

Progress in the Partial-Wave Analysis Methods at COMPASS*

Florian Markus Kaspar [1,2] and Julien Beckers [1] for the COMPASS Collaboration

florian.kaspar@tum.de in collaboration with Jakob Knollmüller^[1,2]

MESON 2023 June 23rd 2023 15:40

^[1] Technische Universität München (TUM)
 ^[2] Excellence Cluster Origins

Bundesministerium für Bildung und Forschung * funded by the DFG under Germany's Excellence Strategy - EXC2094 - 390783311 and BMBF Verbundsforschung 05P21WOCC1 COMPASS

Studies of Excited Light Mesons at COMPASS

Different Hadronic Final States

٦Ш

For this talk:

- > 100 Mio events
- $\rightarrow \pi_J$ and a_J resonances

 $(J^{PC} = 0^{-+}, 1^{-+}, 1^{++}, \ldots)$

highly selective: Final State: $J^{PC} = 1^{--}, 2^{++}, 3^{--}, ...$ Final State + dominant Pomeron exchange

- $\rightarrow a_J$ for even J
- \rightarrow search for a_6, a_4'

 \rightarrow Probe for same resonances in different channels: Systematics!

For this talk:

- COMPASS flagship channel:
- > 100 Mio events
- $\rightarrow \pi_J$ and a_J resonances

 $(J^{PC} = 0^{-+}, 1^{-+}, 1^{++}, \ldots)$

highly selective:

Final State: $J^{PC} = 1^{--}, 2^{++}, 3^{--}, \dots$

Final State + dominant Pomeron exchange

- $\rightarrow a_J$ for even J
- \rightarrow search for a_6, a_4'

 \rightarrow Probe for same resonances in different channels: Systematics!

Partial-Wave Analysis

Two Steps:

- 1) mass-independent fit model $I(m_X, t'; \tau_n)$ in (m_X, t') bins
 - factorization in $T_a(m_X, t')$ and $\psi_a(\tau; m_X)$
 - parametrize T_a as step-wise functions
 - extract constant T_a in each bin
- 2) mass-dependent fit: model resonances
 - 1. results of first step: input
 - 2. χ^2 fit of resonant + background parameterization to subset of $T_a(m_X, t')$
- \rightarrow resonance parameters = physics

Ambiguities in the Partial-Wave Decomposition of the $K_S^0 K^-$ Final State

Ambiguities in the Partial-Wave Decomposition

For any final state with **two spinless** particles ($\pi\pi$, KK, $\eta\pi$, ...):

Decomposition of intensity into $\{T_J\}$ is **not unique**

 \rightarrow Several sets of $\{T_J\}$ lead to the same $I(\theta, \phi)$ in each (m_X, t') bin

$$I(\theta,\phi) = \left| \sum_{JM} T_{JM}^{(1)} \psi_{JM}(\theta,\phi) \right|^2 = \left| \sum_{JM} T_{JM}^{(2)} \psi_{JM}(\theta,\phi) \right|^2$$

Cannot distinguish between the mathematically equivalent solutions!

Ambiguities in the Partial-Wave Decomposition

Polynomial in $tan^2\theta$

$$a(\theta) = \sum_{j=0}^{J_{\max}-1} c_j(\{T_J\}) \tan^{2j}(\theta) = c(\{T_J\}) \prod_{k=1}^{J_{\max}-1} \left(\tan^2(\theta) - r_k(\{T_J\})\right)$$

$$\int_{\alpha(\tan^2\theta = r_k) = 0}^{\alpha(\tan^2\theta = r_k) = 0}$$
"Barrelet zeros"

Barrelet, Nuov Cim A 8, 331-371 (1972)

Ambiguities in the Partial-Wave Decomposition

$$I(\theta, \phi) = \left| \sum_{J} T_{J} Y_{J}^{1}(\theta, 0) \right|^{2} |\sin\phi|^{2}$$

$$= \left| \sum_{j=0}^{J_{\max}-1} c_{j}(\{T_{J}\}) \tan^{2j}(\theta) \right|^{2} |\sin\phi|^{2}$$

$$= c^{2} \prod_{k=1}^{J_{\max}-1} |\tan^{2}(\theta) - \mathbf{r}_{k}|^{2} |\sin\phi|^{2} = c^{2} \prod_{k=1}^{J_{\max}-1} |\tan^{2}(\theta) - \mathbf{r}_{k}^{*}|^{2} |\sin\phi|^{2}$$
Conjugation of roots \rightarrow different solution!
$$\{T_{J}'\} \neq \{T_{J}\}$$

10

Study of Ambiguities

Study Continuous Intensity Model

Input:

- amplitude model for four selected partial waves
- m_X -dependence by Breit-Wigner amplitudes

J ^{PC}	Resonances
1	ho(1450)
2++	$a_2(1320), a_2'(1700)$
3	None
4 ⁺⁺	<i>a</i> ₄ (1970)

Study of Ambiguities

Calculate Ambiguous Solutions:

- Ambiguous intensities are also continuous in m_X
- Not all solutions are different from each other!
- Highest-spin (4⁺⁺) intensity is invariant!

Study of Ambiguities

Pseudo-Data Study

- generate pseudo-data according to model (10^5 events)
- perform a partial-wave decomposition fit
- \rightarrow 3000 attempts with random start values

Ambiguous Solutions from Fit:

- 4⁺⁺ intensity is still invariant!
- Overall, amplitude values found by the fit follow the calculated distributions
- Not all solutions are found in each m_X bin

 \rightarrow PWD fit distorts the intensity distribution!

Resolving Ambiguities

- highest-spin wave is unaffected by ambiguities
- Including $M \ge 2 \rightarrow$ additional angular structure \rightarrow resolves ambiguities
- Remove one wave with $J < J_{\max} \rightarrow$ resolves ambiguities

 \rightarrow next: other possible solution

Continuity Constraints for Partial-Wave Analyses

Challenges of the $\pi^-\pi^-\pi^+$ Final State

$\pi^{-}\pi^{-}\pi^{+}$ Final State:

- no ambiguities
- large amount of data

Different Challenges:

- many contributing signals
- need to consider many partial-waves
- new signals are small / hidden among large ones
- selection of partial-wave model source of systematic uncertainty

Continuous Amplitude Models

Limitations of conventional PWA:

- Binned analysis limits statistics, especially for small signals
- We need to select ("small") subset of partial waves to include in the model

 \rightarrow important source of systematic uncertainty

More prior knowledge about $T(m_X, t')$:

- Physics should be (mostly) **continuous** in m_X and t'
- \rightarrow Solutions in close-by bins should be similar \rightarrow correlations
- Amplitudes should follow phase-space and production kinematics

 \rightarrow use this information

Continuous Amplitude Models

Use of this information to stabilize partial-wave decomposition:

 \rightarrow Replace discrete amplitudes with **smooth**, **non-parametric curves**

- → Incorporate kinematic factors
- → Include regularization for small amplitudes

Framework by group of Torsten Enßlin from the Max-Planck Institute for Astrophysics:

NIFTy: "Numerical Information Field Theory"

- Provides continuous non-parametric models
- Adapt to partial-wave analysis model
- Learns smoothness and shape of the amplitude curves

This work is done in collaboration with Jakob Knollmüller (TUM / ORIGINS Excellence Cluster)

A first attempt has been made together with Stefan Wallner and Philipp Frank

M87* Black Hole: <u>https://</u> www.mpa-garching.mpg.de/ 1029092/hl202201

Verification on Simulated Data

Create Pseudo-Data and try to recover!

- 1. generate MC data according to:
 - smooth NIFTy model
 - 81 partial-waves
 - 5 resonances
- 2. try to recover input:
 - resonance(s) (Breit-Wigner)
 - nonres. component (broad curve)
 - Combined signal → input model

ТUП

Single-Step Resonance Model Fit

ТШ

We can go one step further:

for selected waves add resonant part

- from NIFTy: flexible non-res.
 background
- resonant signal sum of Breit-Wigners
- coherent sum describes $T_i(m_{3\pi}, t')$

Goal: overcome limitations of the conventional approach

Application to $K_S^0 K^-$ Final State

First attempts on simulated data: NIFTy seems to separate ambiguous solutions!

- \rightarrow Apply NIFTy method on ambiguity problem in $K_S^0 K^-$
 - try separate ambiguous solutions over entire mass range
 - improve fit quality

Conclusions & Outlook

Conclusions and Outlook

Ambiguities of two-body states

- ambiguous amplitudes are **continuous** and can be calculated
- PWD fit/finite data has an effect on ambiguous solutions
- several approaches to treat them

NIFTy + Partial-Wave Analysis:

- new approach to PWA
- continuity, kinematics and regularization
- combined with resonance-model fit

Currently:

- NIFTy method for $K_S^0 K^-$
- NIFTy method successfully applied to real data

Thank you for your attention!

Thank you for your attention!

I would like to thank Jakob Knollmüller who helped me develop the NIFTy model

I would also like to thank Stefan Wallner and Philipp Frank of the Max-Planck for Astrophysics with whom I worked on a first version of the NIFTy fit. The current work is partially based on this.

Questions?

Backup Slides

Partial-Wave Analysis: Limitations

mass-independent fit:

- select set of partial-waves $\{i\} \rightarrow$ partial-wave model
- in principle: infinitely many waves
- in practice: finite data \rightarrow select relevant waves
 - truncate high spins: large wavepool (several hundred waves)
 - select subset (otherwise unstable inference)

 \rightarrow partial-wave model is a large systematic uncertainty

mass-dependent fit:

- fit to mass-independent result
- approximate uncertainties as Gaussian

 \rightarrow source of systematic uncertainty

 \rightarrow How can we improve the extraction?

Likelihood & Thresholds

Likelihood

$$\mathscr{L} = \frac{\bar{n}^n}{n!} e^{-\bar{n}} \prod_j^n P(\tau^j; m_{3pi}^j, t'^j) = \frac{1}{n!} e^{-\bar{n}} \prod_j^n I(\tau^j; m_{3pi}^j, t'^j)$$

with expected number of events $\bar{n} = \int_{\Omega} I(\tau; m_{3pi}, t') \mathrm{d} \operatorname{LIPS}(\tau) \approx \overrightarrow{T}^{\dagger} M \overrightarrow{T}$ within one bin

 \rightarrow maximize $\log(\mathscr{L}) \rightarrow$ transition amplitudes in $\mathrm{bin}\,\overrightarrow{T} \in \mathbb{C}^n$

Integral Matrix
$$\tilde{M}_{ij} = \int_{\Omega} \psi(\tau)_i \psi(\tau)_j^* \mathrm{d} \operatorname{LIPS}(\tau)$$
 and $M_{ij} = \frac{\tilde{M}_{ij}}{\sqrt{\tilde{M}_{ii}\tilde{M}_{jj}}}$

This way:

- within one bin the phase-space information is moved to the transition amplitudes $\overrightarrow{T} \in \mathbb{C}^n$ or in other words: the fit chooses the value
- $|T_i|^2$ normalized to nmb. events
- \tilde{M}_{ii} contains information of the wave opening with phase-space
- *M*_{*ii*} = 1
- M_{ij} are overlaps of decay amplitudes

Generative Model

Generative Model (per wave):

Modified NIFTy correlated field maker:

- \rightarrow fixed fluctuations to 1
- \rightarrow loglog average slope -4
- \rightarrow flexibility
- \rightarrow offset

for real and imag part indiv.

functions as:

- \rightarrow coh. background if there is a parametric model
- \rightarrow description of transition amplitude

Gaussian Processes

Formalize continuity:

- Gaussian Process: Infinite dimensional multivariate normal distribution
- Continuity given by covariance function: $\kappa(x, x')$
- encode our prior knowledge within choice of $\kappa(x, x')$

https://upload.wikimedia.org/wikipedia/commons/b/b4/Gaussian_process_draws_from_prior_distribution.png

How to chose $\kappa(x, x')$? \rightarrow learn from data \rightarrow NIFTy software framework

Model & Fit:

Bayes Theorem:

- Prior: NIFTy: Generative Model \rightarrow encodes:
 - smoothness
 - kinematic factor
 - prior on resonance parameters
- Likelihood: From PWA framework:

$$\log \mathscr{L}(T_i | D) = \sum_{iBin} \log \mathscr{L}(T_i | D_{iBin})$$

 – cannot fit bins individually → likelihood calculation needs all bins at the same time! → distribute on multiple CPUs / machines with MPI

- needs tens to hundreds of GB of memory
- Posterior: NIFTy Model & Likelihood

Non-

Parametric

Parametric

38

Regularized Fit

MC Model: Larger Fit Model

Non-Parametric (NIFTy) + Breit-Wigner resonance = model curve

Hybrid and mass-indep. fit reconstruction (NOW: 330 waves):

Mass-Indep. Fit with regularization:

MC Model: Larger Fit Model

Non-Parametric (NIFTy) + Breit-Wigner resonance = model curve

Hybrid and mass-indep. fit reconstruction (NOW: 330 waves):

Mass-Indep. Fit with regularization:

Verification on MC: Extended Model

More realistic: consider 332 waves for fit

- mass-indep. fit: signs of overfitting bias
- single-stage fit: prior informations stabilizes fit
- still able to recover input & to separate non-res. and resonant components

