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Ultra-Peripheral Heavy Ion Collisions 

𝑏

𝑣 ≈ 𝑐

𝑣 ≈ 𝑐

𝐸
𝐵

Ultra-relativistic charged nuclei produce highly Lorentz 
contracted electromagnetic field

Weizäcker-Williams Equivalent Photon Approximation (EPA):
→ In a specific phase space, transverse EM fields can be quantized 
as a flux of quasi-real photons 

𝑍𝛼 ≈ 1	 → High photon density
Ultra-strong electric and magnetic fields:
→ Expected magnetic field strength 𝐁 ≈ 𝟏𝟎𝟏𝟒 − 𝟏𝟎𝟏𝟔 T  

Test QED under extreme conditions

Weizsäcker, C. F. v. Zeitschri) für Physik 88 (1934): 612 

Skokov, V., et. al. Int. J. Mod. Phys. A 24 (2009): 5925–32
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[1]
K. Hattori and K. Itakura, Photon and Dilepton Spectra from Nonlinear QED Effects in 
Supercritical Magnetic Fields Induced by Heavy-Ion Collisions, Nuclear and Particle Physics 
Proceedings 276–278, 313 (2016).
Light-by-Light scattering: ATLAS, Phys. Rev. Lett. 123, 052001 (2019)
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Shining light on Gluons
• Photo-nuclear measurements have been used to study QCD maGer 

already for decades[1-3]

[1] H1 Collaboration. J. High Energ. Phys. 2010, 32 (2010).
[2] ZEUS Collaboration. Eur. Phys. J. C 2, 247–267 (1998).
[3] See refs 1-25 in [2]

• Well known process for probing the hadronic 
structure of the photon

• Photon energies ≳ 10 GeV: probe gluon 
distribution - Interaction through ℙomeron 
(two gluon state at lowest order)

• Lower energy scattering: probe gluons + 
quarks: Reggeon  interactions are important

• Photon quantum numbers 𝐽!" = 1##

• Can transform into a ‘heavy photon’ 

• i.e. a vector meson (𝜌!, 𝜙	, 𝐽/𝜓) with 𝐽" = 1#

ℙ
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Imaging Gluons 
within Nuclei
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Probing the Gluonic Structure of the Deuteron
STAR Collaboration, Phys. Rev. Lett. 128, 122303 (2022)

Deuteron is the smallest / simplest nucleus

What is the origin of modified 
partonic structure of nucleons 
bounded in nuclei?

Bjorken-x ∼ 0.01
Only small saturation / 
shadowing effects expected

Both models are consistent 
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Incoherent probes gluonic hotspots and saturation

“ON”

“OFF”
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Photon EmiAer Ambiguity

Recent experimental techniques for resolving the photon emitter ambiguity
Able to explore process in terms of 𝑊!" (photon-nucleus center-of-mass energy per nucleon)
New insights into the gluon distribution and dynamics
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Gluon dynamics & Energy Dependence

Both CMS and ALICE (new last week) have made measurements
Consistent results – rapid rise consistent with impulse approximation, then level off
Comparison to multiple models of Nucler Shadowing at leading Twist, multiple gluon saturation models
No individual model can describe trends in data – still more to learn

The impulse approximation (IA) assumes that 
the nuclear scattering is given by the 
superposition of the scattering 
on the individual nucleons 
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Nuclear Geometry and Saturation at Highest Energies
• Work by Bjorn Shenke (BNL) et. al.

• Include full CGC treatment
• Interference between amplitudes
• Shape fluctuations

When saturation effects are included one obtains a good 
description of the exclusive J/ψ production spectra in ultra 
peripheral lead-lead collisions as recently measured by the 
ALICE 

https://arxiv.org/abs/2207.03712

6/23/2023 10Daniel Brandenburg - Brandenburg.89@osu.edu

https://arxiv.org/abs/2207.03712


Nontrivial Pomeron 
Spin configurations?
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Photon Polarization

• Interacting photons are quasi-real, transverse linearly polarized
• Recently discovered by STAR in photon-photon (Breit-Wheeler) interactions through 

characteristic cos 4𝜙 modulation
• Initial (photon) spin is encoded into orbital angular momentum of final state particles
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STAR CollaboraWon, Phys. Rev. LeZ. 127, 052302 (2021).
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Imaging the Nucleus with Polarized Photons
Photon emitter ambiguity (but with polarized photons)
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Imaging the Nucleus with Polarized Photons
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Photon emitter ambiguity (but with polarized photons)
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Imaging the Nucleus with Polarized Photons

Both possibilities occur simultaneously
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Photon emitter ambiguity (but with polarized photons)
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Imaging the Nucleus with Polarized Photons
What is NEW with transversely polarized photons?

Access to initial photon polarization

We can use the same experimental 
observable as the Breit-Wheeler 
process to access photon polarization

Polarized 
photon

+0

+1

𝜋!

𝜋"

Gluons from nucleus

γ

ℙ
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Interference of two amplitudes

Polarized 
photon
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Observation of Spin Interference in 𝛾𝐴
• Strong spin interference 

effect observed in A+A
• No effect in p+A

• cos 2𝜙	expected for total 
spin=2 (spin-1 photons 
and spin-0 Pomeron)

• Strong dependence on 
transverse momentum
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H. Xing, C. Zhang, J. Zhou, Y.-J. Zhou, The cos 2ϕ azimuthal asymmetry in ρ0 meson production 
in ultraperipheral heavy ion collisions. J. High Energ. Phys. 2020, 064 (2020).

W. Zha, J. D. Brandenburg, L. Ruan, Z. Tang, Exploring the double-slit 
interference with linearly polarized photons. Phys. Rev. D 103, 033007 (2021).
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Elliptic Gluons and the Tensor Pomeron
• Intense theoretical interest
• Signatures of Tensor pomeron 

• Glueballs arXiv:2305.04869 [hep-lat], arXiv:2212.11107 [hep-ph]

• CEP and Meson production

• Rich history of experimental progress over decades
• Log rising cross sections Nucl. Phys. B 141, 1 (1978) 

• Studies in single, double and central diffraction

• Odderon discovery (TOTEM + D0) Phys. Rev. Lett. 127, 062003 (2021)

• Elliptic Gluon distribution in saturated nuclei
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arXiv:2108.00686
P. Lebiedowicz and A. Szczurek, Exclusive pp → ppπ+π− reaction: From the threshold to LHC, Phys. Rev. D 
81, 036003 (2010), doi:10.1103/PhysRevD.81.036003, 0912.0190. 

P. Lebiedowicz, O. Nachtmann b, A. Szczurek Annals of Physics 344, 301-339 (2014)

Y. Hagiwara, C. Zhang, J. Zhou, and Y-J Zhou Phys. Rev. D 104, no.9, 094021 (2021)

arXiv:2108.00686, 2212.00664 [hep-ex], 2210.13884 [hep-ex], 2209.04250 [nucl-ex]

2303.02579 [hep-ph], 

J. Zhou Phys. Rev. D 94, 114017 (2016)
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Tensor Pomeron
• Non-trivial pomeron spin structures have been proposed for some time
• Circumstantial evidence, but still no smoking gun 6
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FIG. 2: The asymmetry is plotted as the function of q? for
RHIC energy

p
S = 200GeV. The rapidities y1, y2 of produced

pions are integrated over the region [�1, 1] and Q is integrated
over the region [0.6GeV , 1GeV ]. The contributions from the
final state soft photon radiation and elliptic gluon distribution
to the asymmetry are shown separately.

FIG. 3: The asymmetry in photon production of di-pion in
eA collisions at EIC is plotted as the function of q? for the
center of mass energy

p
S = 100GeV. The rapidities y1, y2

of produced pions are integrated over the region [2, 3] and
the invariant mass of di-pion Q is integrated over the re-
gion [0.6GeV , 1GeV ]. Transverse momentum carried by the
quasi-real photon emitted from electron beam is required to
be smaller than 0.1GeV.
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• This new measurement 
technique provides 
unprecedented access to spin of 
initial configuration
• What are the signatures of a 

tensor Pomeron in this case?
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Tensor Pomeron
• Non-trivial pomeron spin structures have been proposed for some [me
• Circumstan[al evidence, but s[ll no smoking gun 

• This new measurement 
technique provides 
unprecedented access to spin of 
initial configuration
• What are the signatures of a 

tensor Pomeron in this case?
• Hint of a signal consistent with 

tensor pomeron prediction
• New STAR data!

Photoproduction of the ÑÇ Meson
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Observafon of significant      
cos(4Δv) modulafon with 
respect to background

Predicted to be sensifve to the gluon 
Generalized Transverse Momentum 
Dependent  (GTMD) Distribufon [1] 

“…offers direct access to the second 
derivafve of the saturafon scale with 
respect to &9P” [1]

Tensor Pomeron model may also lead 
to cos 4Δv modulafons

Daniel Brandenburg

o Theory input needed for quantitative description of data
6/23/2023 Daniel Brandenburg - Brandenburg.89@osu.edu 23



Tensor Pomeron @ EIC

At the EIC separation of QED and 
elliptic gluon (Tensor Pomeron) 
is easier due to expected 
difference in sign

6

FIG. 2: The asymmetry is plotted as the function of q? for
RHIC energy

p
S = 200GeV. The rapidities y1, y2 of produced

pions are integrated over the region [�1, 1] and Q is integrated
over the region [0.6GeV , 1GeV ]. The contributions from the
final state soft photon radiation and elliptic gluon distribution
to the asymmetry are shown separately.

total

elliptic gluon

soft photon

0.00 0.05 0.10 0.15 0.20

-0.03
-0.02
-0.01
0.00
0.01
0.02
0.03

q⟂[GeV]

<2
co
s4

ϕ>

FIG. 3: The asymmetry in photon production of di-pion in
eA collisions at EIC is plotted as the function of q? for the
center of mass energy

p
S = 100GeV. The rapidities y1, y2

of produced pions are integrated over the region [2, 3] and
the invariant mass of di-pion Q is integrated over the re-
gion [0.6GeV , 1GeV ]. Transverse momentum carried by the
quasi-real photon emitted from electron beam is required to
be smaller than 0.1GeV.
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FIG. 1: cos 4� azimuthal asymmetry results from the in-
terference between the p wave and the f wave of pion pairs
that are from the decay of ⇢0 meson in conjugate amplitude,
and are from direct production in the amplitude. The color
neutral exchange in the amplitude described by the elliptic
gluon distribution e↵ectively carries two unit orbital angular
momentum. The incident photon is linearly polarized.

calculations. First of all, the dipole-nucleus scat-
tering amplitude (the azimuthal independent part) is
parametrized in terms of dipole-nucleon scattering am-
plitude N (r?) [74–78],

N(b?, r?) ⇡ 1� [1� 2⇡BpTA(b?)N (r?)]
A (21)

where we adopt the GBW model for N (r?). We
also made the numerical estimates with a more so-
phisticated treatment for N (r?) [76–79], which leads
to the similar results. The nuclear thickness function
TA(b?) is determined with the Woods-Saxon distribu-
tion in our numerical calculation, and Bp = 4GeV �1.
For the scalar part of vector meson function, we use
“Gauss-LC” wave function also taken from Ref. [74, 75]:

⌦⇤(|r?|, z) = �z(1 � z) exp
h
� r2?

2R2
?

i
with � = 4.47,

R2
? = 21.9GeV�2. The nuclear thickness function is

estimated with the Woods-Saxon distribution, F (~k2) =R
d3rei

~k·~r C0

1+exp [(r�RWS)/d] where RWS (Au: 6.38fm) is

the radius and d (Au.:0.535fm) is the skin depth. C0 is
the normalization factor.

UPCs events measured at RHIC are triggered by de-
tecting accompanied forward neutron emissions. The im-
pact parameter dependence of the probability for emit-
ting any number of neutrons from an excited nucleus
(referred to as the “Xn” event) is described by the

function, P (b̃?) = 1 � exp
h
�P1n(b̃?)

i
with P1n(b̃?) =

5.45 ⇤ 10�5 Z3(A�Z)

A2/3b̃2?
fm2. Therefore, the “tagged” UPC

cross section is defined as,

2⇡

Z 1

2RA

b̃?db̃?P
2(b̃?)d�(b̃?, ...) (22)

With all these ingredients, we are ready to perform nu-
merical study of the cos 4� azimuthal asymmetry for
RHIC kinematics.

We first compute the azimuthal averaged cross section
and compare it with STAR data to fix the coe�cient
C ⇡ �10 which determines the relative magnitude be-
tween the direct pion pair production and that via ⇢0

decay. We then are able to compute the cos 4� asymme-
try from the elliptic gluon distribution. The QED and
the elliptic gluon distribution contributions to the asym-
metry are separately presented in Fig. 2. If we only take
into account the final state soft photon radiation e↵ect,
the theory calculation severely underestimates the ex-
perimental data. To match the STAR data [39], a rather
large value of the coe�cient E = 0.4 in the Eq. 15 which
is roughly one order of magnitude larger than the per-
turbative estimate for E [10, 17], has been used in our
numerical calculation. Since we are dealing with the deep
non-perturbative region, it is hard to tell whether such
large value for E is reasonable or not. Moreover, there is
a lot of uncertainties associated with the transition from
quark pair to di-pion. Other non-perturbative model for
describing this transition might lead to a much larger
asymmetry with the same value of E. Nevertheless, as
demonstrated in Fig. 2, it is clear that the elliptic gluon
distribution is a necessary element to account for the ob-
served asymmetry (around 10% ).

We also compute the cos 4� azimuthal asymmetry in
the process � + A ! A0 + ⇡+ + ⇡� for EIC kinematics
with the same set parameters. It is shown in Fig. 3 that
the contribution from the elliptic gluon distribution to
the asymmetry flips the sign as the result of the absence
of the double slit interference e↵ect in eA collisions. It
would be very interesting to test this predication at the
future EIC. In view of the recent findings [23, 24], this
might be the only clean observable to probe the gluon
Wigner function at EIC, because it is free from the con-
tamination due to the final state soft gluon radiation ef-
fect.

Conclusion. We studied cos 4� azimuthal asymmetry
in exclusive di-pion production near ⇢0 resonance peak in
UPCs. Both the final state soft photon radiation e↵ect
and the elliptic gluon distribution can give rise to such a
asymmetry. It is shown that the QED e↵ect alone, which
can be cleanly computed, is not adequate to describe the
STAR data. On the other hand, with some model de-
pendent input, a better agreement with the preliminary
STAR data is reached after including the elliptic gluon
distribution contribution, though the theory calculation
still underestimates the measured asymmetry. This thus
leads us to conclude that the observed cos 4� asymmetry
might signal the very existence of the non-trivial quan-
tum correlation encoded in elliptic gluon distribution.
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Baryon Quantum Number:
Valence Quarks or Gluon 
Junction?
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What carries the Baryon Quantum Number?

• Baryon number – a strictly conserved 
quantum number
• Conventional model: Baryon number  is 

assumed to be carried by the valence quarks:
• Alternative model: the baryon junction

• Nonperturbative configuration of low momentum gluons linked     to 
all three valence quarks
X. Artru, Nucl. Phys. B 85, 442 (1975)

• Carries the baryon number
D. Kharzeev, Physics Letters B 378, 238 (1996)

• Neither scenarios have been experimentally verified

• Strong motivation from QCD + Lattice

1𝟏 𝟑

1𝟏 𝟑 1𝟏 𝟑

VS

𝟏
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Experimental Observations of Baryon Stopping

• More baryons than an-baryons, 
even at midrapidity
• Baryons from the colliding nuclei 

are veered away from the beam 
line

• The energy required for par-cle 
produc-on in heavy-ion collisions 
comes from the kine-c energy 
lost by the baryons in the 
colliding nuclei
• Larger effect in collisions with 

higher mulRplicity (small impact 
parameter)

• Net-baryon yield can be 
es-mated from the net-proton 
yield: difference in number of 
protons and an--protonsBRAHMS Collaboration, Phys. Lett. B 677, 267-271 (2009) 
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Baryon Junction and Photonuclear Interactions

• Inclusive particle production in 
photonuclear collisions
• Large flux of quasi-real photons 

produced by ultra-relativistic large-Z 
nuclei
• Similar to e𝐴	collisions except that the 

photon has much smaller virtuality
• Can be used to study baryon stopping with 

the simplest possible heavy ion collisions
• Probes the nucleus at low-𝑥
• Asymmetric collision: target can only be 

traveling in one direction J. D. Brandenburg, N. Lewis,
P. Tribedy, Z. Xu, arXiv:2205.05685 (2022)
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Baryon Junction and Photonuclear Interactions

J. D. Brandenburg, N. Lewis,
P. Tribedy, Z. Xu, arXiv:2205.05685 (2022)

• 𝑞(𝑞 + baryon junction producing a midrapidity 
proton
• Asymmetric collision: target can only be 

traveling in one direction
• Predicted rapidity distribution of                         
𝑑𝑁/𝑑𝑦 ∝ exp −𝑦/2  

D. Kharzeev, Physics Letters B 378, 238 (1996)

• 𝛾𝐴 is a good tool to study the gluon junction 
because
• At high x: photon is a very small color 

dipole, very small cross section to interact 
with 3 quarks at the same time
• At low x: 𝐴 is dominated by the gluons

6/23/2023 Daniel Brandenburg - Brandenburg.89@osu.edu 30



Low 𝑝! Baryon Enhancement in 𝛾𝐴

6/23/2023 Daniel Brandenburg - Brandenburg.89@osu.edu

• Double ratio: 
antiparticle/particle in 
(𝛾𝐴)/(𝐴𝐴)

• �̅�/𝑝 < 1 for 𝑝3 ≲ 1	GeV/𝑐
→ Indication of soft baryon 

stopping in 𝛾𝐴 collisions

• Not corrected for efficiency, 
but largely cancels in the 
double ratio

31



Rapidity Asymmetry in 𝛾 + Au

• �̅� 𝑑𝑁/𝑑𝑦 slope is flat with 𝑦
• Positive slope: asymmetric particle production in 𝛾𝐴
• Negative slope: Regge theory predicts that 𝑝�̅�	 pair 

production should have an opposite rapidity 
dependence to the junction mechanism
D. Kharzeev, Physics Letters B 378, 238 (1996)

• 𝑝 and net-proton 𝑑𝑁/𝑑𝑦 increases with 𝑦 
• Possibly due to the baryon junction mechanism

• Net-proton exponential slope: 1.13 ± 0.32
• Closer to the slope of the beam energy dependence 

in Au + Au
• PYTHIA, which does not include a baryon junction 

mechanism, predicts a slope of ~ − 2.5 
J. D. Brandenburg, N. Lewis, P. Tribedy, Z. Xu, 
arXiv:2205.05685 (2022)
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Summary & Outlook
• Gluons play a central yet elusive role in nuclear systems
• Big open questions

• What are the properties of guon dynamics in extreme regimes, e.g. at low-x?
• Does the pomeron have a non-trivial spin structure?
• What carries the Baryon quantum number? Complex gluon configurations or quarks?

• STAR data 2023-2025
• Investigate Tensor pomeron and baryon junction
• High statistics data campaign currently underway

• LHC physics program is beginning to quantitatively address gluon saturation / 
shadowing models – more data coming soon
• The future Electron Ion Collider - 𝑒𝐴 collisions will provide ultimate precision, 

but still ~10 years away
• Near-future potential to answer some big questions!

𝟏
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Access to Hadronic Light-by-Light
2

Interference with the hadronic light-by-light diagram 
Leads to a unique signature -> odd spin configurations in 
specific phase space

𝜋! 𝜋!

𝜋" 𝜋"

March 23, 2023 : Physics Colloquium @ 
KSU : Daniel Brandenburg
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Photonuclear vs Electron-Ion Collisions
RHIC Photonuclear Kinematics Possible EIC DIS Kinematics

6/23/2023 Daniel Brandenburg - Brandenburg.89@osu.edu 35



Comparison to PYTHIA

• PYTHIA6 does not implement a 
baryon junction
• Prediction for baryon stopping 

caused by the baryon junction
𝑑𝑁/𝑑𝑦 ∝ exp −𝑦/2

6/23/2023 Daniel Brandenburg - Brandenburg.89@osu.edu

J. D. Brandenburg, N. Lewis, P. Tribedy, Z. Xu, arXiv:2205.05685 (2022)
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{Quantum} Double-Slit Experiment

Water waves interfering in a double slit Quantum Double slit Experiment

• The double slit experiment is foundational in quantum mechanics

• Shoot single electron (photon) through a double slit
• Wave interference observed!
• Quantum mechanics generally requires the interfering states 

to be indistinguishable

March 23, 2023 : Physics Colloquium @ 
KSU : Daniel Brandenburg
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Novel Form of Quantum Interference
Similar to double-slit experiment

But with non-identical particles!

Possible theoregcal explanagon from Frank Wilczeck’s group at MIT – 
Entanglement enabled interference of amplitudes from non-idengcal pargcles

BUT WAIT…
The 𝝆𝟎 lifetime is only (𝒄𝝉 ∼ 𝟏 fm)
 → Decays to 𝝅,𝝅-

Interference occurs between 
distinguishable particles

J. Cotler, F. Wilczek, and V. Borish, Annals of Physics 424, 168346 (2021).

Entanglement Enabled Intensity Interference (𝐄𝟐𝐈𝟐)

😮🤯
March 23, 2023 : Physics Colloquium @ 
KSU : Daniel Brandenburg
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Observation of Interference in 𝜌! → 𝜋"𝜋#

π− 2
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:STAR  < 60 MeV
T

 pairs with P−π+πSignal A

) φ) = 1 + A cos(2φf(
-210×0.4±0.4 ±29.1 : A = 
-210×0.4±0.6 ±23.8 : A = 
-210×0.9±1.2 ±-0.5 : A = 

Au+Au
U+U
Au+p

Syst. Uncert.
o Intrinsic photon spin transferred to 𝜌#
o 𝜌# spin converted into orbital angular 

momentum between pions
o Observable as anisotropy in 𝜋± 

momentum

March 23, 2023 : Physics Colloquium @ 
KSU : Daniel Brandenburg
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Origin of the Entanglement?

March 23, 2023 : Physics Colloquium @ 
KSU : Daniel Brandenburg
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Case 1 : {Entangled} Double-Slit Experiment
• Well known that particle decay 

(or interaction in general) leads 
to entanglement

• Individually the 𝜋7 
wavefunctions interfere and 
separately the 𝜋8

• Phase locking (through 
entanglement) causes 𝜋7 and 𝜋8 
to interfere at the real particle 
level

Possible theoregcal explanagon from Frank Wilczeck’s group at MIT – 
Entanglement enabled interference of amplitudes from non-idengcal 
pargcles

J. Cotler, F. Wilczek, and V. Borish, Annals of Physics 424, 168346 (2021).

Similar to Entanglement Enabled Intensity Interference (𝐄𝟐𝐈𝟐)

<latexit sha1_base64="4T8NV5YbztGjKsddFI0HxlGlA+I=">AAACTnicbVFLSwMxGMzWV62vqkcvwSII0rIrvo5FLx4r2Ad0tyWbfm2D2eyaZIWy9hd6EW/+DC8eFNG0XVDbDiQMM/ORZOJHnClt269WZmFxaXklu5pbW9/Y3Mpv79RUGEsKVRryUDZ8ooAzAVXNNIdGJIEEPoe6f3c18usPIBULxa0eROAFpCdYl1GijdTOg8uJ6HHAruyHLRs/YjdiraPRVjRa6gm4x/ODv5l5djF12/mCXbLHwLPESUkBpai08y9uJ6RxAEJTTpRqOnakvYRIzSiHYc6NFUSE3pEeNA0VJADlJeM6hvjAKB3cDaVZQuOx+nciIYFSg8A3yYDovpr2RuI8rxnr7oWXMBHFGgSdHNSNOdYhHnWLO0wC1XxgCKGSmbti2ieSUG1+IGdKcKafPEtqxyXnrHR6c1IoX6Z1ZNEe2keHyEHnqIyuUQVVEUVP6A19oE/r2Xq3vqzvSTRjpTO76B8y2R+2v7L9</latexit>

h⇢0|⇡+⇡�i 6= h⇢0|⇡+ih⇢0|⇡�i

Only 1 “real”  𝜋%𝜋& pair

March 23, 2023 : Physics Colloquium @ 
KSU : Daniel Brandenburg
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Case 1 : {Entangled} Double-Slit Experiment
• Well known that par\cle decay 

(or interac\on in general) leads 
to entanglement

• Individually the 𝜋7 
wavefunc\ons interfere and 
separately the 𝜋8

• Phase locking (through 
entanglement) causes 𝜋7 and 𝜋8 
to interfere at the real par\cle 
level

Similar to Entanglement Enabled Intensity Interference (𝐄𝟐𝐈𝟐)
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h⇢0|⇡+⇡�i 6= h⇢0|⇡+ih⇢0|⇡�i

Only 1 “real”  𝜋%𝜋& pair

“What’s so wonderful,” Cotler says, “is that these 
contemporary experiments are still pushing the boundaries 
of our understanding of both quantum mechanics and 
measurement and opening up new horizons for both 
theory and experiment.” – Jordan Cotler

March 23, 2023 : Physics Colloquium @ 
KSU : Daniel Brandenburg
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Case 2: Entanglement: Nobel Prize 2022
Alain Aspect, John Clauser and Anton Zeilinger

Quantum teleportation:
Transferring quantum 
information through 
entanglement

Can something similar happen at the 
wavefunction level?

March 23, 2023 : Physics Colloquium @ 
KSU : Daniel Brandenburg
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Case 3 : Entangled from within?
Maybe the entanglement 
originates even earlier in 
the interaction?

We expect that the nucleus 
(and the nucleons) are 
highly entangled states 

BUT… 

We have no experimental 
proof of this entanglement 
at rest

March 23, 2023 : Physics Colloquium @ 
KSU : Daniel Brandenburg
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Nuclear 
Tomography and 
the Neutron skin



Interference Reveals Event Configurations

• Case I : Photon & Pomeron are (anti-) parallel

• Case II : Photon & Pomeron are perpendicular

ℙ γ

𝜙 ≈ 0, 𝜋𝜋% 𝜋&
𝜉

𝜌'

ℙ

γ

𝜙 ≈ ±𝜋/2𝜋% 𝜋&
𝜉

𝜌'

March 23, 2023 : Physics Colloquium @ 
KSU : Daniel Brandenburg
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Motivation for 2D Analysis :𝑃$ vs 𝑃%
• Photon polarization is aligned with 𝑏	(exactly for point source)
• Two source interference takes place in x-axis (impact parameter direction)

Phys. Rev. D 103, 033007 (2021), https://arxiv.org/abs/2006.12099

• Interference pattern disappears in 𝑃D direction

• Due to polarization of the 𝜌E, daughter pions 
aligned with photon polarization.
• Express 𝜌E transverse momentum in 2D:

• 𝑃% = 𝑝&×cos𝜙
• 𝑃' = 𝑝&×sin𝜙

March 23, 2023 : Physics Colloquium @ 
KSU : Daniel Brandenburg
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2D “Imaging” : Clear difference in 𝑃# vs. 𝑃$

• Express 𝜌E transverse 
momentum in two-dimensions:
• 𝑃% = 𝑝&×cos𝜙
• 𝑃' = 𝑝&×sin𝜙

• Clear asymmetry in 𝑃7  vs. 𝑃8  due to interference effect in 
both Au+Au and U+U
• Illustrated “2D” tomography
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D =193 GeVNNs U+U at STAR:

STAR Collaboration, Sci. Adv. 9, eabq3903 (2023). 
March 23, 2023 : Physics Colloquium @ 
KSU : Daniel Brandenburg
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|t| vs. 𝜙, which radius is ‘correct’? 
Now instead of 𝑝% and 𝑝' lets look at |𝑡| with a 2D approach

• DrasRcally different radius depending on 𝜙, sRll way too big
• NoRce how much be`er the Woods-Saxon dip is resolved for 𝜙 = 𝜋/2 -> experimentally 

able to remove photon momentum, which blurs diffrac;on pa<ern
• Can we extract the ‘true’ nuclear radius from |t| vs. 𝝓 informa;on?
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Imaging the Nucleus with Polarized Photons

Interference pattern used for diffraction 
tomography of gluon distribution →             
analog to x-ray diffraction tomography

First high-energy measurements of gluon 
distribution with sub-femtometer resolution

🤔😅
Technique provides quantitative access to 
gluon saturation effects
BUT measurements via other vector mesons 
are needed for to validate QCD theoretical 
predictions/interpretations 

Future measurements with 𝝓 meson and 𝐉/𝝍	
are important
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Nuclear Radius Comparison
Au+Au (fm) U+U (fm)

Charge Radius 6.38  (long: 6.58, short: 6.05 ) 6.81 (long: 8.01, short: 6.23)

Inclusive |t| slope (STAR 2017) [1] 7.95 ± 0.03 --

Inclusive |t| slope (WSFF fit)* 7.47 ± 0.03 7.98 ± 0.03

Tomographic technique* 6.53 ± 0.03 (stat.) ±0.05 (syst.) 7.29	 ± 0.06 (stat.) ±	0.05 (syst.)

DESY [2] 6.45	 ± 	0.27 6.90	 ± 	0.14
Cornell [3] 6.74	 ± 0.06 --

Neutron Skin *
(Tomographic Technique)

0.17	 ± 0.03(stat.) ±0.08(syst.)
∼ 2𝜎

0.44	 ± 0.05 (stat.) ±0.08	(syst.)
∼ 4.7𝜎          (Note: for Pb ≈ 0.3 )

Precision measurement of nuclear interaction radius at high-energy
Measured radius of Uranium shows evidence of significant neutron skin

[1] STAR Collaboration, L. Adamczyk, et al., Phys. Rev. C 96, 054904 (2017). 
[2] H. Alvensleben, et al., Phys. Rev. Lett. 24, 786 (1970). 
[3] G. McClellan, et al., Phys. Rev. D 4, 2683 (1971). 

*STAR Collaboration, Sci. Adv. 9, eabq3903 (2023). 
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Neutron Skins across Nuclei 3

other mass regions by calculating ε from ρA of Eq. (4).
We have checked numerically in multiple forces that the
results closely agree with Eq. (3) for the 40 ≤ A ≤ 238
stable nuclei given in Fig. 2.
With the help of Eq. (5) for t (using ρA to compute ε),

we next analyze constraints on the density dependence
of the symmetry energy by optimization of (2) to exper-
imental S data. We employ csym(ρ) = 31.6(ρ/ρ0)γ MeV
[6, 7, 8, 9] and take as experimental baseline the neutron
skins measured in 26 antiprotonic atoms [20] (see Fig. 2).
These data constitute the largest set of uniformly mea-
sured neutron skins over the mass table till date. With
allowance for the error bars, they are fitted linearly by
S = (0.9±0.15)I+(−0.03±0.02) fm [20]. This systemat-
ics renders comparisons of skin data with DM formulas,
which by construction average the microscopic shell ef-
fect, more meaningful [26]. We first set bn = bp (i.e.,
Ssw = 0) as done in the DM [12, 23, 26] and in the anal-
ysis of data in Ref. [19]. Following the above, we find
L = 75± 25 MeV (γ = 0.79± 0.25). The range ∆L = 25
MeV stems from the window of the linear averages of
experiment. The L value and its uncertainty obtained
from neutron skins with Ssw = 0 is thus quite compat-
ible with the quoted constraints from isospin diffusion
and isoscaling observables in HIC [6, 7, 8]. On the other
hand, the symmetry term of the incompressibility of the
nuclear EOS around equilibrium (K = Kv+Kτδ2) can be
estimated using information of the symmetry energy as
Kτ ≈ Ksym−6L [5, 6, 7]. The constraintKτ = −500±50
MeV is found from isospin diffusion [6, 7], whereas our
study of neutron skins leads to Kτ = −500+125

−100 MeV. A
value Kτ = −550± 100 MeV seems to be favored by the
giant monopole resonance (GMR) measured in Sn iso-
topes as is described in [13]. Even if the present analyses
may not be called definitive, significant consistency arises
among the values extracted for L and Kτ from seemingly
unrelated sets of data from reactions, ground-states of
nuclei, and collective excitations.
To assess the influence of the correction Ssw in (2) we

compute the surface widths bn and bp in ASINM [22].
This yields the bn(p) values of a finite nucleus if we re-
late the asymmetry δ0 in the bulk of ASINM to I by
δ0(1 + xA) = I + xAIC [21, 22, 23]. In doing so, we find
that Eq. (2) reproduces trustingly S (and its change with
I) of self-consistent Thomas-Fermi calculations of finite
nuclei made with the same nuclear force. Also, Ssw is
very well fitted by Ssw = σswI. All slopes σsw of the
forces of Fig. 1(c) lie between σmin

sw = 0.15 fm (SGII) and
σmax
sw = 0.31 fm (NL3). We then reanalyze the exper-

imental neutron skins including Smin
sw and Smax

sw in Eq.
(2) to simulate the two conceivable extremes of Ssw ac-
cording to mean field models. The results are shown in
Fig. 3. Our above estimates of L and Kτ could be shifted
by up to −25 and +125 MeV, respectively, by nonzero
Ssw. This is on the soft side of the HIC [6, 7, 8] and
GMR [13] analyses of the symmetry energy, but closer
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FIG. 2: (Color online) Comparison of the fit described in
the text of Eq. (2) with the experimental neutron skins
from antiprotonic measurements and their linear average S =
(0.9± 0.15)I + (−0.03± 0.02) fm [20]. Results of the modern
Skyrme SLy4 and relativistic FSUGold forces are also shown.
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FIG. 3: (Color online) Constraints on L and Kτ from neutron
skins and their dependence on the Ssw correction of Eq. (2).
The crosses express the L and Kτ ranges compatible with the
uncertainties in the skin data. The shaded regions depict the
constraints on L and Kτ from isospin diffusion [6, 7] and on
Kτ as determined in [13] from the GMR of Sn isotopes.

to the alluded predictions from nucleon emission ratios
[9], the GDR [14], and nuclear binding systematics [17].
One should mention that the properties of csym(ρ) de-
rived from terrestrial nuclei have intimate connections to
astrophysics [3, 4, 10]. As an example, we can estimate
the transition density ρt between the crust and the core of
a neutron star [3, 10] as ρt/ρ0 ∼ 2/3+ (2/3)γKsym/2Kv,
following the model of Sect. 5.1 of Ref. [10]. The con-
straints from neutron skins hereby yield ρt ∼ 0.095±0.01
fm−3. This value would not support the direct URCA
process of cooling of a neutron star that requires a higher
ρt [3, 10]. The result is in accord with ρt ∼ 0.096 fm−3

of the microscopic EOS of Friedman and Pandharipande
[27], as well as with ρt ∼ 0.09 fm−3 predicted by a recent
analysis of pygmy dipole resonances in nuclei [15].
We would like to close with a brief comment regard-

ing the GDR. As mentioned, Ref. [14] very interestingly
constrains csym(0.1) from the GDR of 208Pb. The anal-

B. Bally, G. Giacalone, M. Bender https://arxiv.org/abs/2301.02420

Recent theoretical approach from state-of-
the-art multi-reference energy density 
functional (MR-EDF) calculations:
 𝑺𝑨𝒖 =	0.17 fm
In good agreement with our measurement
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The neutron skin of 208Pb

of the 208Pb charge, weak and total baryon densities together
with their uncertainty bands. The precise 2.5%determination
of ρ0b for 208Pb will facilitate a sensitive examination of its
close relationship to the nuclear saturation density [24].
After the 208Pb run, data were also collected to measure

Ameas
PV for 48Ca (CREX) [54]. The improved systematic

control of helicity correlated beam asymmetries and several
other PREX experimental innovations will inform the
design of future projects MOLLER [55] and SoLID [56]
at JLab measuring fundamental electroweak couplings, as
well as a more precise 208Pb radius experimental proposal at
Mainz [5,57].
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imental apparatus, and acknowledge the support of the U.S.
Department of Energy, the National Science Foundation
and NSERC (Canada). This material is based upon the
work supported by the U.S. Department of Energy, Office
of Science, Office of Nuclear Physics Contract No. DE-
AC05-06OR23177.
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other mass regions by calculating ε from ρA of Eq. (4).
We have checked numerically in multiple forces that the
results closely agree with Eq. (3) for the 40 ≤ A ≤ 238
stable nuclei given in Fig. 2.
With the help of Eq. (5) for t (using ρA to compute ε),

we next analyze constraints on the density dependence
of the symmetry energy by optimization of (2) to exper-
imental S data. We employ csym(ρ) = 31.6(ρ/ρ0)γ MeV
[6, 7, 8, 9] and take as experimental baseline the neutron
skins measured in 26 antiprotonic atoms [20] (see Fig. 2).
These data constitute the largest set of uniformly mea-
sured neutron skins over the mass table till date. With
allowance for the error bars, they are fitted linearly by
S = (0.9±0.15)I+(−0.03±0.02) fm [20]. This systemat-
ics renders comparisons of skin data with DM formulas,
which by construction average the microscopic shell ef-
fect, more meaningful [26]. We first set bn = bp (i.e.,
Ssw = 0) as done in the DM [12, 23, 26] and in the anal-
ysis of data in Ref. [19]. Following the above, we find
L = 75± 25 MeV (γ = 0.79± 0.25). The range ∆L = 25
MeV stems from the window of the linear averages of
experiment. The L value and its uncertainty obtained
from neutron skins with Ssw = 0 is thus quite compat-
ible with the quoted constraints from isospin diffusion
and isoscaling observables in HIC [6, 7, 8]. On the other
hand, the symmetry term of the incompressibility of the
nuclear EOS around equilibrium (K = Kv+Kτδ2) can be
estimated using information of the symmetry energy as
Kτ ≈ Ksym−6L [5, 6, 7]. The constraintKτ = −500±50
MeV is found from isospin diffusion [6, 7], whereas our
study of neutron skins leads to Kτ = −500+125

−100 MeV. A
value Kτ = −550± 100 MeV seems to be favored by the
giant monopole resonance (GMR) measured in Sn iso-
topes as is described in [13]. Even if the present analyses
may not be called definitive, significant consistency arises
among the values extracted for L and Kτ from seemingly
unrelated sets of data from reactions, ground-states of
nuclei, and collective excitations.
To assess the influence of the correction Ssw in (2) we

compute the surface widths bn and bp in ASINM [22].
This yields the bn(p) values of a finite nucleus if we re-
late the asymmetry δ0 in the bulk of ASINM to I by
δ0(1 + xA) = I + xAIC [21, 22, 23]. In doing so, we find
that Eq. (2) reproduces trustingly S (and its change with
I) of self-consistent Thomas-Fermi calculations of finite
nuclei made with the same nuclear force. Also, Ssw is
very well fitted by Ssw = σswI. All slopes σsw of the
forces of Fig. 1(c) lie between σmin

sw = 0.15 fm (SGII) and
σmax
sw = 0.31 fm (NL3). We then reanalyze the exper-

imental neutron skins including Smin
sw and Smax

sw in Eq.
(2) to simulate the two conceivable extremes of Ssw ac-
cording to mean field models. The results are shown in
Fig. 3. Our above estimates of L and Kτ could be shifted
by up to −25 and +125 MeV, respectively, by nonzero
Ssw. This is on the soft side of the HIC [6, 7, 8] and
GMR [13] analyses of the symmetry energy, but closer
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the text of Eq. (2) with the experimental neutron skins
from antiprotonic measurements and their linear average S =
(0.9± 0.15)I + (−0.03± 0.02) fm [20]. Results of the modern
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FIG. 3: (Color online) Constraints on L and Kτ from neutron
skins and their dependence on the Ssw correction of Eq. (2).
The crosses express the L and Kτ ranges compatible with the
uncertainties in the skin data. The shaded regions depict the
constraints on L and Kτ from isospin diffusion [6, 7] and on
Kτ as determined in [13] from the GMR of Sn isotopes.

to the alluded predictions from nucleon emission ratios
[9], the GDR [14], and nuclear binding systematics [17].
One should mention that the properties of csym(ρ) de-
rived from terrestrial nuclei have intimate connections to
astrophysics [3, 4, 10]. As an example, we can estimate
the transition density ρt between the crust and the core of
a neutron star [3, 10] as ρt/ρ0 ∼ 2/3+ (2/3)γKsym/2Kv,
following the model of Sect. 5.1 of Ref. [10]. The con-
straints from neutron skins hereby yield ρt ∼ 0.095±0.01
fm−3. This value would not support the direct URCA
process of cooling of a neutron star that requires a higher
ρt [3, 10]. The result is in accord with ρt ∼ 0.096 fm−3

of the microscopic EOS of Friedman and Pandharipande
[27], as well as with ρt ∼ 0.09 fm−3 predicted by a recent
analysis of pygmy dipole resonances in nuclei [15].
We would like to close with a brief comment regard-

ing the GDR. As mentioned, Ref. [14] very interestingly
constrains csym(0.1) from the GDR of 208Pb. The anal-

Currently some tension 
between PREX-II neutron skin 
measurement and existing 
neutron star EOS predictions
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