J/ψ and XYZP photo production

Adam Szczepaniak (IU/JLab)

- Quarkonium near threshold possibly relevant for extracting novel nucleon properties (mass radius, gravitational form factors, etc.)
- Signal channel also contains hidden-charm pentaquark candidates seen at LHCb.
- Abundance of new data coming from Jefferson Lab on energy and angular dependence of x-section.
- New window onto the nature of the XYZ states.

The Collaboration

Full Members

LMU Munich

Università di Messina

University of Barcelona

EK University of Tübinger

Los Alamos National Lab

- Established in 2013 to develop theory and phenomenology in support of experimental program at JLab12.
- JPAC served as a liaison between many theoretical and experimental analysis efforts BaBar, BESIII, COMPASS, EIC, LHCb, JLab
- Over 40 researchers have been associated with JPAC.

- Focus on light exotic hybrids
 - predicting their properties from lattice QCD
 - extracting meson resonances from experimental data
 - interpreting both the experiment and theoretical results

Exp and Theory are working together

- Over the past 50 years data has improved dramatically
- It allows model independent analysis

Similar spectra expected from CLAS12

Model independent analysis

Amplitude analysis

- 1. Amplitudes are analytical functions of $s_1, \dots t_1, \dots$
- 2. Partial wave amplitudes are analytical functions angular momentum

$$f_l(s) = f(l, s)$$

4. Unphysical sheet singularities need to be parametrized in order to test microscopic models

Holy Grail: Al as a tool for physics discovery

Importance of high quality data: split a2

$$\pi^- + p \rightarrow X^- + p$$

The puzzle of the A2 meson

The A2 may be two distinct but similar particles or a single object of an entirely new type. Either way, it has experimentalists arguing and theorists confused.

Proton-antiproton annihilation shows evidence for a split A2. The dip at the A2 (mass)², shown by the colored arrow, in the K₁°K⁺ effective mass spectrum indicates that the A2 splitting is independent of the production reaction. The data were taken by a CERN-College de France-Liverpool bubble-chamber group.

split Pc

LHCb, Run 1+Run 2, 2019

$$P_c(4450) \rightarrow P_c(4440) + P_c(4457)$$

 $M_{\text{di-}J/\psi}$ [MeV/ c^2]

XYZP's: real or not?

Many XYZ's are unconfirmed but some appear more "real" then other

• $T_{\psi\psi}$ or X(6900) a ψ resonance ($cc\bar{c}\bar{c}$)?

Weighted Candidates / $(28 \text{ MeV}/c^2)$

LHCb

7000

[LHCb, Sci.Bull. 65 (2020) 23, 1983-1993]

[ATLAS-CONF-2022-040]

XYZP's: real or not?

 $X(3872) (\chi_{c1}(3872))$

REMARK ON ENERGY PEAKS IN MESON SYSTEMS

If the width of particle X is not very large we will stay close to the physical region. This almost singular behavior of A(s) for certain physical s causes the peaking effect to which we refer as an (X,Y,Z) peak.

Very close to $D\bar{D}^*$ threshold Is X(3872) a molecule ?

$$M_{X(3872)} - M_{D^0} - M_{\bar{D}^{*0}}$$

= $-0.01 \pm 0.14 MeV$

Even Virtual OPE exchange is tricky

$$-\frac{\vec{q}^2}{\mu^2 + \vec{q}^2} = -1 + \frac{\mu^2}{\mu^2 + \vec{q}^2}$$

Attractive = Attractive + Repulsive

DIRECT DETERMINATION OF A SHORT NUCLEAR LIFETIME (≈10⁻²⁰ s) BY THE PROXIMITY SCATTERING METHOD

J. LANG, R. MÜLLER, W. WÖLFLI, R. BÖSCH and P. MARMIER Laboratorium für Kernphysik, Eidg. Techn. Hochschule, Zürich †

Received 4 February 1966

$$b+t \rightarrow 1+2+3$$
 [d+12C \rightarrow n+p+12C],

$$b+t \rightarrow 1+R$$

$$b+t \to 1+R$$
, with Q-value $Q_1 = [d+^{12}C \to n+^{13}N^*, Q_1 = -3.82 \text{ MeV}]$,

$$Q_1 = -3.82 \,\text{MeV}$$

$$R \rightarrow 2+3$$

$$[^{13}N^* \rightarrow p + ^{12}C]$$

$$R \to 2+3$$
 with Q-value Q_2 [13N* $\to p+12C$, $Q_2 = 1.59$ MeV],

Triangles are everywhere

Burns, Swanson

Kinematic reflections

Are the Z's true resonances or kinematic effects

Kinematic effects from K* decays?

$$K^{*0}\psi' \to \pi^- K^+ \psi'$$

$$B \to \psi' \pi^- K^+$$

$$Z^- K^+ \to \psi' \pi^- K^+$$

Understanding production cont.

XYZP spectroscopy at a charm photoproduction factory

M. Albaladejo, M. Battaglieri, A. Esposito, C. Fernández-Ramírez, A. N. Hiller Blin, V. Mathieu, W. Melnitchouk, M. Mikhasenko, V. I. Mokeev, A. Pilloni, A. P. Polosa, J.-W. Qiu, A. P. Szczepaniak, 1, 10, 11 and D. Winney, 10, 11

arXiv:2203.08290

Lol RF7_RF0_120

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Hadron Spectroscopy in Photoproduction

Miguel Albaladejo¹, Łukasz Bibrzycki², Sean Dobbs³, César Fernández-Ramírez^{4,5}, Astrid N. Hiller Blin⁶, Vincent Mathieu^{7,8}, Alessandro Pilloni^{9,10}, Justin Stevens¹¹, Adam P. Szczepaniak^{12,13,14}, and Daniel Winney^{13,14,15,16}

arXiv:2112.00060

Physics with CEBAF at 12 GeV and Future Opportunities

EIC/JLab++ explore the complementarity of diffraction, peripheral and/or direct production

Spectroscopy at the future facilities

Z^+ , Production @JLab++, EIC

M. Albaladejo et al. [JPAC], PRD (2020)
D.Winney et al. (JPAC).

	$17\mathrm{GeV}$		$24\mathrm{GeV}$	
	produced	detected	produced	detected
$Z_c(3900)^+$	2.2 k	371	4.2 k	588
X(3872)	1.1 k	32	4.2 k	63

TABLE I. Estimates of yields for day of data taking at CLAS24 assuming a zero-angle electron detector

TABLE II. Summary of results for production of some states of interest at the EIC electron and proton beam momentum $5 \times 100 (GeV/c)$ (for electron x proton). Columns show: the meson name; our estimate of the total cross section; production rate per day, assuming a luminosity of 6.1×10^{33} cm⁻²s⁻¹; the decay branch to a particular measurable final state; its ratio; the rate per day of the meson decaying to the given final state.

Meson	Cross Section (nb)	Production rate (per day)	Decay Branch	Branch Ratio (%)	Events (per day)
$\chi_{c1}(3872)$	2.3	2.0 M	$J/\Psi \ \pi^+\pi^-$	5	6.1 k
Y(4260)	2.3	2.0 M	$J/\Psi \pi^+\pi^-$	1	1.2 k
$Z_c(3900)$	0.3	0.26 M	$J/\Psi \ \pi^+$	10	1.6 k
X(6900)	0.015	0.013 M	$J/\Psi \ J/\Psi$	100	46
$Z_{cs}(4000)$	0.23	0.20 M	$J/\Psi K^+$	10	1.2 k
$Z_b(10610)$	0.04	0.034 M	$\Upsilon(2S) \pi^+$	3.6	24

- Couplings from data as much as possible, not relying on the nature of XYZ
- The model is expected to hold in the highest x- bin
- Model underestimates lower bins, conservative estimates

https://github.com/dwinney/jpacPhoto

Production at EIC

Artoisenet, Braaten, PRD83(2011)014019; FKG, Meißner, W. Wang, Z. Yang, EPJC74(2014)3063

$\sigma(pp/\bar{p} \rightarrow X)$	[nb]Exp.	Λ =0.5 GeV	Λ =1.0 GeV	
Tevatron	37-115	7 (5)	29 (20)	
LHC-7	13-39	13 (4)	55 (15)	

Albaladejo, FKG, Hanhart et al., CPC41(2017)121001

 Order-of-magnitude estimates of the semi-inclusive electro-production of hidden/doublecharm hadronic molecules (in units of pb)

	Constituents	$I,J^{P(C)}$	EicC	EIC
X(3872)	$Dar{D}^*$	0,1 ⁺⁺	21(89)	216(904)
$Z_c(3900)^0$	$Dar{D}^*$	1,1+-	$0.4 \times 10^3 (1.3 \times 10^3)$	$3.8 \times 10^3 (14 \times 10^3)$
Z_{cs}^-	$D^{*0}D_s^-$	1/2,1+	19(69)	250(900)
P _c (4312)	$\Sigma_car{D}$	1/2,1/2-	0.8(4.1)	15(73)
P _{cs} (4338)	$\Xi_c\overline{D}$	0,1/2-	0.1(1.6)	1.8 (30)
Predicted	$\Lambda_c \overline{\Lambda}_c$	0,0-+	0.3 (3.0)	10 (110)
Predicted	$\Lambda_c \overline{\Sigma}_c$	1,0-	0.01 (0.12)	0.5 (5.5)
T_{cc}^+	DD*	0,1+	$0.3 \times 10^{-3} (1.2 \times 10^{-3})$	0.1 (0.5)

F-K Guo @ EIC Workshop

XYZP's: real or not?

GlueX: PRL 123, 072001 (2019)

- "Dip" above 9 GeV has
 2.6σ (1.3σ) local (global)
 significance
- Full GlueX-I data yields $2270 \pm 58 \text{ J/}\psi$'s

Threshold effects? Du et al, EPJC 80, 1053 (2020)

Confirmation of gluon dominated dynamics? ... but

GlueX [Phys.Rev.Lett. 123 (2019) 7, 072001]

J/ψ photo production

Two (distinct) approaches:

-t-channel partial waves

$$A(s,t) = \sum_{l} f_l(t) P_l(z_t)$$

smooth s-dependence

 J/ψ -007 [Nature 615 (2023) 7954, 813-816]

GlueX [arXiv:2304.03845]

mass radius, gravitational form factors, etc.

Kharzeev et al. (1999), Brodsky et al (2001) Ji et al.Guo et al. (2021) Z, Mamo Zahed, (2020)

-s-channel partial waves

$$A(s,t) = \sum_{l} f_l(s) P_l(z_s) \qquad \stackrel{l_{max} \le 3}{\longleftarrow}$$

s-channel thresholds

Du et al [Eur. Phys. J. C 80 (2020) 1053]

Fit results/conclusions

FIG. 2: Fit results for the differential cross section compared to GlueX data from [37]. The bands correspond to the 1σ uncertainties from the bootstrap analysis.

 "Exponential" behavior from the few lowest partial waves

$$l_{max} \leq 3$$

 The expected hierarchy of partial waves S>P>D>F with the flattening at larger-t accounted for by p.w interferences

FIG. 1: Fit results for the integrated cross section compared to GlueX data from [37]. Bands correspond to 1σ uncertainties from bootstrap analysis.

- Elastic $\psi p \to \psi p$ scattering length $a_S \sim O(0.1 fm)$ found incompatible with VMD expectations (albeit with large errors)
- Inclusion of open charm reduces the discrepancy
- Fits also suggests relevance of open charm production and compatible with pentaquark production
- Need more precise data, including open charm production

Summary

- Discoveries of XYZP phenomena show there is a large "hadronic landscape" yet to be discovered (also in the light flavor sector).
- Properly constrained S-matrix amplitude analysis can determine if these "exotic" states are real (e.g. true partial wave poles) or something else (e.g. kinematic artifacts).
- At JLab++(EIC) yields are expected to be comparable to colliders at ~10³⁴ (higher luminosity, lower energy) and triggers optimized for charmonium final states;
- Direct (photo) production needed for confirmation particularly true for the Z's which so far seen only in 3body final states. Null results are as important as observations!
- In a decade we will have a very different view of hadrons compared to that proposed by Gell-Mann and Zweig.

F-K.Guo

D.Dean, Physics Today 60, 11, 48 (2007)

