

17th International Workshop on Meson Physics 22nd - 27th June 2023, Kraków, Poland

Hadronic contribution to the muon g-2 with emphasis on photon-photon fusion processes

Xiu-Lei Ren (任修磊)

Helmholtz-Institut Mainz

OUTLINE

General introduction of muon (g-2)

D Hadronic contributions to a_{μ} : HVP and HLbL

Photon-photon fusion studies

Summary and outlook

The Muon (g-2)

- Magnetic moment of lepton
 - Gyromagnetic factor:

$$\boldsymbol{\mu}_{\ell} = \boldsymbol{g}_{\ell} \, \frac{e_{\ell}}{2m_{\ell}} \, \boldsymbol{S}, \quad \boldsymbol{S} = \frac{\boldsymbol{\sigma}}{2} \hbar$$

 $\checkmark g_{\ell} = 2_{(\text{Dirac})} + 2 \frac{a_{\ell}}{(\text{quantum correction})}$

 $\frac{\alpha}{2\pi}$ JULIAN SCHWINGER
2.12.1918 — 7.16.1994
CLARICE CARROL SCHWINGEP
9.23.1917 — 1.9.2011

Anomalous magnetic moment:

$$a_{\ell} = \frac{1}{2}(g_{\ell} - 2)$$

D Why muon (g-2): a_{μ} ?

- Can be measured with unprecedented precision
- Can be calculated very precisely in Standard Model
 - ✓ Excellent test of SM
- Highly sensitive to new physics

Dani Zemba

Muon (g-2): experiment vs. SM prediction

- FNAL precision goal: $\Delta a_{\mu}^{exp} \approx \pm 1.6 \cdot 10^{-10}$ (1/4 of current error)
- Efforts are required to decrease the theoretical error of the SM value

Muon (g-2): Standard Model prediction

- QED provides more than 99.99% of the total value
 - with very small error (zero confront with expt. uncertainty)
- Errors are dominated by hadronic contribution
 - HLbL has larger relative uncertainty than HVP

HVP

QED+EW

HLbl

Hadronic contribution to a_{μ}

HVP tensions

Theory(data-driven) vs. Lattice QCD

✓ WP $a_{\mu}^{\text{LO-HVP}} = (693.1 \pm 4.0) \cdot 10^{-10}$

✓ BMWc $a_{\mu}^{\text{LO-HVP}} = (707.5 \pm 5.5) \cdot 10^{-10}$

BMWc, Nature 593, 7857(2021)

$$a_{\mu}^{
m exp} - \left. a_{\mu}^{
m SM}
ight|_{
m BMWc}^{
m LO,HVP} = (10.7 \pm 7.0) \cdot 10^{-10} ~~[1.5\sigma]$$

No new physics

- Experiments $(e^+e^- \rightarrow \pi^+\pi^-)$ tension
 - ✓ CMD3 vs CMD2 and others arXiv:2302.08834

HLbL (four-point function) is more complicated than HVP

Hadronic contribution needs further studies!

Hadronic contributions

- Non-perturbative regime of QCD
- Mitigate the uncertainties -> data-driven dispersive approach

Hadronic vacuum polarization

Data-driven approach

- Based on analyticity and unitarity $\operatorname{Im} \gamma \gamma \gamma \Leftrightarrow \left| \gamma \gamma \gamma \right|^2 \propto \sigma_{tot}(e^+e^- \to hadrons)$
- Dispersion integrals over cross section of e^+e^- annihilation

✓ Main contribution from low energies: ~ 75 % from $\pi^+\pi^-$ [$\rho(770)$] channel

Hadronic vacuum polarization

$$\left(\frac{\alpha}{\pi}\right)^4$$

 $\operatorname{Im} \underbrace{\stackrel{\gamma}{\longrightarrow} \stackrel{\gamma}{\longrightarrow}}_{\operatorname{hodrong}} \Leftrightarrow \left| \underbrace{\stackrel{\gamma}{\longrightarrow} \stackrel{\gamma}{\longleftarrow}}_{\operatorname{hodrong}} \right|^{2} \propto \sigma_{\operatorname{tot}}(e^{+}e^{-} \to \operatorname{hodrong})$

Data-driven approach

- Based on analyticity and unitarity
 - Dispersion integrals over cross section of e^+e^- annihilation

White Paper: T. Aoyama et al., Phys. Rept. 887, 1 (2020) $6931(40) \cdot 10^{-11}$ LO-HVP $-98.3(7) \cdot 10^{-11}$ NLO-HVP $12.4(1) \cdot 10^{-11}$ NNLO-HVP

Uncertainty dominated by the total cross section of $e^+e^- \rightarrow \pi^+\pi^-$ channel $a_{\mu}^{\pi^+\pi^-} = 5060(34) \cdot 10^{-11}$

LO-HVP: pion-pion channel

\square Tension for $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ data

- BaBar and KLOE
 - ✓ Most sub-percent precision
 - ✓ 2.9 σ discrepancy on $a_{\mu}^{\pi^+\pi^-}$
- CMD-3 arXiv:2302.08834
 - ✓ Further tension
 - ✓ CMD-3 and others are not consistent!

Challenges of dispersive LO-HVP

- Understand the above tensions
- Understand the correlations when combining data from different expts.
- $\pi^+\pi^-$ production cross section ~ 0.2 % overall systematical error
 - ✓ Conform to the precision goal of FNAL-E989: $\Delta a_{\mu}^{\exp} \approx \pm 1.6 \cdot 10^{-10}$

LO-HVP: data-driven vs LQCD

Lattice QCD

First principle to evaluate HVP

$$a_{\mu}^{\text{LO-HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dt \tilde{K}(t) G(t)$$

 $\checkmark\,$ Correlator of the electromagnetic current

$$G(t) = -a^3 \sum_{\boldsymbol{x}} \left\langle J_k^{\text{e.m.}}(\boldsymbol{x}, t) J_k^{\text{e.m.}}(0) \right\rangle$$

✓ $\tilde{K}(t)$: known kernel function

No reliance on experimental data

□ However, data-driven vs BMWc (sub-percent precision)

• LO-HVP has a $2.1\,\sigma$ tension

 \rightarrow Call for independent cross-check from LQCD with high precision

Hadronic light-by-light

Start contribution at order $(\alpha/\pi)^3$

- Involves the 4th-rank tensor: Π_{μνρσ}(q₁, q₂, q₃, q₄)
 ✓ Much more complicated than HVP
 - Suppressed by an α/π factor in comparison with HVP \checkmark Its accuracy is $\leq 10\%$ to meet the precision goal of FNAL

Dispersion relation for HLbL amplitude G. Colangelo, et al., JHEP09,091(2014); 09,074(2015)

- Construct the basis for rank 4 polarization tensor (fully off-shell)
 - Lorentz invariance
 - Gauge invariance

$$\Pi^{\mu\nu\lambda\sigma} = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i$$

Master formula for HLbL

$$a_{\mu}^{\text{HLbL}} = \frac{2\alpha^3}{3\pi^2} \int_0^\infty dQ_1 \int_0^\infty dQ_2 \int_{-1}^1 d\tau \sqrt{1-\tau^2} Q_1^3 Q_2^3 \sum_{i=1}^{12} T_i \left(Q_1, Q_2, \tau\right) \bar{\Pi}_i \left(Q_1, Q_2, \tau\right)$$

- ✓ T_i Integral kernels, known
- ✓ $\bar{\Pi}_i$ Parameterize the hadronic states in HLbL

Hadronic light-by-light

Start contribution at order $(\alpha/\pi)^3$

- Involves the 4th-rank tensor: Π_{μνρσ}(q₁, q₂, q₃, q₄)
 ✓ Much more complicated than HVP
 - Suppressed by an α/π factor in comparison with HVP \checkmark Its accuracy is $\leq 10\%$ to meet the precision goal of FNAL

Dispersion relation for HLbL amplitude G. Colangelo, et al., JHEP09,091(2014); 09,074(2015)

- Construct the basis for rank 4 polarization tensor (fully off-shell)
 - Lorentz invariance
 - Gauge invariance

$$\Pi^{\mu\nu\lambda\sigma} = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i$$

New insight on tensor with triangle kinematics J. Lüdtke, et al., 2302.12264

Master formula for HLbL

$$a_{\mu}^{\text{HLbL}} = \frac{2\alpha^3}{3\pi^2} \int_0^\infty dQ_1 \int_0^\infty dQ_2 \int_{-1}^1 d\tau \sqrt{1 - \tau^2} Q_1^3 Q_2^3 \sum_{i=1}^{12} T_i \left(Q_1, Q_2, \tau\right) \bar{\Pi}_i \left(Q_1, Q_2, \tau\right)$$

- ✓ T_i Integral kernels, known
- ✓ $\bar{\Pi}_i$ Parameterize the hadronic states in HLbL

Dispersion relation for HLbL contribution

□ Indirect method: DR for Pauli form factor F_2 V. Pauk, M. Vanderhaeghen, PRD90,113012 (2014)

$$a_{\mu}^{\text{HLbL}} = F_2(0) = \frac{1}{2\pi i} \int_0^\infty \frac{dk^2}{k^2} \operatorname{Disc}_{k^2} F_2\left(k^2\right)$$

- $F_2(k^2)$ is obtained from the two-loop integral
- The discontinuity of the form factor $\operatorname{Disc}_{k^2} F_2(k^2)$

Schwinger sum rule F. Hagelstein, V. Pascalutsa, PRL120,072002(2018)

$$a_{\mu} = \frac{m_{\mu}^2}{\pi^2 \alpha} \int_{\nu_0}^{\infty} d\nu \left[\frac{\sigma_{LT} \left(\nu, Q^2\right)}{Q} \right]_{Q^2 = 0}$$

Related to photo-absorption cross section on the muon

Generalize HVP dispersive relation to HLbL

Data-driven approach for HLbL

Connection between HLbL and $\gamma\gamma$ **-collision events**

Based on the dispersion relation of HLbL

G. Colangelo, et al. (2014–2017)

Experimental measurements of two-photon fusion

 $\checkmark \gamma^* \gamma^* \rightarrow \pi^0, \eta, \eta'; \pi\pi, K\bar{K}, \pi\eta; 3\pi, 4\pi, \cdots$ at low-Q² virtualities

✓ Form factors and (p.w.) amplitudes

Current status of HLbL

White paper T. Aoyama et al., Phys. Rept. 887, 1 (2020)

$a_{\mu}^{\text{HLbL}} = 92(19) \cdot 10^{-11}$

hadronic state	$a_{\mu}^{ m HLbL} \left[10^{-11} ight]$	hadronic state $a_{\mu}^{\mathrm{HLbL}} \left[10^{-11} \right]$
pseudoscalar poles	$93.8^{+4.0}_{-3.6}$	scalars+tensors $\gtrsim 1 { m GeV} ~ \sim -1(3)$
pion box	-15.9(2)	axial vectors $\sim 6(6)$
S-wave $\pi\pi$ rescatt.	-8(1)	short distance $\sim 15(10)$
kaon box	-0.5(1)	heavy quarks $\sim 3(1)$

Well determined!

Major source of uncertainty

Comparison with LQCD: uncontroversial

Needs better understanding of complicated hadronic dynamics to get reliable error estimate -> 10% accuracy

Photon-photon fusion

Photon-photon fusion

Two-photon fusion to pseudoscalars

Jegerlehner & Nyffeler, PRD (2009)

× {
$$w_1(Q_1, Q_2, \tau) F_{\mathbf{P}} \left(-Q_1^2, -(Q_1 + Q_2)^2 \right) F_{\mathbf{P}} \left(-Q_2^2, 0 \right)$$

+ $w_2(Q_1, Q_2, \tau) F_{\mathbf{P}} \left(-Q_1^2, -Q_2^2 \right) F_{\mathbf{P}} \left(-(Q_1 + Q_2)^2, 0 \right)$ }

- Weight functions: w_1, w_2 are model independent!
 - ✓ Suppress large virtuality contributions
- **ONLY input:** single/double virtual transition form factors (TFF)

17

Two-photon fusion to $\pi\pi$, $\pi\eta$, $K\bar{K}$

Two-pseudoscalar contribution to a_u^{HLbL}

• Expression of $\overline{\Pi}_i$ (s-wave) G. Colangelo, et al., JHEP 04 (2017) 161, 1702.07347

$$\bar{\Pi}_{i}^{J=0} \propto \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{1}{\lambda_{12}(s')(s'-q_{3}^{2})^{2}} \left[f(s') \operatorname{Im} h^{0}_{++,++}(s') - g(s') \operatorname{Im} h^{0}_{00,++}(s') \right]$$

Similar for the t, u-channels

✓ Helicity amplitudes of $\gamma^* \gamma^* \to \gamma^* \gamma^*$ can be obtained via $\gamma^* \gamma^* \to \pi \pi, K\bar{K}, \pi \eta$

$$\operatorname{Im}_{s}^{\pi\pi} h_{\lambda_{1}\lambda_{2},\lambda_{3}\lambda_{4}}^{J}(s) = \eta_{i}\eta_{f}\frac{\rho_{\pi}(s)}{16\pi S}h_{J,\lambda_{1}\lambda_{2}}(s)h_{J,\lambda_{3}\lambda_{4}}^{*}(s)$$

Inputs: p.w. amplitudes of $\gamma^* \gamma^* \rightarrow \pi \pi, K\bar{K}, \pi \eta \dots$ at arbitrary virtualities

Expt. status for $\gamma^{(*)}\gamma^{(*)} \rightarrow \pi\pi, K\bar{K}, \ldots$

Data for real photon fusion

- MarkII('90), CELLO ('92), Crystal Ball ('90), Belle ('07 '09); BESIII prelim.
 M. Küßner's talk @ 23.06
- Access the scalar and tensor resonances

✓ Partial wave analysis

Data for single virtual process

• Belle:
$$\gamma\gamma^* \rightarrow \pi^0\pi^0$$
 prd93(2016)032003

• BESIII: $\gamma \gamma^* \to \pi^+ \pi^-$ on going analysis

Dispersive analysis for $\gamma^{(*)}\gamma^{(*)} \rightarrow \pi\pi, \dots$

- □ Single channel: S-wave helicity amplitude $\gamma^* \gamma^* \rightarrow \pi \pi$
 - G. Colangelo, et al., JHEP 04 (2017) 161
- Extend to KK channel: S+D waves helicity amplitudes
 - I. Danilkin, M. Vanderhaeghen, PLB 789 (2019) 366
 - M. Hoferichter, P. Stoffer, JHEP 07 (2019) 073

→ Need to be validated by the upcoming BESIII $\gamma \gamma^* \rightarrow \pi^+ \pi^-$ data!

Couple channel: helicity amplitude $\gamma^{(*)}\gamma^{(*)} \rightarrow \pi\eta, K\bar{K}$

Details can be seen in O. Deineka's talk @ 22.06

Two-photon fusion to three pions

Better control the uncertainty from the axial vectors and tensors contribution

$$\checkmark a_1(1260) \to \pi \pi \pi$$

$$\checkmark f_1(1285) \to \eta \pi \pi (\sim 50\%), \ 4\pi (\sim 30\%)$$

$$\checkmark f_1(1420) \to K\bar{K}^* (\sim 96\%)$$

$$\checkmark a_2(1320) \to \pi \pi \pi (\sim 70\%)$$

$$\checkmark \dots$$

• Need to study $\gamma^{(*)}\gamma^{(*)} \rightarrow 3\pi, K\bar{K}^*, \dots$

Two-photon fusion to three pions

D Experimental data of $\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$

- ARGUS Z. Phys. C(1997), L3 PLB(1997), EPJA(2006)
- Significant difference in low-energy region
 - \rightarrow Call for experimental validation: forthcoming BESIII data with high-statistics
- Theoretical studies (very limited)
 - Current Algebra, ChPT S. L. Adler, et al., PRD(1971); P. Talavera, et al., PLB(1996)

- Cover the low and the intermediate energy region
- Describe the experimental data of ARGUS and L3

XLR, I. Danilkin, M. Vanderhaeghen, PRD107,054037(2023)

2.0

Description of Expt. data

One fit parameter in our model

- $g_{f_2\rho\gamma}$ is fitted by reproducing the total cross section at W=1.85 GeV
- Others are fixed via the corresponding decay widths

Total cross section

- Our result is consistent with L3 data at low energies
- a2(1320) production: the dominant contribution
- $f_2(1270)\pi^0$ mechanism: good description of the total cross section

Invariant mass distribution

XLR, I. Danilkin, M. Vanderhaeghen, PRD107,054037(2023)

Summary and outlook

SM prediction for $(g - 2)_{\mu}$: 4.2 σ deviation from experimental value

- Next release of FNAL(E989) is very soon!
- High precision measurement is under construction at JPARC (E34)
- → Precision of hadronic contribution: HVP ~ $0.2\,\%$, HLbL $\,\leq\,10\,\%$
- □ HVP tensions: $e^+e^- \rightarrow \pi^+\pi^-$ data, data-driven vs. LQCD
 - MUonE expriment
 M. Goncerz's talk @ 26.06
- Data-driven HLbL
 - Improve the η, η' transition form factors
 - Expect the release of BESIII data: $\gamma\gamma^* \rightarrow \pi^+\pi^-$
 - Study the photon-photon fusion: $\gamma^{(*)}\gamma^{(*)} \rightarrow 3\pi, K\bar{K}^*, 4\pi...$
 - ✓ Better control the axial vectors and tensors contributions

Summary and outlook

SM prediction for $(g - 2)_{\mu}$: 4.2 σ deviation from experimental value

- Next release of FNAL(E989) is very soon!
- High precision measurement is under construction at JPARC (E34)
- → Precision of hadronic contribution: HVP $\sim 0.2\,\%$, HLbL $\,\leq 10\,\%$
- □ HVP tensions: $e^+e^- \rightarrow \pi^+\pi^-$ data, data-driven vs. LQCD
 - MUonE expriment
 M. Goncerz's talk @ 26.06

Data-driven HLbL

- Improve the η, η' transition form factors
- Expect the release of BESIII data: $\gamma\gamma^* \rightarrow \pi^+\pi^-$
- Study the photon-photon fusion: $\gamma^{(*)}\gamma^{(*)} \rightarrow 3\pi, K\bar{K}^*, 4\pi...$
 - ✓ Better control the axial vectors and tensors contributions

Backup slides

Sensitivisty of a_{ℓ} to short distance physics

$$\frac{\delta a_\ell}{a_\ell} \sim \frac{m_\ell^2}{\Lambda^2}$$

where Λ is an UV cut–off characterizing the scale of new physics.

Berestetskii et al., Zh. Eksp. Teor. Fiz. 30 (1956) 788 [Sov. Phys. JETP 3 (1956) 761]

- The anomalous magnetic moment of leptons mediates helicity flip transitions.
 - Massive particle allows to have Helicity flips
 - The transition amplitude is proportional to the mass of the particle.

Beyond leading order HVP

$$\left(\frac{\alpha}{\pi}\right)^4$$

Data-driven approach

- Based on analyticity and unitarity
- Dispersion integrals over cross section of e^+e^- annihilation

$$a_{\mu}^{\text{LO-HVP}} = \frac{\alpha^2}{3\pi^2} \int_{M_{\pi}^2}^{\infty} ds \, \frac{K^{(1)}(s)}{s} R(s)$$
J. Phys. Radium 22, 121 (1961)

 $R(s) = \frac{\sigma^0 \left(e^+ e^- \to \text{hadrons}(+\gamma) \right)}{\sigma(e^+ e^- \to \mu^+ \mu^-)}$

 $\operatorname{Im} \stackrel{\gamma}{\longrightarrow} \stackrel{\gamma}{\longrightarrow} \Leftrightarrow \left| \stackrel{\gamma}{\longrightarrow} \stackrel{\tau}{\longrightarrow} \right|^{2} \propto \sigma_{\operatorname{tot}}(e^{+}e^{-} \to \operatorname{hadrons})$

High orders HVP: same R-ratio, different kernels A.Kurz, et al., PLB 734(2014)144

$$a_{\mu}^{\text{NLO-HVP}} = \frac{\alpha^3}{3\pi^3} \left[\int_{M_{\pi}^2}^{\infty} ds \, \frac{K^{(2)}(s)}{s} R(s) + \int_{M_{\pi}^2}^{\infty} ds \, ds' \, \frac{K^{(2)'}(s,s')}{s \, s'} R(s) \, R(s') \right]$$

$$a_{\mu}^{\text{NNLO-HVP}} = \frac{\alpha^4}{3\pi^4} \left[\int_{M_{\pi}^2}^{\infty} ds \, \frac{K^{(3)}(s)}{s} R(s) + \int_{M_{\pi}^2}^{\infty} ds \, ds' \, \frac{K^{(3)'}(s,s')}{s \, s'} R(s) \, R(s') R(s') + \int_{M_{\pi}^2}^{\infty} ds \, ds' \, ds'' \, \frac{K^{(3)''}(s,s',s'')}{s \, s' \, s''} R(s) \, R(s') \, R(s') \right]$$

LO-HVP: LQCD — window observable

 \blacksquare Intermediate window observable $a_{\mu}^{\rm HVP,win}$

$$a_{\mu}^{\text{HVP,win}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dt \tilde{K}(t) G(t) \, \boldsymbol{W(t; t_0, t_1)}$$

- Constrain the safe integral regions
 - ✓ Reduce FV and discretized effects
 - ✓ Better statistic precision

Two-photon fusion to three pions

D Experimental data of $\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$

- Data are rather old and have low statistics
 - ✓ ARGUS collab. Z. Phys. C 74, 469 (1997)
 - ✓ L3 collab. PLB 413, 147(1997) updated analysis EPJA27,199(2006).
- Significant difference in low-energy region
- Theoretical studies (very limited)
 - Current Algebra and the linear sigma model

S. L. Adler, et al., PRD(1971); T.F.Wong, PRL(1971); R. Aviv, PRD(1972)

Chiral perturbation theory (ChPT) up to NLO

J.W. Bos, PLB337, 152(1994); P. Talavera, et al., PLB376, 186(1996)

- Those studies focused on the very low energies
 - ✓ nearby the 3π threshold of the two-photon fusion

✓ 0.41 < W < 0.7 GeV

