

Kraków, Poland, June $22^{\text {nd }}-27^{\text {th }}, 2023$

Volodymyr Magas

Double strangeness molecular-type pentaquarks from coupled channel dynamics

Collaborators: Arnau Marsé-Valera, Angels Ramos (Barcelona)
Phys. Rev. Lett. 130 (2023) 9

B Universitat de Barcelona

Exotic hadrons
 (anything that goes beyond $q \bar{q}$ and $q q q$)

Mesons

meson-meson molecule

Baryons

hybrid

baryon-meson molecule

Exotic hadrons

The story started in 2003 with discovery of $X(3872)$

[Belle collaboration],
Phys.
The first exotic meson!
$M_{X}=3872.0 \pm 0.6 \pm 0.5 \mathrm{MeV}$

Exotic (non-standard) quarkonium states

Exotic hadrons
 (anything that goes beyond $q \bar{q}$ and $q q q$)
 Mesons

meson-meson
molecule

Glueball
hybrid
Glueball

Exotic baryons

$$
P_{c} \text { or } P_{\psi}^{N} \quad \mathrm{~S}=0(c \bar{c} q q q), \quad q=u, d
$$

$$
\Lambda_{b} \rightarrow J / \Psi p K^{-}
$$

$$
\text { LHCb Coll., Phys.Rev.Lett. } 115 \text { (2015) } 072001
$$

Resonance	$M_{R}[\mathrm{MeV}]$	$\Gamma_{R}[\mathrm{MeV}]$
$P_{c}(4380)$	$4380 \pm 8 \pm 29$	$205 \pm 18 \pm 86$
$P_{c}(4450)$	$4449.8 \pm 1.7 \pm 2.5$	$39 \pm 5 \pm 19$

More detailed reanalysis of the pentaquark states

$$
\text { in } \Lambda_{b} \rightarrow \boldsymbol{J} / \psi \boldsymbol{K}^{-} \boldsymbol{p} \text { decays }
$$

LHCb Coll., Phys.Rev.Lett. 122 (2019) 222001

More detailed reanalysis of the pentaquark states

$$
\text { in } \Lambda_{b} \rightarrow \boldsymbol{J} / \psi \boldsymbol{K}^{-} \boldsymbol{p} \text { decays }
$$

LHCb Coll., Phys.Rev.Lett. 122 (2019) 222001

State	$M[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$	$(95 \% \mathrm{CL})$
$P_{c}(4312)^{+}$	$4311.9 \pm 0.7_{-0.6}^{+6.8}$	$9.8 \pm 2.7_{-4.5}^{+3.7}$	(<27)
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3_{-4.7}^{+4.1}$	$20.6 \pm 4.9_{-10.1}^{+8.7}$	(<49)
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6_{-1.7}^{+4.1}$	$6.4 \pm 2.0_{-1.9}^{+5.7}$	(<20)

The flavor content of the $P_{c}(4310), P_{c}(4440), P_{c}(4457)$ states is not exotic (uud), but the high mass and the observation from $J / \psi p$ pairs makes them to be unambiguous pentaquark candidates (cicuud)

More detailed reanalysis of the pentaquark states in $\Lambda_{b} \rightarrow J / \psi K^{-} p$ decays

LHCb Coll., Phys.Rev.Lett. 122 (2019) 222001

State	$M[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$	$(95 \% \mathrm{CL})$
$P_{c}(4312)^{+}$	$4311.9 \pm 0.7_{-0.6}^{+6.8}$	$9.8 \pm 2.7_{-4.5}^{+3.7}$	(<27)
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3_{-4.7}^{+4.1}$	$20.6 \pm 4.9_{-10.1}^{+8.7}$	(<49)
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6_{-1.7}^{+4.1}$	$6.4 \pm 2.0_{-1.9}^{+5.7}$	\cdots

Exotic baryons

$$
P_{c} \text { or } P_{\Psi}^{N} \quad \mathrm{~S}=0(c \bar{c} q q q), \quad q=u, d
$$

Molecular models

- Wu, Molina, Oset, Zou, PRL 105, 232001 (2010); PRC 84, 015202 (2011)
- Yang, Sun, He, Liu, Zhu, Chin. Phys. C 36, 6 (2012)
- Xiao, Nieves, Oset, PRD 88, 056012 (2013)

- Karliner, Rosner, PRL 115, 122001 (2015)

Exotic baryons

$$
P_{c} \text { or } P_{\Psi}^{N} \quad \mathrm{~S}=0(c \bar{c} q q q), \quad q=u, d
$$

Molecular models

- Wu, Molina, Oset, Zou, PRL 105, 232001 (2010); PRC 84, 015202 (2011)

This work also predicted $\mathrm{S}=-1$ states at
$4209 \mathrm{MeV}\left(\bar{D} \Xi_{c}\right), 4394 \mathrm{MeV}\left(\bar{D} \Xi_{c}^{\prime}\right)$
$4368 \mathrm{MeV}\left(\bar{D}^{*} \Xi_{c}\right), 4544 \mathrm{MeV}\left(\bar{D}^{*} \Xi_{c}^{\prime}\right)$

Exotic baryons

$$
P_{c s} \text { or } P_{\psi s}^{\Lambda} \quad \mathrm{S}=-1(c \bar{c} q q s), \quad q=u, d
$$

$$
B^{-} \rightarrow J / \psi \Lambda \bar{p}
$$

LHCb, arXiv:2210.10346 (Oct 2022)

$$
\Xi_{b}^{-} \rightarrow J / \psi \Lambda K^{-}
$$

$P_{c s}(4338)$

Exotic baryons

$P_{c s s}$ or $P_{\psi s s}^{\Xi}$ $\mathrm{S}=-2(c \bar{c} q s s), \quad q=u, d$
 $s=-2$ pentaquarks?

Exotic baryons

$$
\begin{aligned}
& P_{\text {cess or }} P_{\text {\#ss }} \quad S=-2(\text { (cãqss), } q=u, d \\
& S=-2 \text { pentaquarks? }
\end{aligned}
$$

Our theoretical study predicts molecular-type states

Marsé-Valera, Ramos, Magas, Phys. Rev. Lett. 130 (2023) 9

Unitarized t-channel vector-meson exchange interaction

Unitarized t-channel vector-meson exchange interaction

The only model parameter is pion decay constant, $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{f}_{\boldsymbol{\pi}}$

Unitarization via coupled channels

Unitarization via coupled channels

Unitarization via coupled channels

$$
T_{i j}=V_{i j}+V_{i l} G_{l} T_{l j}
$$

$$
G_{l}=i \int \frac{\mathrm{~d}^{4} q}{(2 \pi)^{4}} \frac{2 M_{l}}{(P-q)^{2}-M_{l}^{2}+i \epsilon} \frac{1}{q^{2}-m_{l}^{2}+i \epsilon}
$$

dim reg.

$$
\begin{aligned}
& G_{l}^{\mathrm{DR}}=\frac{1}{16 \pi^{2}}\left\{a_{l}(\mu)+\ln \frac{M_{l}^{2}}{\mu^{2}}+\frac{m_{l}^{2}-M_{l}^{2}+s}{2 s} \ln \frac{m_{l}^{2}}{M_{l}^{2}}+\right. \\
&+ \frac{q_{l}}{\sqrt{s}}\left[\ln \left(s+\left(m_{l}^{2}-M_{l}^{2}\right)+2 q_{l} \sqrt{s}\right)\right. \\
&+\ln \left(s-\left(m_{l}^{2}-M_{l}^{2}\right)+2 q_{l} \sqrt{s}\right) \\
& \quad-\ln \left(-s-\left(m_{l}^{2}-M_{l}^{2}\right)+2 q_{l} \sqrt{s}\right) \\
&\left.\left.\quad-\ln \left(-s+\left(m_{l}^{2}-M_{l}^{2}\right)+2 q_{l} \sqrt{s}\right)\right]\right\}
\end{aligned}
$$

$$
G_{l}^{\mathrm{cut}}=2 M_{l} \int^{\Lambda} \frac{q^{2} \mathrm{~d} q}{4 \pi^{2}} \frac{\left(\omega_{l}+E_{l}\right)}{\omega_{l} E_{l}} \frac{1}{s-\left(\omega_{l}+E_{l}\right)^{2}+\mathrm{i} \epsilon}
$$

$$
\Lambda=600-1000 \mathrm{MeV}
$$

$$
a_{l}(\mu)=\frac{16 \pi^{2}}{2 M_{l}}\left(G_{l}^{\mathrm{cut}}(\Lambda)-G_{l}^{\mathrm{DR}}\left(\mu, a_{l}=0\right)\right)
$$

$a_{l}(\mu) \simeq-2 \rightarrow$ "natural size" $(\mu=630 \mathrm{MeV})$
[Oller and Meissner, PL B500 (2001) 263]

Unitarization via coupled channels

$$
G_{l}^{\mathrm{DR}}=\frac{1}{16 \pi^{2}}\left\{a_{l}(\mu)+\ln \frac{M_{l}^{2}}{\mu^{2}}+\frac{m_{l}^{2}-M_{l}^{2}+s}{2 s} \ln \frac{m_{l}^{2}}{M_{l}^{2}}+\right.
$$

$$
+\frac{q_{l}}{\sqrt{s}}\left[\ln \left(s+\left(m_{l}^{2}-M_{l}^{2}\right)+2 q_{l} \sqrt{s}\right)\right.
$$

$$
+\ln \left(s-\left(m_{l}^{2}-M_{l}^{2}\right)+2 q_{l} \sqrt{s}\right)
$$

$$
-\ln \left(-s-\left(m_{l}^{2}-M_{l}^{2}\right)+2 q_{l} \sqrt{s}\right)
$$

$$
\left.\left.-\ln \left(-s+\left(m_{l}^{2}-M_{l}^{2}\right)+2 q_{l} \sqrt{s}\right)\right]\right\}
$$

[OIler and Meissner, PL B500 (2001) 263]

$S=-2$ sector

Interaction kernel

$$
V_{i j}(\sqrt{s})=-C_{i j} \frac{1}{4 f^{2}}\left(2 \sqrt{s}-M_{i}-M_{j}\right) \sqrt{\frac{E_{i}+M_{i}}{2 M_{i}}} \sqrt{\frac{E_{j}+M_{j}}{2 M_{j}}}
$$

	$\pi \Xi$	$\bar{K} \Lambda$	$\bar{K} \Sigma$	$\eta \Xi$	$\eta^{\prime} \Xi$	$\eta_{c} \Xi$	$\bar{D}_{s} \Xi_{c}$	$\bar{D}_{s} \Xi_{c}^{\prime}$	$\bar{D} \Omega_{c}$
$\pi \Xi(1456)$	2	$\frac{3}{2}$	$\frac{1}{2}$	0	0	0	0	0	$\sqrt{\frac{3}{2}} \kappa_{c}$
$\bar{K} \Lambda(1611)$		0	0	$-\frac{3}{2}$	0	0	$-\frac{1}{2} \kappa_{c}$	$-\frac{\sqrt{3}}{2} \kappa_{c}$	0
$\bar{K} \Sigma(1689)$			2	$\frac{3}{2}$	0	0	$\frac{3}{2} \kappa_{c}$	$-\frac{\sqrt{3}}{2} \kappa_{c}$	0
$\eta \Xi(1866)$				0	0	0	κ_{c}	$\frac{1}{\sqrt{3}} \kappa_{c}$	$\frac{1}{\sqrt{6}} \kappa_{c}$
$\eta^{\prime} \Xi(2276)$					0	0	$\frac{1}{\sqrt{8}} \kappa_{c}$	$-\frac{1}{\sqrt{6}} \kappa_{c}$	$\frac{1}{\sqrt{3}} \kappa_{c}$
$\eta_{c} \Xi(4302)$						0	$\sqrt{\frac{3}{2}} \kappa_{c}$	$\frac{1}{\sqrt{2}} \kappa_{c}$	$-\kappa_{c}$
$\bar{D}_{s} \Xi_{c}(4437)$							$-1+\kappa_{c c}$	0	0
$\bar{D}_{s} \Xi_{c}^{\prime}(4545)$								$-1+\kappa_{c c}$	$-\sqrt{2}$
$\bar{D} \Omega_{c}(4565)$									$\kappa_{c c}$

$$
\begin{aligned}
& \kappa_{c}=\frac{m_{\rho}^{2}}{m_{D^{*}}^{2}} \sim \frac{1}{4} \\
& \kappa_{c c}=\frac{m_{\rho}^{2}}{m_{J / \psi}^{2}} \sim \frac{1}{9}
\end{aligned}
$$

$S=-2$ sector

Interaction kernel

$$
V_{i j}(\sqrt{s})=-C_{i j} \frac{1}{4 f^{2}}\left(2 \sqrt{s}-M_{i}-M_{j}\right) \sqrt{\frac{E_{i}+M_{i}}{2 M_{i}}} \sqrt{\frac{E_{j}+M_{j}}{2 M_{j}}}
$$

$$
\begin{aligned}
& \kappa_{c}=\frac{m_{\rho}^{2}}{m_{D^{*}}^{2}} \sim \frac{1}{4} \\
& \kappa_{c c}=\frac{m_{\rho}^{2}}{m_{J / \psi}^{2}} \sim \frac{1}{9}
\end{aligned}
$$

Light and heavy sectors are practically "decoupled"

Results: heavy PB sector

$P_{\overline{\Psi_{s s}}}^{\equiv}(4493) \quad M_{R}=4493.35 \mathrm{MeV}$	$\Gamma_{R}=73.67 \mathrm{MeV}$	$J^{P}=\frac{1}{2}^{-}$

Threshold

	Energy (MeV)	g_{i}	$\left\|g_{i}\right\|$	χ_{i}
$\eta_{c} \Xi$	4298	$-1.60+i 0.34$	1.63	0.220
$\bar{D}_{s} \Xi_{c}$	4437	$-0.17+i 0.27$	0.32	0.019
$\bar{D}_{s} \Xi_{c}^{\prime}$	4545	$-2.41+i 0.58$	2.48	0.398
$\bar{D} \Omega_{c}$	4564	$3.59-i 0.77$	3.67	0.711

$\eta_{c} \Xi$ spectrum:
$q_{\eta_{c}}\left|T_{i \rightarrow \eta_{c} \Xi}\right|^{2}$

Do we expect a meson-baryon molecule in this sector $\left(S=-2, I=\frac{1}{2}\right) ?$ Interaction kernel $\quad V_{i j}(\sqrt{s})=-C_{i j} \frac{1}{4 f^{2}}\left(2 \sqrt{s}-M_{i}-M_{j}\right) \sqrt{\frac{E_{i}+M_{i}}{2 M_{i}}} \sqrt{\frac{E_{j}+M_{j}}{2 M_{j}}}$

$S=0, I=1 / 2$		
	$\eta_{c}{ }^{\text {N }} \quad \overline{\bar{D} \Lambda_{c}}$	$\overline{\bar{D}} \Sigma_{c}$
$\eta_{c}{ }_{\text {c }}{ }^{\text {S }}$	$0-\sqrt{\frac{3}{2}} \kappa_{c}$	$\sqrt{\frac{3}{2}} \kappa_{c}$
	, $-1+\kappa_{c c}$	0
$\bar{D} \Sigma_{c}$	repulsion	${ }^{1+\kappa_{c c}}$
1 state \leftarrow		attraction

$\boldsymbol{S}=\mathbf{- 1} \boldsymbol{I}=\mathbf{0}$						
	$\eta_{c} \Lambda$	$\bar{D}_{s} \Lambda_{c}$	$\bar{D} \Xi_{c}$	$\bar{D} \Xi_{c}^{\prime}$		
$\eta_{c} \Lambda$	0	κ_{c}	$-\frac{1}{\sqrt{2}} \kappa_{c}$	$-\sqrt{\frac{3}{2}} \kappa_{c}$		
$\bar{D}_{s} \Lambda_{c}$		$\kappa_{c c}$	$\sqrt{2}$	0		
$\bar{D} \Xi_{c}$			$1+\kappa_{c c}$	0		
$\bar{D} \Xi_{c}^{\prime}$				$1+\kappa_{c c}$		
						$\rightarrow 2$ states

Do we expect a meson-baryon molecule in this sector $\left(S=-2, I=\frac{1}{2}\right)$? Interaction kernel $\quad V_{i j}(\sqrt{s})=-C_{i j} \frac{1}{4 f^{2}}\left(2 \sqrt{s}-M_{i}-M_{j}\right) \sqrt{\frac{E_{i}+M_{i}}{2 M_{i}}} \sqrt{\frac{E_{j}+M_{j}}{2 M_{j}}}$.

$S=0, I=1 / 2$		
	$\eta_{c} \mathrm{~N} \quad \overline{\bar{D} \Lambda_{c}}$	$\bar{D} \Sigma_{c}$
$\eta_{c}{ }_{\text {c }} \Lambda_{c}$	-	$\sqrt{\frac{3}{2}} \kappa_{c}$
	, $-1+\kappa_{c c}$	0
$\overline{\bar{D} \Sigma_{c}}$	repulsion	${ }^{1+\kappa_{c c}}$
	1 state \leftarrow	attraction

$\underline{S=-1, I=0}$				
	$\eta_{c} \Lambda$	$\bar{D}_{s} \Lambda_{c}$	$\bar{D} \Xi_{c}$	$\bar{D} \Xi_{c}^{\prime}$
$\eta_{c} \Lambda$	0	κ_{c}	$-\frac{1}{\sqrt{2}} \kappa_{c}$	$-\sqrt{\frac{3}{2}} \kappa_{c}$
$\bar{D}_{s} \Lambda_{c}$		$\kappa_{c c}$	$\sqrt{2}$	0
$\bar{D} \Xi_{c}$			$1+\kappa_{c c}$	0
$\bar{D} \Xi_{c}^{\prime}$				$1+\kappa_{c c}$

Coupled-channel effect

Coupled-channel effect

This state is generated in a very specific and unique mechanism:
\rightarrow via an attraction induced by a strong coupling between the $\overline{D_{S}} \Xi_{c}^{\prime}$ and

Parameter dependence: cut-off $\wedge, S \cup(4)$ breaking

$$
\Lambda=750-950 \mathrm{MeV} \quad \kappa_{c}=\frac{m_{D^{*}}^{2}}{m_{\rho}^{2}} \sim \frac{1}{4} \pm 30 \% \quad \kappa_{c c}=\frac{m_{J / \psi}^{2}}{m_{\rho}^{2}} \sim \frac{1}{9} \pm 30 \%
$$

	$\eta_{c} \Xi$	$\bar{D}_{s} \Xi_{c}$	$\bar{D}_{s} \Xi_{c}^{\prime}$	$\bar{D} \Omega_{c}$
$\eta_{c} \Xi$	0	$\sqrt{\frac{3}{2}} \kappa_{c}$	$\frac{1}{\sqrt{2}} \kappa_{c}$	$-\kappa_{c}$
$\bar{D}_{s} \Xi_{c}$		$-1+\kappa_{c c}$	0	0
$\bar{D}_{s} \Xi_{c}^{\prime}$			$-1+\kappa_{c c}$	$-\sqrt{2}$
$\bar{D} \Omega_{c}$				$\kappa_{c c}$

Even changing the parameters of the model, the prediction of this resonance is robust

Comparison with other works based on similar models

$$
(S=-2, I=1 / 2)
$$

J. Hofmann and M. F. M. Lutz,

Nucl. Phys. A 763 (2005) 90

\Rightarrow a state around 3800 MeV is found

Very different regularization approach for the loop function
(for us it would effectively correspond to $\Lambda_{\text {cut }} \sim 2800 \mathrm{MeV}$)

Comparison with other works based on similar models
J. Hofmann and M. F. M. Lutz, Nucl. Phys. A 763 (2005) 90

\Rightarrow a state around 3800 MeV is found

Very different regularization approach for the loop function
(for us it would effectively correspond to $\Lambda_{\text {cut }} \sim 2800 \mathrm{MeV}$)

$$
(S=-2, I=1 / 2)
$$

J. J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. C 84 (2011) 015202

	$\eta_{c} \Xi$	$\bar{D}_{s} \Xi_{c}$	$\bar{D}_{s} \Xi_{c}^{\prime}$	$\bar{D} \Omega_{c}$
$\eta_{c} \Xi$	0	$\sqrt{\frac{3}{2}} \kappa_{c}$	$\frac{1}{\sqrt{2}} \kappa_{c}$	$-\kappa_{c}$
$\bar{D}_{s} \Xi_{c}$		$-1+\not \rho_{c c}$	0	0
$\bar{D}_{s} \Xi_{c}^{\prime}$			$-1+\not \mu_{c c}$	$-\sqrt{2}$
$\bar{D} \Omega_{c}$				к/cc

Very similar model

$$
\kappa_{c c}=\frac{m_{J / \psi}^{2}}{m_{\rho}^{2}} \sim \frac{1}{9} \rightarrow 0
$$

\Rightarrow no states were found

Dimensional regularization scheme
\rightarrow generates a fake pole at a lower energy, "hiding" the real signature

Results: heavy VB sector

Results: heavy VB sector

$P_{\psi s s}^{\Xi}(4633) \quad J^{P}=\frac{1}{2}^{-}, \frac{3}{2}^{-}$
It could be seen in the invariant mass spectrum of $J / \psi \Xi$ pairs produced in the decays:

$$
\Xi_{b} \rightarrow J / \psi \Xi \phi \text { or } \Omega_{b} \rightarrow J / \psi \Xi \bar{K}
$$

Results: heavy VB sector

$$
P_{\psi_{s s}}^{\Xi}(4633) \quad J^{P}=\frac{1}{2}^{-}, \frac{3}{2}^{-}
$$

$$
\Xi_{b} \rightarrow J / \psi \phi \Xi
$$

- 32 -

Results: heavy VB sector

$$
P_{\psi s s}^{\Xi}(4633)
$$

$$
J^{P}=\frac{1}{2}^{-}, \frac{3}{2}^{-}
$$

$$
\Xi_{b} \rightarrow J / \psi \phi \Xi
$$

Marsé-Valera, Magas, Ramos under preparation

We simulate this decay similarly to the process $\Lambda_{b} \rightarrow J / \psi \phi \Lambda$ Magas, Ramos, Somasundaram, PRD 102 (2020) 0540270 (inspired by Wang, Xie, Geng, Oset, PRD 97 (2018) 014017)

Sensitivity to mass and to coupling $\boldsymbol{g}\left(\boldsymbol{P}_{\psi s s}^{\Xi} \rightarrow J / \psi \Xi\right)$

Marsé-Valera, Magas, Ramos under preparation

Conclusions

- Chital Perturbation theory with unitarization in the coupled channels predicts pentaquarks with strangeness $\mathrm{S}=0,-1,-2$

Chital Perturbation theory with unitarization in the coupled channels predicts pentaquarks with strangeness $S=0,-1,-2$

\[

\]

$$
\begin{aligned}
& S=-1 \\
& \begin{array}{ccccc}
\hline \hline & \eta_{c} \Lambda & \bar{D}_{s} \Lambda_{c} & \bar{D} \Xi_{c} & \bar{D} \Xi_{c}^{\prime} \\
\hline \eta_{c} \Lambda & 0 & \kappa_{c} & -\frac{1}{\sqrt{2}} \kappa_{c} & -\sqrt{\frac{3}{2}} \kappa_{c} \\
\bar{D}_{s} \Lambda_{c} & & \kappa_{c c} & \sqrt{2} & 0 \\
\bar{D} \Xi_{c} & & & 1+\kappa_{c c} & 0 \\
\bar{D} \Xi_{c}^{\prime} & & & & 1+\kappa_{c c} \\
\hline \hline
\end{array}
\end{aligned}
$$

Conclusions

- Chital Perturbation theory with unitarization in the coupled channels predicts pentaquarks with strangeness $S=0,-1,-2$
- Employing realistic regularization parameters, we predict $S=-2$ pentaquarks of molecular nature around 4500 and 4600 MeV
- These $P_{\psi s s}^{E}$ states are generated in a very specific and unique way, via a strong nondiagonal attraction between the two heaviest channels
- In $S=-2$ sector the long range one-pion-exchange mechanism is absent!

The t-channel vector-exchange formalism predicts molecular type pentaquarks with $\mathrm{S}=-2$

Long range open-pion-exchange (alternative molecular picture)

Channels:
$\eta_{c} \Xi \quad \bar{D}_{s} \Xi_{c} \quad \bar{D}_{s} \Xi_{c}^{\prime} \quad \bar{D} \Omega_{c}$

Channels:

$$
J / \psi \Xi \quad \bar{D}_{s}^{*} \Xi_{c} \quad \bar{D}_{s}^{*} \Xi_{c}^{\prime} \quad \bar{D}^{*} \Omega_{c}
$$

These transitions cannot proceed via one-pion-exchange, because they involve either an isoscalar meson or baryon

Conclusions

- Chital Perturbation theory with unitarization in the coupled channels predicts pentaquarks with strangeness $S=0,-1,-2$
- Employing realistic regularization parameters, we predict $S=-2$ pentaquarks of molecular nature around 4500 and 4600 MeV
- These $P_{\psi s s}^{E}$ states are generated in a very specific and unique way, via a strong nondiagonal attraction between the two heaviest channels
- In $S=-2$ sector the long range one-pion-exchange mechanism is absent! Thus, if $P_{\psi s s}^{E}$ states are discovered

Their interpretation as molecules would require a change of paradigm, since they could be only bound through heavier-meson exchange
mechanisms
More strength to reliability of unitary t-channel vector-exchange models

- Theoretical study of $\Xi_{b} \rightarrow J / \psi \phi \Xi$ decay is in progress now...

