

International Workshop on Meson Physics Kraków, Poland, June 22nd-27th, 2023

Volodymyr Magas

Double strangeness molecular-type pentaquarks from coupled channel dynamics

Collaborators: Arnau Marsé-Valera, Angels Ramos (Barcelona)

U Iniversitat de Barcelona

Phys. Rev. Lett. **130** (2023) 9

Exotic hadrons (anything that goes beyond $q\overline{q}$ and qqq)

Mesons

Baryons

compact tetraquark Glueball

meson-meson molecule


```
hybrid
```


compact pentaquark

baryon-meson molecule

Exotic hadrons

The story started in 2003 with discovery of X(3872)

Phys.Rev.Lett. 91 (2003) 262001 [Belle collaboration], The first exotic meson !

 $M_X = 3872.0 \pm 0.6 \pm 0.5 \text{ MeV}$

Exotic (non-standard) quarkonium states

Exotic hadrons (anything that goes beyond $q\overline{q}$ and qqq)

Mesons

Baryons

compact tetraquark Glueball

meson-meson molecule

hybrid

compact pentaquark

baryon-meson molecule

Since the beginning of 2000s, an increasing amount of data in the (hidden/open) charm sector (collected at Belle, BaBar, LHCb and BESIII...), has provided evidences for many new exotic states, which appear to be inconsistent with the conventional quark model

Exotic baryons $P_c \text{ or } P_{\psi}^N$ S=0 ($c\bar{c}qqq$), q = u, d

$\Lambda_b \rightarrow J/\Psi p K^-$ LHCb Coll., Phys.Rev.Lett. 115 (2015) 072001

Resonance	$M_R \; [{ m MeV}]$	$\Gamma_R \; [{ m MeV}]$
$P_{c}(4380)$	$4380 \pm 8 \pm 29$	$205 \pm 18 \pm 86$
$P_{c}(4450)$	$4449.8 \pm 1.7 \pm 2.5$	$39 \pm 5 \pm 19$

More detailed reanalysis of the pentaquark states in $\Lambda_b \to J/\psi \ K^- \ p$ decays

LHCb Coll., Phys. Rev. Lett. 122 (2019) 222001

More detailed reanalysis of the pentaquark states in $\Lambda_b \to J/\psi \ K^- \ p$ decays

LHCb Coll., Phys.Rev.Lett. 122 (2019) 222001

State	$M \ [\mathrm{MeV}]$	$\Gamma \; [{\rm MeV} \;]$	(95% CL)
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+}_{-} ^{3.7}_{4.5}$	(< 27)
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} {}^{5.7}_{1.9}$	(< 20)

The flavor content of the $P_c(4310)$, $P_c(4440)$, $P_c(4457)$ states is not exotic (uud), but the high mass and the observation from $J/\psi p$ pairs makes them to be unambiguous pentaquark candidates ($c\bar{c}uud$)

More detailed reanalysis of the pentaquark states in $\Lambda_b \to J/\psi \ K^- \ p$ decays

LHCb Coll., Phys. Rev. Lett. 122 (2019) 222001

Molecular models

- Wu, Molina, Oset, Zou,
 PRL 105, 232001 (2010); PRC 84, 015202 (2011)
- Yang, Sun, He, Liu, Zhu, Chin. Phys. C 36, 6 (2012)
- Xiao, Nieves, Oset, **PRD 88, 056012 (2013)**
- Karliner, Rosner, PRL 115, 122001 (2015)

Molecular Nature

Molecular models

Wu, Molina, Oset, Zou,
 PRL 105, 232001 (2010); PRC 84, 015202 (2011)

This work also predicted **S=-1** states at 4209 MeV ($\overline{D}\Xi_c$), 4394 MeV ($\overline{D}\Xi'_c$) 4368 MeV ($\overline{D}^*\Xi_c$), 4544 MeV ($\overline{D}^*\Xi'_c$)

Exotic baryons $P_{cs} \text{ or } P_{\psi s}^{\Lambda}$ **S=-1 (** $c\bar{c}qqs$ **)**, q = u, d

LHCb, arXiv:2210.10346 (Oct 2022)

LHCb, Sci. Bull. 66 (2021) 1278

Our theoretical study predicts molecular-type states

Unitarized t-channel vector-meson exchange interaction

Unitarized t-channel vector-meson exchange interaction

The only model parameter is **pion decay constant**, $f = af_{\pi}$

Unitarization via coupled channels

System of the algebraic equations

Unitarization via coupled channels $T_{ij} = V_{ij} + V_{il}G_lT_{lj}$ $G_l = i \int \frac{d^4q}{(2\pi)^4} \frac{2M_l}{(P-q)^2 - M_l^2 + i\epsilon} \frac{1}{q^2 - m_l^2 + i\epsilon}$

 $a_l(\mu)\simeq -2$ ightarrow "natural size" (µ=630 MeV) [Oller and Meissner, PL B500 (2001) 263]

$$\begin{array}{l} \text{Unitarization via coupled channels} \\ T_{ij} = V_{ij} + V_{il} G_l T_{lj} \\ \hline & & & & \\ \hline & & &$$

Interaction kernel

$$V_{ij}(\sqrt{s}) = -C_{ij} \frac{1}{4f^2} \left(2\sqrt{s} - M_i - M_j\right) \sqrt{\frac{E_i + M_i}{2M_i}} \sqrt{\frac{E_j + M_j}{2M_j}}$$

	$\pi\Xi$	$ar{K}\Lambda$	$\bar{K}\Sigma$	$\eta \Xi$	$\eta' \Xi$	$\eta_c \Xi$	$ar{D}_s \Xi_c$	$\bar{D}_s \Xi_c'$	$\bar{D}\Omega_c$
$\pi \Xi(1456)$	2	$\frac{3}{2}$	$\frac{1}{2}$	0	0	0	0	0	$\sqrt{rac{3}{2}}\kappa_c$
$ar{K}\Lambda(1611)$		0	0	$-\frac{3}{2}$	0	0	$-rac{1}{2}\kappa_c$	$-\frac{\sqrt{3}}{2}\kappa_c$	0
$ar{K}\Sigma(1689)$			2	$\frac{3}{2}$	0	0	$\frac{3}{2}\kappa_c$	$-rac{\sqrt{3}}{2}\kappa_c$	0
$\eta \Xi(1866)$				0	0	0	κ_c	$\frac{1}{\sqrt{3}}\kappa_c$	$\frac{1}{\sqrt{6}}\kappa_c$
$\eta' \Xi(2276)$					0	0	$rac{1}{\sqrt{8}}\kappa_c$	$-\frac{1}{\sqrt{6}}\kappa_c$	$\frac{1}{\sqrt{3}}\kappa_c$
$\eta_c \Xi(4302)$						0	$\sqrt{rac{3}{2}}\kappa_c$	$\frac{1}{\sqrt{2}}\kappa_c$	$-\kappa_c$
$\bar{D}_s \Xi_c(4437)$							$-1 + \kappa_{cc}$	0	0
$\bar{D}_s \Xi_c'(4545)$								$-1 + \kappa_{cc}$	$-\sqrt{2}$
$\bar{D}\Omega_c(4565)$									κ_{cc}

$$\kappa_c = rac{m_
ho^2}{m_{D^*}^2} \sim rac{1}{4}$$
 $\kappa_{cc} = rac{m_
ho^2}{m_{J/\psi}^2} \sim rac{1}{9}$

Interaction kernel

$$V_{ij}(\sqrt{s}) = -\frac{C_{ij}}{4f^2} \frac{1}{(2\sqrt{s} - M_i - M_j)} \sqrt{\frac{E_i + M_i}{2M_i}} \sqrt{\frac{E_j + M_j}{2M_j}}$$

		$\pi\Xi$	$ar{K}\Lambda$	$\bar{K}\Sigma$	$\eta \Xi$	$\eta' \Xi$	$\eta_c \Xi$	$ar{D}_s \Xi_c$	$\bar{D}_s \Xi_c'$	$ar{D}\Omega_c$	
	$\pi \Xi(1456)$	2	$\frac{3}{2}$	$\frac{1}{2}$	0	0	0	0	0	$\sqrt{\frac{3}{2}}\kappa_c$	
tor	$ar{K}\Lambda(1611)$		0	0	$-\frac{3}{2}$	0	0	$-rac{1}{2}\kappa_c$	$-\frac{\sqrt{3}}{2}\kappa_c$	0	
t sec	$\bar{K}\Sigma(1689)$			2	$\frac{3}{2}$	0	0	$\frac{3}{2}\kappa_c$	$-rac{\sqrt{3}}{2}\kappa_c$	0	$\kappa - \frac{m_{ ho}^2}{2} \sim \frac{1}{2}$
ight	$\eta \Xi(1866)$				Ō	0	0	κ_c	$\frac{1}{\sqrt{3}}\kappa_c$	$\frac{1}{\sqrt{6}}\kappa_c$	$\kappa_c = m_{D^*}^2$ 4
	$\eta' \Xi(2276)$					0	0	$rac{1}{\sqrt{8}}\kappa_c$	$-rac{1}{\sqrt{6}}\kappa_c$	$rac{1}{\sqrt{3}}\kappa_c$	$\kappa_{cc} = \frac{m_{ ho}^2}{2} \sim \frac{1}{2}$
tor	$\eta_c \Xi(4302)$						0	$\sqrt{rac{3}{2}}\kappa_c$	$\frac{1}{\sqrt{2}}\kappa_c$	$-\kappa_c$	$m_{J/\psi}^2$ 9
sect	$\bar{D}_s \Xi_c(4437)$							$-1 + \kappa_{cc}$	0	0	
avy	$\bar{D}_s \Xi_c'(4545)$								$-1 + \kappa_{cc}$	$-\sqrt{2}$	
he	$\bar{D}\Omega_c(4565)$									κ_{cc}	

Light and heavy sectors are practically "decoupled"

Results: heavy PB sector

 $[\]rightarrow$ 2 states

 \rightarrow 2 states

Coupled-channel effect

Coupled-channel effect

Parameter dependence: cut-off Λ , SU(4) breaking

Even changing the parameters of the model, the prediction of this resonance is **robust**

Comparison with other works based on similar models (S = -2, I = 1/2)

J. Hofmann and M. F. M. Lutz, Nucl. Phys. A 763 (2005) 90

⇒ a state around 3800 MeV is found

```
Very different regularization approach
for the loop function
(for us it would effectively correspond
to \Lambda_{cut} \sim 2800 MeV)
```

Comparison with other works based on similar models (S = -2, I = 1/2)

J. Hofmann and M. F. M. Lutz, Nucl. Phys. A 763 (2005) 90

⇒ a state around 3800 MeV is found

Very different regularization approach for the loop function (for us it would effectively correspond to $\Lambda_{cut} \sim 2800$ MeV)

J. J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. C 84 (2011) 015202

	$\eta_c \Xi$	$\bar{D}_s \Xi_c$	$\bar{D}_s \Xi_c'$	$ar{D}\Omega_c$
$\eta_c \Xi$	0	$\sqrt{rac{3}{2}}\kappa_c$	$rac{1}{\sqrt{2}}\kappa_c$	$-\kappa_c$
$\bar{D}_s \Xi_c$		$-1 + \mu_{cc}$	0	0
$\bar{D}_s \Xi_c'$			$-1 + \mu_{cc}$	$-\sqrt{2}$
$\bar{D}\Omega_c$				Kcc

Very similar model $\kappa_{cc} = \frac{m_{J/\psi}^2}{m_{\rho}^2} \sim \frac{1}{9} \rightarrow 0$ \implies no states were found

Dimensional regularization scheme

→ generates a *fake* pole at a lower energy, "hiding" the real signature

Results: heavy VB sector

$$J^P = \frac{1}{2}^-, \ \frac{3}{2}^-$$

 $1^- \oplus 1/2^+ VB$ interaction

 $J/\Psi \Xi$ spectrum: $q_{J/\Psi} \mid T_{i \to J/\Psi \Xi} \mid^2$

Results: heavy VB sector

$$J^P = \frac{1}{2}^-, \ \frac{3}{2}^-$$

It could be seen in the invariant mass spectrum of $J/\psi z$ pairs produced in the decays:

$${\it \Xi}_b o J/\psi \: {\it \Xi} \: {\it \phi}$$
 or ${\it \Omega}_b o J/\psi \: {\it \Xi} \: {\it \overline{K}}$

Results: heavy VB sector

Results: heavy VB sector $P_{\psi ss}^{\Xi}(4633)$ $J^{P} = \frac{1}{2}^{-}, \frac{3}{2}^{-}$ $\Xi_{b} \rightarrow J/\psi \phi \Xi$ $\Xi_{b} \rightarrow J/\psi = \Xi_{b}$

Marsé-Valera, Magas, Ramos under preparation

We simulate this decay similarly to the process $\Lambda_b \rightarrow J/\psi \phi \Lambda$ Magas, Ramos, Somasundaram, PRD 102 (2020) 0540270 (inspired by Wang, Xie, Geng, Oset, PRD 97 (2018) 014017)

Φ

Sensitivity to mass and to coupling $g(P_{\psi ss}^{\Xi} \rightarrow J/\psi \Xi)$

7x10⁻⁹

6x10⁻⁹

<u>역</u> 5x10⁻⁹

- que 4x10⁻⁹ 4x10⁻⁹ 3x10⁻⁹ 2x10⁻⁹

1x10⁻⁹

tree

0.8 q

1.2 g

g

X(4140) + X(1460)

 $M_{res} = 4580 \text{ MeV}$

Minv(J/ΨΞ)[MeV]

4750

4750

4750

one broad X(4140)

 $M_{res} = 4580 \text{ MeV}$

M=4580 MeV

1.8x10-10

1.6x10⁻¹⁰

1.4x10⁻¹⁰

1.2x10⁻¹⁰

1x10⁻¹⁰

8x10⁻¹¹ 6x10⁻¹¹ 4x10⁻¹¹

<u>B</u>

dΓ/dM_{inv}(J/UΞ)[arb

tree

0.8 q

1.2 0

M=4633 MeV

M=4680 MeV

Marsé-Valera, Magas, Ramos under preparation

M_{inv}(J/ΨΞ)[MeV]

- Chital Perturbation theory with unitarization in the coupled channels predicts pentaquarks with strangeness S=0,-1,-2

Conclusions

- Chital Perturbation theory with unitarization in the coupled channels predicts pentaquarks with strangeness S=0,-1,-2
- Employing realistic regularization parameters, we predict S=-2 pentaguarks of molecular nature around 4500 and 4600 MeV
- These $P_{\psi ss}^{z}$ states are generated in a very specific and unique way, via a strong nondiagonal attraction between the two heaviest channels
- In S=-2 sector the long range one-pion-exchange mechanism is absent!

The t-channel vector-exchange formalism predicts molecular type pentaquarks with S=-2

Long range open-pion-exchange (alternative molecular picture)

Channels: $\eta_c \Xi \quad \bar{D}_s \Xi_c \quad \bar{D}_s \Xi_c' \quad \bar{D} \Omega_c$

These transitions cannot proceed via one-pion-exchange, because they involve either an isoscalar meson or baryon

Conclusions

- Chital Perturbation theory with unitarization in the coupled channels predicts pentaquarks with strangeness S=0,-1,-2
- Employing realistic regularization parameters, we predict S=-2 pentaguarks of molecular nature around 4500 and 4600 MeV
- These $P_{\psi ss}^{z}$ states are generated in a very specific and unique way, via a strong nondiagonal attraction between the two heaviest channels
- In S=-2 sector the long range one-pion-exchange mechanism is absent! Thus, if $P_{\psi ss}^{\Xi}$ states are discovered
 - Their interpretation as molecules would require a change of paradigm, since they could be only bound through heavier-meson exchange mechanisms

> More strength to reliability of **unitary t-channel vector-exchange models**

- Theoretical study of $\Xi_b \to J/\psi \phi \Xi$ decay is in progress now...