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Studies of Excited Light Mesons at COMPASS



Different Hadronic Final States
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For this talk:
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• COMPASS flagship channel: 

> 100 Mio events 

 and  resonances 

( )  

→ 𝝅𝑱 𝒂𝑱

𝐽𝑃𝐶 = 0−+, 1−+, 1++, …

highly selective: 

Final State:  

Final State  + dominant Pomeron exchange  

  

  search for  

𝐽𝑃𝐶 = 1−−, 2++, 3−−, …

→ 𝒂𝑱  for even 𝐽

→ a6, a′ 4

 Probe for same resonances in different channels: Systematics!→
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Partial-Wave Analysis

Details of the Partial-Wave Decomposition in: COMPASS Collaboration, Phys. Rev. D 95 (2017) 032004, arXiv:1509.00992 [hep-ex].

I(τ; mX, t′ ) = ∑
a

Ta(mX, t′ ) ψa(τ; mX)

2

PRD 98 (2018) 092003

Two Steps: 

1) mass-independent fit 
 model  in  bins 

− factorization in  and   

− parametrize  as step-wise functions 

− extract constant  in each bin 

2) mass-dependent fit: model resonances 
1. results of first step: input 
2.  fit of resonant + background 

parameterization to subset of  

 resonance parameters = physics

𝐼(𝑚𝑋, 𝑡′ ; 𝜏𝑛) (𝒎𝑿, 𝒕′ )
Ta(mX, t′ ) ψa(τ; mX)

𝑇𝑎

𝑇𝑎

χ2

Ta(mX, t′ )

→



Ambiguities in the Partial-Wave Decomposition of 
the  Final StateK0

SK−



Ambiguities in the Partial-Wave Decomposition
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For any final state with two spinless particles ( ): 

Decomposition of intensity into  is not unique 

 Several sets of   lead to the same  in each  bin 

 

Cannot distinguish between the mathematically equivalent solutions!

𝜋𝜋, 𝐾𝐾, 𝜂𝜋, …

{𝑇 
𝐽}

→ {𝑇 
𝐽} 𝑰(𝜽, 𝝓) (𝑚𝑋, 𝑡′ )

𝐼(𝜃, 𝜙) = ∑
𝐽𝑀

𝑇 (1)
𝐽𝑀 𝜓𝐽𝑀(𝜃, 𝜙)

2

= ∑
𝐽𝑀

𝑇 (2)
𝐽𝑀𝜓𝐽𝑀(𝜃, 𝜙)

2
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𝑎(𝜃) =
𝑱𝐦𝐚𝐱−𝟏

∑
𝑗=0

𝑐𝑗({𝑇𝐽}) tan2𝑗(𝜃)

𝑌1
𝐽(𝜃, 0) =

𝐽−1

∑
𝑗=0

𝑦𝑗tan2𝑗𝜃

𝑎(tan2𝜃 = 𝑟𝑘) = 0root decomposition

= 𝑐({𝑇𝐽}) 
𝐽max−1

∏
𝑘=1

(tan2(𝜃) − 𝒓𝒌({𝑇𝐽})) 

“Barrelet zeros”

𝒂(𝜽)

𝐼(𝜃, 𝜙) = ∑
𝐽

𝑇𝐽 𝜓𝐽(𝜃, 𝜙)

2

= ∑
𝐽

𝑇𝐽 𝑌1
𝐽(𝜃, 0)

2

  sin𝜙
2

Polynomial in  tan2𝜃

Barrelet, Nuov Cim A 8, 331–371 (1972)Chung, PRD 56 7299–7316 (1997)
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𝐼(𝜃, 𝜙) = ∑
𝐽

𝑇𝐽 𝑌1
𝐽(𝜃, 0)

2

  sin𝜙
2

=  
𝑱𝐦𝐚𝐱−𝟏

∑
𝑗=0

𝑐𝑗({𝑇𝐽}) tan2𝑗(𝜃)

2

sin𝜙
2

= 𝑐2 
𝐽max−1

∏
𝑘=1

tan2(𝜃) − 𝒓𝒌
2
  sin𝜙

2
= 𝑐2 

𝐽max−1

∏
𝑘=1

tan2(𝜃) − 𝒓∗
𝒌 

2
  sin𝜙

2

{𝑇𝐽′ } ≠ {𝑇𝐽}Conjugation of roots  different solution!→



Study of Ambiguities
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Study Continuous Intensity Model 

Input: 
• amplitude model for four selected partial waves 
• -dependence by Breit-Wigner amplitudes 𝑚𝑋
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Calculate Ambiguous Solutions: 

• Ambiguous intensities are also 
continuous in  

• Not all solutions are different from each 
other! 

• Highest-spin ( ) intensity is invariant!

mX

4++
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Study of Ambiguities
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Pseudo-Data Study 

• generate pseudo-data according to model 
(  events) 

• perform a partial-wave decomposition fit 
 3000 attempts with random start values 

Ambiguous Solutions from Fit: 

•  intensity is still invariant! 

• Overall, amplitude values found by the fit 
follow the calculated distributions 

• Not all solutions are found in each  bin 

 PWD fit distorts the intensity 
distribution!

105

→

4++

𝑚𝑋

→

simulation simulation

simulationsimulation



Resolving Ambiguities
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• highest-spin wave is unaffected by ambiguities 

• Including  additional angular structure  resolves ambiguities 

• Remove one wave with   resolves ambiguities
𝑀 ≥ 2  → →

𝐽 < 𝐽max  →

 next: other possible solution→

simulation simulation simulation



Continuity Constraints for Partial-Wave Analyses



 Final State: 
• no ambiguities 
• large amount of data 

Different Challenges: 
• many contributing signals 
• need to consider many partial-waves 
• new signals are small / hidden among large ones 
• selection of partial-wave model source of systematic uncertainty

π−π−π+

16

Challenges of the  Final State π−π−π+
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Continuous Amplitude Models

Limitations of conventional PWA: 
• Binned analysis limits statistics, especially for small signals 
• We need to select (“small”) subset of partial waves to include in the model 

 important source of systematic uncertainty 

More prior knowledge about : 

• Physics should be (mostly) continuous in  and  
  Solutions in close-by bins should be similar  correlations 
• Amplitudes should follow phase-space and production kinematics 

 use this information 

→

𝑇(𝑚𝑋, 𝑡′ )
𝑚𝑋 𝑡′ 

→ →

→
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Continuous Amplitude Models

Use of this information to stabilize partial-wave decomposition: 

 Replace discrete amplitudes with smooth, non-parametric 
curves 

 Incorporate kinematic factors 

 Include regularization for small amplitudes 

Framework by group of Torsten Enßlin from the Max-Planck 
Institute for Astrophysics: 
NIFTy: “Numerical Information Field Theory” 

• Provides continuous non-parametric models 
• Adapt to partial-wave analysis model 
• Learns smoothness and shape of the amplitude curves

→

→
→

https://ift.pages.mpcdf.de/nifty/

This work is done in collaboration with Jakob Knollmüller 
(TUM / ORIGINS Excellence Cluster ) 

A first attempt has been made together with Stefan 
Wallner and Philipp Frank

M87* Black Hole: https://
www.mpa-garching.mpg.de/
1029092/hl202201

https://www.mpa-garching.mpg.de/1029092/hl202201
https://www.mpa-garching.mpg.de/1029092/hl202201
https://www.mpa-garching.mpg.de/1029092/hl202201
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Verification on Simulated Data

Create Pseudo-Data and try to recover! 

Input-Output Study: 
1. generate MC data according to: 
− smooth NIFTy model 
− 81 partial-waves 
− 5 resonances 

2. try to recover input: 

• resonance(s) (Breit-Wigner) 
• nonres. component (broad curve) 
• Combined signal  input model→
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Input-Output Study
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Input-Output Study
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Input-Output Study
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Input-Output Study
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Single-Step Resonance Model Fit

We can go one step further: 

for selected waves add resonant part 
• from NIFTy: flexible non-res. 

background 
• resonant signal sum of Breit-Wigners 
• coherent sum describes   

Goal: overcome limitations of the 
conventional approach 

Ti(m3π, t′ )
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Application to  Final StateK0
SK−

First attempts on simulated data: NIFTy seems to separate ambiguous solutions! 

 Apply NIFTy method on ambiguity problem in  
• try separate ambiguous solutions over entire mass range 
• improve fit quality 

→ 𝐾0
𝑆𝐾−

simulation simulation



Conclusions & Outlook
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Conclusions and Outlook
Ambiguities of two-body states 
• ambiguous amplitudes are continuous and can be calculated 
• PWD fit/finite data has an effect on ambiguous solutions 
• several approaches to treat them 

NIFTy + Partial-Wave Analysis: 
• new approach to PWA 
• continuity, kinematics and regularization 
• combined with resonance-model fit 

Currently: 

• NIFTy method for  
• NIFTy method successfully applied to real data

𝐾0
𝑆𝐾−



Thank you for your attention!
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Partial-Wave Analysis: Limitations
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mass-independent fit: 

• select set of partial-waves   partial-wave model 
• in principle: infinitely many waves 

• in practice: finite data  select relevant waves 
− truncate high spins: large wavepool (several hundred waves) 
− select subset (otherwise unstable inference) 

 partial-wave model is a large systematic uncertainty 

mass-dependent fit: 
• fit to mass-independent result 
• approximate uncertainties as Gaussian 

 source of systematic uncertainty 

 How can we improve the extraction? 

{i} →

→

→

→

→



Likelihood & Thresholds
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Likelihood

 

with expected number of events  within one bin 

 maximize   transition amplitudes in bin  

Integral Matrix  and  

This way: 
• within one bin the phase-space information is moved to the transition amplitudes  or in 

other words: the fit chooses the value 
•  normalized to nmb. events 

•  contains information of the wave opening with phase-space 

•  = 1 

•  are overlaps of decay amplitudes

ℒ =
n̄n

n!
e−n̄

n

∏
j

P(τ j; mj
3pi, t′ j) =

1
n!

e−n̄
n

∏
j

I(τ j; mj
3pi, t′ j)

n̄ = ∫Ω
I(τ; m3pi, t′ )d LIPS(τ) ≈ ⃗T †M ⃗T

→ log(ℒ) → ⃗T ∈ ℂn

M̃ij = ∫Ω
ψ(τ)iψ(τ)*j d LIPS(τ) Mij =

M̃ij

M̃iiM̃jj

⃗T ∈ ℂn

|Ti |
2

M̃ii
Mii
Mij



Generative Model
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Generative Model (per wave):

Non-
Parametric Parametric

coherent sum

kinematic factor

scale

e.g. nothing or sum of Breit-Wigners: 
Priors in masses and width 

 Lognormal 
Prior on complex-valued scale: 

 2d-normal 
(scale to set relative prior strength) 

→

→

Modified NIFTy correlated field maker: 
 fixed fluctuations to 1 
 loglog average slope -4 
 flexibility 
 offset 

for real and imag part indiv. 

functions as: 
 coh. background if there is a parametric model 
 description of transition amplitude  

→
→
→
→

→
→

multiply with kinematic factor: 
phase space of wave times production factor

scale for combined signal: 1d normal

Smooth Model



Formalize continuity: 

• Gaussian Process: Infinite dimensional multivariate normal distribution 
• Continuity given by covariance function:  
• encode our prior knowledge within choice of  

How to chose ?  learn from data  NIFTy software framework

κ(x, x′ )
κ(x, x′ )

κ(x, x′ ) → →

37

Gaussian Processes

https://upload.wikimedia.org/wikipedia/commons/b/b4/Gaussian_process_draws_from_prior_distribution.png

https://upload.wikimedia.org/wikipedia/commons/b/b4/Gaussian_process_draws_from_prior_distribution.png
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Model & Fit:

Non-
Parametric

Parametric

coherent sum

kinematic factor

scale

likelihood prior model

posterior

Bayes Theorem:             

 

• Prior: NIFTy: Generative Model  encodes: 
− smoothness  
− kinematic factor 
− prior on resonance parameters 

• Likelihood: From PWA framework: 
 

− cannot fit bins individually  likelihood calculation 
needs all bins at the same time!  distribute on 
multiple CPUs / machines with MPI 

− needs tens to hundreds of GB of memory 

• Posterior: NIFTy Model & Likelihood 

 Fit to posterior 

P({θi} |D) =
P(D |{θi})P({θi})

P(D)

→

log ℒ(Ti |D) = ∑
iBin

log ℒ(Ti |DiBin)

→
→

→



Regularized Fit



Non-Parametric (NIFTy) + Breit-Wigner resonance = model curve 

Hybrid and mass-indep. fit reconstruction (NOW: 330 waves): 

Mass-Indep. Fit with regularization:

40

MC Model: Larger Fit Model
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MC Model: Larger Fit Model
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More realistic: consider 332 waves for fit 
• mass-indep. fit: signs of overfitting bias 
• single-stage fit: prior informations stabilizes fit 
• still able to recover input & to separate non-res. and resonant components

42

Verification on MC: Extended Model


