Progress in the Partial-Wave Analysis Methods at COMPASS*

Florian Markus Kaspar ${ }^{[1,2]}$ and Julien Beckers ${ }^{[1]}$ for the COMPASS Collaboration

florian.kaspar@tum.de

in collaboration with Jakob Knollmüller ${ }^{[1,2]}$

MESON 2023

June 23rd 2023 15:40

Studies of Excited Light Mesons at COMPASS

Different Hadronic Final States

For this talk:

- COMPASS flagship channel:
> 100 Mio events
$\rightarrow \pi_{J}$ and a_{J} resonances
$\left(J^{P C}=0^{-+}, 1^{-+}, 1^{++}, \ldots\right)$

highly selective:
Final State: $J^{P C}=1^{--}, 2^{++}, 3^{--}, \ldots$
Final State + dominant Pomeron exchange
$\rightarrow a_{J}$ for even J
\rightarrow search for a_{6}, a_{4}^{\prime}
\rightarrow Probe for same resonances in different channels: Systematics!

For this talk:

- COMPASS flagship channel:
> 100 Mio events
$\rightarrow \pi_{J}$ and a_{J} resonances
$\left(J^{P C}=0^{-+}, 1^{-+}, 1^{++}, \ldots\right)$

highly selective:
Final State: $J^{P C}=1^{--}, 2^{++}, 3^{--}, \ldots$
Final State + dominant Pomeron exchange
$\rightarrow a_{J}$ for even J
\rightarrow search for a_{6}, a_{4}^{\prime}
\rightarrow Probe for same resonances in different channels: Systematics!

Partial-Wave Analysis

Two Steps:

1) mass-independent fit model $I\left(m_{X}, t^{\prime} ; \tau_{n}\right)$ in $\left(\boldsymbol{m}_{X}, \boldsymbol{t}^{\prime}\right)$ bins

- factorization in $T_{a}\left(m_{X}, t^{\prime}\right)$ and $\psi_{a}\left(\tau ; m_{X}\right)$
- parametrize T_{a} as step-wise functions
- extract constant T_{a} in each bin

2) mass-dependent fit: model resonances
1. results of first step: input
2. χ^{2} fit of resonant + background parameterization to subset of $T_{a}\left(m_{X}, t^{\prime}\right)$
\rightarrow resonance parameters = physics

PRD 98 (2018) 092003

In

Ambiguities in the Partial-Wave Decomposition of the $K_{S}^{0} K^{-}$Final State

Ambiguities in the Partial-Wave Decomposition ПП

For any final state with two spinless particles ($\pi \pi, K K, \eta \pi, \ldots$):

Decomposition of intensity into $\left\{T_{J}\right\}$ is not unique
\rightarrow Several sets of $\left\{T_{J}\right\}$ lead to the same $\boldsymbol{I}(\boldsymbol{\theta}, \boldsymbol{\phi})$ in each $\left(m_{X}, t^{\prime}\right)$ bin

$$
I(\theta, \phi)=\left|\sum_{J M} T_{J M}^{(1)} \psi_{J M}(\theta, \phi)\right|^{2}=\left|\sum_{J M} T_{J M}^{(2)} \psi_{J M}(\theta, \phi)\right|^{2}
$$

Cannot distinguish between the mathematically equivalent solutions!

Ambiguities in the Partial-Wave Decomposition

$$
I(\theta, \phi)=\left|\sum_{J} T_{J} \psi_{J}(\theta, \phi)\right|^{2}=|\underbrace{\sum_{J} T_{J} Y_{J}^{1}(\theta, 0)}|^{2}|\sin \phi|^{2} \quad Y_{J}^{1}(\theta, 0)=\sum_{j=0}^{J-1} y_{j} \tan ^{2 j} \theta
$$

Polynomial in $\tan ^{2} \theta$

$$
a(\theta)=\sum_{j=0}^{J_{\max }-1} c_{j}\left(\left\{T_{J}\right\}\right) \tan ^{2 j}(\theta)=c\left(\left\{T_{J}\right\}\right) \prod_{k=1}^{J_{\max -1}}\left(\tan ^{2}(\theta)-r_{k}\left(\left\{T_{J}\right\}\right)\right)
$$

Ambiguities in the Partial-Wave Decomposition $\Pi \Pi$

$$
\begin{aligned}
I(\theta, \phi) & =\left|\sum_{J} T_{J} Y_{j}^{1}(\theta, 0)\right|^{2}|\sin \phi|^{2} \\
& =\left|\sum_{j=0}^{J_{\text {man }}^{1}-1} c_{j}\left(\left\{T_{J}\right\}\right) \tan ^{2}(\theta)\right|^{2}|\sin \phi|^{2} \\
& =c^{2} \prod_{k=1}^{J^{J}-1}\left|\tan ^{2}(\theta)-r_{k}\right|^{2}|\sin \phi|^{2}=c^{2} \prod_{k=1}^{J_{0}-1}\left|\tan ^{2}(\theta)-r_{k}^{*}\right|^{2}|\sin \phi|^{2}
\end{aligned}
$$

Conjugation of roots \rightarrow different solution!

$$
\left\{T_{J}^{\prime}\right\} \neq\left\{T_{J}\right\}
$$

Study of Ambiguities

Study Continuous Intensity Model

Input:

- amplitude model for four selected partial waves
- m_{X}-dependence by Breit-Wigner amplitudes

$J^{P C}$	Resonances
$\mathbf{1}^{--}$	$\rho(1450)$
$\mathbf{2}^{++}$	$a_{2}(1320), a_{2}^{\prime}(1700)$
$\mathbf{3}^{--}$	None
$\mathbf{4}^{++}$	$a_{4}(1970)$

Study of Ambiguities

Calculate Ambiguous Solutions:

- Ambiguous intensities are also continuous in m_{X}
- Not all solutions are different from each other!
- Highest-spin $\left(4^{++}\right)$intensity is invariant!

Study of Ambiguities

Pseudo-Data Study

- generate pseudo-data according to model (10^{5} events)
- perform a partial-wave decomposition fit
$\rightarrow 3000$ attempts with random start values

Ambiguous Solutions from Fit:

- 4^{++}intensity is still invariant!
- Overall, amplitude values found by the fit follow the calculated distributions
- Not all solutions are found in each m_{X} bin
\rightarrow PWD fit distorts the intensity distribution!

Resolving Ambiguities

- highest-spin wave is unaffected by ambiguities
- Including $M \geq 2 \rightarrow$ additional angular structure \rightarrow resolves ambiguities
- Remove one wave with $J<J_{\max } \rightarrow$ resolves ambiguities

\rightarrow next: other possible solution

ITIn

Continuity Constraints for Partial-Wave Analyses

Challenges of the $\pi^{-} \pi^{-} \pi^{+}$Final State

$\pi^{-} \pi^{-} \pi^{+}$Final State:

- no ambiguities
- large amount of data

Different Challenges:

- many contributing signals
- need to consider many partial-waves
- new signals are small / hidden among large ones
- selection of partial-wave model source of systematic uncertainty

Continuous Amplitude Models

Limitations of conventional PWA:

- Binned analysis limits statistics, especially for small signals
- We need to select ("small") subset of partial waves to include in the model
\rightarrow important source of systematic uncertainty

More prior knowledge about $T\left(m_{X}, t^{\prime}\right)$:

- Physics should be (mostly) continuous in m_{X} and t^{\prime}
\rightarrow Solutions in close-by bins should be similar \rightarrow correlations
- Amplitudes should follow phase-space and production kinematics
\rightarrow use this information

Continuous Amplitude Models

Use of this information to stabilize partial-wave decomposition:
\rightarrow Replace discrete amplitudes with smooth, non-parametric curves
\rightarrow Incorporate kinematic factors
\rightarrow Include regularization for small amplitudes

Framework by group of Torsten Enßlin from the Max-Planck Institute for Astrophysics:
NIFTy: "Numerical Information Field Theory"

- Provides continuous non-parametric models
- Adapt to partial-wave analysis model
- Learns smoothness and shape of the amplitude curves

This work is done in collaboration with Jakob Knollmüller (TUM / ORIGINS Excellence Cluster)

A first attempt has been made together with Stefan Wallner and Philipp Frank

Verification on Simulated Data

Create Pseudo-Data and try to recover!

Input-Output Study:

1. generate MC data according to:

- smooth NIFTy model
- 81 partial-waves
- 5 resonances

2. try to recover input:

$1^{++} 0^{+} f_{0}(980) \pi P$

- resonance(s) (Breit-Wigner)
- nonres. component (broad curve)
- Combined signal \rightarrow input model

Input-Output Study

Input-Output Study

Input-Output Study

Input-Output Study

Single-Step Resonance Model Fit

We can go one step further:
for selected waves add resonant part

- from NIFTy: flexible non-res.
background
- resonant signal sum of Breit-Wigners
- coherent sum describes $T_{i}\left(m_{3 \pi}, t^{\prime}\right)$

$1^{++} 0^{+} \rho \pi S$
Goal: overcome limitations of the conventional approach

Application to $K_{S}^{0} K^{-}$Final State

First attempts on simulated data: NIFTy seems to separate ambiguous solutions!
\rightarrow Apply NIFTy method on ambiguity problem in $K_{S}^{0} K^{-}$

- try separate ambiguous solutions over entire mass range
- improve fit quality

Conclusions \& Outlook

Conclusions and Outlook

Ambiguities of two-body states

- ambiguous amplitudes are continuous and can be calculated
- PWD fit/finite data has an effect on ambiguous solutions
- several approaches to treat them

NIFTy + Partial-Wave Analysis:

- new approach to PWA
- continuity, kinematics and regularization
- combined with resonance-model fit

Currently:

- NIFTy method for $K_{S}^{0} K^{-}$
- NIFTy method successfully applied to real data

Thank you for your attention!

Acknowledgements

Thank you for your attention!

I would like to thank Jakob Knollmüller who helped me develop the NIFTy model

I would also like to thank Stefan Wallner and Philipp Frank of the Max-Planck for Astrophysics with whom I worked on a first version of the NIFTy fit. The current work is partially based on this.

Questions?

Backup Slides

Partial-Wave Analysis: Limitations

mass-independent fit:

- select set of partial-waves $\{i\} \rightarrow$ partial-wave model
- in principle: infinitely many waves
- in practice: finite data \rightarrow select relevant waves
- truncate high spins: large wavepool (several hundred waves)
- select subset (otherwise unstable inference)
\rightarrow partial-wave model is a large systematic uncertainty
mass-dependent fit:
- fit to mass-independent result
- approximate uncertainties as Gaussian
\rightarrow source of systematic uncertainty
\rightarrow How can we improve the extraction?

Likelihood \& Thresholds

Likelihood

$\mathscr{L}=\frac{\bar{n}^{n}}{n!} e^{-\bar{n}} \prod_{j}^{n} P\left(\tau^{j} ; m_{3 p i}^{j} t^{\prime}\right)=\frac{1}{n!} e^{-\bar{n}} \prod_{j}^{n} I\left(\tau^{j} ; m_{3 p i}^{j} t^{j}\right)$
with expected number of events $\bar{n}=\int_{\Omega} I\left(\tau ; m_{3 p i}, t^{\prime}\right) \mathrm{d} \operatorname{LIPS}(\tau) \approx \vec{T}^{\dagger} M \vec{T}$ within one bin
\rightarrow maximize $\log (\mathscr{L}) \rightarrow$ transition amplitudes in bin $\vec{T} \in \mathbb{C}^{n}$
Integral Matrix $\tilde{M}_{i j}=\int_{\Omega} \psi(\tau)_{i} \psi(\tau)_{j}^{*} \mathrm{~d} \operatorname{LIPS}(\tau)$ and $M_{i j}=\frac{\tilde{M}_{i j}}{\sqrt{\tilde{M}_{i i} \tilde{M}_{j j}}}$

This way:

- within one bin the phase-space information is moved to the transition amplitudes $\vec{T} \in \mathbb{C}^{n}$ or in other words: the fit chooses the value
- $\left|T_{i}\right|^{2}$ normalized to nmb. events
- $\tilde{M}_{i i}$ contains information of the wave opening with phase-space
- $M_{i i}=1$
- $M_{i j}$ are overlaps of decay amplitudes

Generative Model

Generative Model (per wave):

Modified NIFTy correlated field maker:
\rightarrow fixed fluctuations to 1
\rightarrow loglog average slope -4
\rightarrow flexibility
\rightarrow offset
for real and imag part indiv.
functions as:
\rightarrow coh. background if there is a parametric model
\rightarrow description of transition amplitude
scale for combined signal: 1d normal

Gaussian Processes

Formalize continuity:

- Gaussian Process: Infinite dimensional multivariate normal distribution
- Continuity given by covariance function: $\kappa\left(x, x^{\prime}\right)$
- encode our prior knowledge within choice of $\kappa\left(x, x^{\prime}\right)$

https://upload.wikimedia.org/wikipedia/commons/b/b4/Gaussian_process_draws from_prior_distribution.png
How to chose $\kappa\left(x, x^{\prime}\right)$? \rightarrow learn from data \rightarrow NIFTy software framework

Model \& Fit:

Bayes Theorem:
$P\left(\left\{\theta_{i}\right\} \mid D\right)=\frac{P\left(D \mid\left\{\theta_{i}\right\}\right) P\left(\left\{\theta_{i}\right\}\right)}{P(D)}$

- Prior: NIFTy: Generative Model \rightarrow encodes:
- smoothness
- kinematic factor
- prior on resonance parameters
- Likelihood: From PWA framework:

$$
\log \mathscr{L}\left(T_{i} \mid D\right)=\sum_{i B i n} \log \mathscr{L}\left(T_{i} \mid D_{i B i n}\right)
$$

- cannot fit bins individually \rightarrow likelihood calculation needs all bins at the same time! \rightarrow distribute on multiple CPUs / machines with MPI
- needs tens to hundreds of GB of memory
- Posterior: NIFTy Model \& Likelihood
\rightarrow Fit to posterior

Regularized Fit

MC Model: Larger Fit Model

Non-Parametric (NIFTy) + Breit-Wigner resonance $=$ model curve Hybrid and mass-indep. fit reconstruction (NOW: 330 waves):

Mass-Indep. Fit with reqularization:

MC Model: Larger Fit Model

Non-Parametric (NIFTy) + Breit-Wigner resonance $=$ model curve

Hybrid and mass-indep. fit reconstruction (NOW: 330 waves):

Mass-Indep. Fit with regularization:

Verification on MC: Extended Model

More realistic: consider 332 waves for fit

- mass-indep. fit: signs of overfitting bias
- single-stage fit: prior informations stabilizes fit
- still able to recover input \& to separate non-res. and resonant components

