ resonance from Lattice QCD data
- The $\Lambda(1405)$ from coupled-channel $\pi\Sigma \bar{K}N$ -scattering

Thank you!

Credits

- Heavy-quark exotics $(ud\bar{b}\bar{b}, us\bar{b}\bar{b})$ and positive-parity heavy-light mesons R.J. Hudspith, DM, PRD 107, 114510 (2023)
 - TU Darmstadt/GSI: Jamie Hudspith, Daniel Mohler
- $\Lambda(1405)$ and meson-baryon scattering:
 - DESY Zeuthen \rightarrow Bochum: John Bulava
 - BNL: Andrew Hanlon
 - Intel: Ben Hörz
 - North Carolina: Amy Nicholson, Joseph Moscoso
 - TU Darmstadt/GSI: Daniel Mohler, Barbara Cid Mora
 - CMU: Colin Morningstar, Sarah Skinner
 - MIT: Fernando Romero-López
 - LBNL: André Walker-Loud

⇒ ↓ ≡ ↓ ≡ |= √Q ∩

Backup slides

Daniel Mohler (TU Darmstadt)

Hadron spectroscopy on the Lattice

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣旨 のへで Krakow, 22. June, 2023

$D_{s0}^{*}(2317)$: D-meson – Kaon s-wave scattering

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237.

Charm-light hadrons

$$p \cot \delta_0(p) = \frac{2}{\sqrt{\pi L}} Z_{00} \left(1; \left(\frac{L}{2\pi} p \right)^2 \right)$$
$$\approx \frac{1}{a_0} + \frac{1}{2} r_0 p^2$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)

$D_{s0}^{*}(2317)$: D-meson – Kaon s-wave scattering

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237.

DM et al. PRL 111 222001 (2013) Lang, DM et al. PRD 90 034510 (2014)

Results for ensembles (1) and (2)

 $a_0 = -0.756 \pm 0.025 \text{fm}$ (1) $r_0 = -0.056 \pm 0.031 \text{fm}$ (2) $r_0 = 0.27 \pm 0.17 \text{fm}$ (2)

Daniel Mohler (TU Darmstadt)

Hadron spectroscopy on the Lattice

E + 4 E + E = 900

Positive-parity states in the D_s and B_s spectrum

- DM et al. PRL 111 222001 (2013)
- Lang, DM et al. PRD 90 034510 (2014)

Lang, DM, Prelovsek, Woloshyn PLB 750 17 (2015)

• Uncontrolled systematics sizable for the *D_s* states

- Full uncertainty estimate only for magenta B_s states
- Prediction of exotic states from Lattice QCD!

Daniel Mohler (TU Darmstadt)

= 900

D_s results in multiple volumes from RQCD

Bali, Collins, Cox, Schäfer, PRD 96 074501 (2017)

- Study with different volumes at pion masses of 150, 290 MeV
- Results confirm basic behavior seen in a single volume
- Discretization effects remain unexplored

Daniel Mohler (TU Darmstadt)

Hadron spectroscopy on the Lattice

D_s results in multiple volumes from RQCD

Bali, Collins, Cox, Schäfer, PRD 96 074501 (2017)

- Study with different volumes at pion masses of 150, 290 MeV
- Results confirm basic behavior seen in a single volume
- Discretization effects remain unexplored

Daniel Mohler (TU Darmstadt)

Hadron spectroscopy on the Lattice

CLS ensembles used for heavy-light mesons

R.J. Hudspith, DM, PRD 107, 114510 (2023)

Ensemble	Mass trajectory	$L^3 \times L_T$	$N_{\rm Conf} \times N_{\rm Prop}$
U103	$\operatorname{Tr}[M] = C$	$24^3 \times 128$	1000×23
H101	$\operatorname{Tr}[M] = C$	$32^3 \times 96$	500×12
U102	$\operatorname{Tr}[M] = C$	$24^3 \times 128$	732×18
H102	$\operatorname{Tr}[M] = C$	$32^3 \times 96$	500×16
U101	$\operatorname{Tr}[M] = C$	$24^3 \times 128$	600×18
H105	$\operatorname{Tr}[M] = C$	$32^3 \times 96$	500×16
N101	$\operatorname{Tr}[M] = C$	$48^3 \times 128$	537×18
C101	$\operatorname{Tr}[M] = C$	$48^3 \times 96$	400×16
H107	$\widetilde{m_s} = \widetilde{m_s}^{\text{Phys.}}$	$32^3 \times 96$	500×16
H106	$\widetilde{m_s} = \widetilde{m_s}^{\text{Phys.}}$	$32^3 \times 96$	500×16
H200	$\operatorname{Tr}[M] = C$	$32^3 \times 96$	500×28

Krakow, 22. June, 2023

NRQCD action

Typical tadpole-improved NRQCD action (here we will use n=4)

Lepage et al., PRD 46, 4052-4067 (1992)

$$H_{0} = -\frac{1}{2aM_{0}}\Delta^{2},$$

$$H_{I} = \left(-c_{1}\frac{1}{8(aM_{0})^{2}} - c_{6}\frac{1}{16n(aM_{0})^{2}}\right)\left(\Delta^{2}\right)^{2} + c_{2}\frac{i}{8(aM_{0})^{2}}\left(\tilde{\Delta}\cdot\tilde{E} - \tilde{E}\cdot\tilde{\Delta}\right) + c_{5}\frac{\Delta^{4}}{24(aM_{0})}$$

$$H_{D} = -c_{3}\frac{1}{8(aM_{0})^{2}}\sigma\cdot\left(\tilde{\Delta}\times\tilde{E} - \tilde{E}\times\tilde{\Delta}\right) - c_{4}\frac{1}{8(aM_{0})}\sigma\cdot\tilde{B}$$

$$\delta H = H_{I} + H_{D}.$$

Propagators generated through symmetric evolution equation

$$G(x,t+1) = \left(1 - \frac{\delta H}{2}\right) \left(1 - \frac{H_0}{2n}\right)^n \tilde{U}_t(x,t_0)^{\dagger} \left(1 - \frac{H_0}{2n}\right)^n \left(1 - \frac{\delta H}{2}\right) G(x,t).$$

• We also tune a $\mathcal{O}(v^6)$ action with tree-level coefficients for the higher order terms

Neural net NRQCD tuning and setup

R.J. Hudspith, DM, PRD 106, 034508 (2022) R.J. Hudspith, DM, PRD 107, 114510 (2023)

- Calculate runs with a random distribution for the action parameters
- Let the neural network make parameter predictions
- Due to additive mass we must only consider splittings → we subtract the η_B from all states
- Perform tuning at SU(3)_f-symmetric point
- Gauge-fixed wall sources
- Tuning precision is about 1%

Figure: Schematic picture of our NRQCD setup

A = A = A = A = A = A = A

Input used for the tuning

Consider only quark-line connected parts of simple meson operators

 $O(x) = (\bar{b}\Gamma(x)b)(x),$

State	PDG mass [GeV]	$\Gamma(x)$
$\eta_b(1S)$	9.3987(20)	γ_5
$\Upsilon(1S)$	9.4603(3)	γ_i
$\chi_{b0}(1P)$	9.8594(5)	$\sigma \cdot \Delta$
$\chi_{b1}(1P)$	9.8928(4)	$\sigma_j \Delta_i - \sigma_i \Delta_j \ (i \neq j)$
$\chi_{b2}(1P)$	9.9122(4)	$\sigma_j \Delta_i + \sigma_i \Delta_j \ (i \neq j)$
$h_b(1P)$	9.8993(8)	Δ_i

Table: Table of lattice operators used and their continuum analogs.

NRQCD Neural Net Tuning: Stable s- and p-wave bottomonia

- Higher S- and P-wave states serve as a check whether our tuning leads to reasonable results
- Main results from the lattice spacing of U103; H200 used to estimate systematics

$\Lambda(1405)$: Specific setup on D200

- Combined basis of simple 3-quark structures and 2 hadron interpolators with the lowest few momentum combinations in each irrep
- Distillation setup:
 - $n_{ev} = 448$ eigenmodes of the Lattice Laplacian
 - Quark lines connecting source and sink: Noise dilution scheme with (*TF*, *SF*, *LI*16) and 6 noises
 - Lines starting end ending on the same time slice: Noise dilution scheme with (*TI8*, *SF*, *LI*16) and 2 noises
 - Four source time slices
 - Lattice Laplacian constructed on stout smeared links with $(\rho,n)=(0.1,36)$

Extracting the spectrum (examples)

- We used various methods/cross checks
- Geometric series fit: $C(t) = \frac{Ae^{-E_0 t}}{1 Be^{-\Delta E t}}$
- Two students with two slightly different analysis methods

Daniel Mohler (TU Darmstadt)

EL OQA

Finite-volume spectra

- Amplitude analysis uses ratios to extract energy differences with regard to non-interacting levels
- Blue squares indicate results from our preferred amplitude fit

Daniel Mohler (TU Darmstadt)

Hadron spectroscopy on the Lattice

Same thing different: Phases and inelasticity

• Alternative way of showing our results: 2 phases and inelasticity η

Daniel Mohler	(TU Darmstadt)
---------------	----------------

Expected quark-mass dependence

Molina, Döring, PRD 94 056010 (2016)

- Plots shows expected behavior for PACS-CS ensembles
- Qualitative agreement with regard to expected behavior

Daniel Mohler (TU Darmstadt)

Hadron spectroscopy on the Lattice