J/ψ and XYZP photo production

Adam Szczepaniak (IU/JLab)

- Quarkonium near threshold possibly relevant for extracting novel nucleon properties (mass radius, gravitational form factors, etc.)

- Signal channel also contains hidden-charm pentaquark candidates seen at LHCb.

- Abundance of new data coming from Jefferson Lab on energy and angular dependence of x-section.

- New window onto the nature of the XYZ states.
• Established in 2013 to develop theory and phenomenology in support of experimental program at JLab12.

• JPAC served as a liaison between many theoretical and experimental analysis efforts BaBar, BESIII, COMPASS, EIC, LHCb, JLab

• Over 40 researchers have been associated with JPAC.

• Focus on light exotic hybrids — predicting their properties from lattice QCD

— extracting meson resonances from experimental data

— interpreting both the experiment and theoretical results
Exp and Theory are working together

- Over the past 50 years data has improved dramatically
- It allows model independent analysis

Similar spectra expected from CLAS12
Model independent analysis

Nature: real axes

QCD

Model independent (based on S-matrix principles)

Models
Amplitude analysis

1. Amplitudes are analytical functions of $s_1, \cdots t_1, \cdots$

2. Partial wave amplitudes are analytical functions angular momentum $f_l(s) = f(l, s)$

3. Physical sheet singularities are given by unitarity

4. Unphysical sheet singularities need to be parametrized in order to test microscopic models
Holy Grail: AI as a tool for physics discovery

Learn (S-matrix)

$S = T \exp \left(-i \int_{-\infty}^{\infty} dt H'(t) \right)$

Apply to data

Tell the story

"Deep learning exotic hadrons" L.Ng et al. (JPAC) Phys.Rev.D 105 (2022) 9, L091501
Importance of high quality data: split a2

\[\pi^- + p \rightarrow X^- + p \]

The puzzle of the A2 meson

The A2 may be two distinct but similar particles or a single object of an entirely new type. Either way, it has experimentalists arguing and theorists confused.

Proton-antiproton annihilation shows evidence for a split A2. The dip at the A2 (mass)², shown by the colored arrow, in the K⁺K⁻ effective mass spectrum indicates that the A2 splitting is independent of the production reaction. The data were taken by a CERN-College de France-Liverpool bubble-chamber group.

1965-1970
\[\text{split } P_c \]

LHCb, Run 1, 2015

LHCb, Run 1+Run 2, 2019

\[P_c(4450) \rightarrow P_c(4440) + P_c(4457) \]
Many XYZ’s are unconfirmed but some appear more “real” than others.

- $T_{\psi\psi}$ or $X(6900)$ a $\psi\psi$ resonance ($c\bar{c}c\bar{c}$)?

XYZP’s: real or not?

\[X(3872) (\chi_{c1}(3872)) \]

Remark on Energy Peaks in Meson Systems

If the width of particle \(X \) is not very large we will stay close to the physical region. This almost singular behavior of \(A(s) \) for certain physical \(s \) causes the peaking effect to which we refer as an \((X, Y, Z)\) peak.

\[\vec{q}^2 \mu^2 = -1 + \frac{\mu^2}{\mu^2 + \vec{q}^2} \]

Attractive = Attractive + Repulsive

Very close to \(DD^* \) threshold

Is \(X(3872) \) a molecule?

\[
M_{X(3872)} - M_{D^0} - M_{D^{*0}} = -0.01 \pm 0.14 \text{MeV}
\]
DIRECT DETERMINATION OF A SHORT NUCLEAR LIFETIME ($\approx 10^{-20}$ s)
BY THE PROXIMITY SCATTERING METHOD

J. LANG, R. MÜLLER, W. WÖLFLI, R. BÖSCH and P. MARMIER
Laboratorium für Kernphysik, Eidg. Techn. Hochschule, Zürich

Received 4 February 1966

$\beta + t \to 1 + 2 + 3$,
$[d + ^{12}\text{C} \to n + p + ^{12}\text{C}]$,

$\beta + t \to 1 + R$, with Q-value Q_1
$[d + ^{12}\text{C} \to n + ^{13}\text{N}^*$,
$Q_1 = -3.82$ MeV$]$,

$R \to 2 + 3$ with Q-value Q_2
$[^{13}\text{N}^* \to p + ^{12}\text{C}]$,
$Q_2 = 1.59$ MeV$, $
Triangles are everywhere

COMPASS, 2021

LHCb 2019

$\sim 0.1 \%$

$1^{+}0^{+} f_{0}(980) \pi P$

$0.1 < t' < 1.0 \text{ (GeV}/c)^2$

(1) Model curve
(2) $a_{1}(1420)$ resonance
(3) Non-resonant term

$a_{1}(1460)$

$\Gamma_{\ell} = 50 \text{ MeV}$

Burns, Swanson
Kinematic reflections

Are the Z’s true resonances or kinematic effects

Kinematic effects from K* decays?

\[B \rightarrow \psi' \pi^- K^+ \]

\[Z^- K^+ \rightarrow \psi' \pi^- K^+ \]
Understanding production cont.

XYZP spectroscopy at a charm photoproduction factory

EIC/JLab++ explore the complementarity of diffraction, peripheral and/or direct production.
Spectroscopy at the future facilities

Z^+, Production @JLab++, EIC

- Couplings from data as much as possible, not relying on the nature of XYZ
- The model is expected to hold in the highest x-bin
- Model underestimates lower bins, conservative estimates

Table I: Estimates of yields for day of data taking at CLAS24 assuming a zero-angle electron detector

<table>
<thead>
<tr>
<th>Meson</th>
<th>Cross Section (nb)</th>
<th>17 GeV</th>
<th>24 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_c(3900)^+$</td>
<td>2.2 k</td>
<td>371 k</td>
<td>4.2 k</td>
</tr>
<tr>
<td>$X(3872)$</td>
<td>1.1 k</td>
<td>32 k</td>
<td>4.2 k</td>
</tr>
</tbody>
</table>

Table II: Summary of results for production of some states of interest at the E11 electron and proton beam momentum $5 \times 10^9 (GeV/c)$ (for electron x proton). Columns show: the meson name; our estimate of the total cross section; production rate per day, assuming a luminosity of $6.1 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$; the decay branch to a particular measurable final state; its ratio; the rate per day of the meson decaying to the given final state.

- $\gamma p \rightarrow b_1^+ X$
- $Z_c^- \Delta^{++}$
- $Z_c^+ n$

https://github.com/dwinney/jpacPhoto

D. Winney et al. (JPAC)

M. Albaladejo et al. [JPAC], PRD (2020)
• Production at EIC

<table>
<thead>
<tr>
<th>Constituents</th>
<th>$I, J^{P(C)}$</th>
<th>EiC</th>
<th>EiC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X(3872)$</td>
<td>$D\bar{D}^*$</td>
<td>0, 1$^{++}$</td>
<td>21(89)</td>
</tr>
<tr>
<td>$Z_c(3900)^0$</td>
<td>$D\bar{D}^*$</td>
<td>1, 1$^{+-}$</td>
<td>0.4×10^3</td>
</tr>
<tr>
<td>Z_{cs}</td>
<td>$D^*\bar{D}_s$</td>
<td>1/2, 1$^+$</td>
<td>19(69)</td>
</tr>
<tr>
<td>$P_c(4312)$</td>
<td>$\Sigma\bar{D}$</td>
<td>1/2, 1/2$^-$</td>
<td>0.8(4.1)</td>
</tr>
<tr>
<td>$P_{cs}(4338)$</td>
<td>$\Sigma_c\bar{D}$</td>
<td>0, 1/2$^-$</td>
<td>0.1(1.6)</td>
</tr>
<tr>
<td>Predicted</td>
<td>$\Lambda_c\bar{\Lambda}_c$</td>
<td>0, 0$^{-}$</td>
<td>0.3 (3.0)</td>
</tr>
<tr>
<td>Predicted</td>
<td>$\Lambda_c\bar{\Sigma}_c$</td>
<td>1, 0$^-$</td>
<td>0.01 (0.12)</td>
</tr>
<tr>
<td>T_{cc}^+</td>
<td>DD^*</td>
<td>0, 1$^+$</td>
<td>0.3×10^{-3}</td>
</tr>
</tbody>
</table>

Order-of-magnitude estimates of the semi-inclusive electro-production of hidden/double-charm hadronic molecules (in units of pb)

F-K Guo @ EIC Workshop
XYZP’s : real or not ?

Threshold effects ? Du et al, EPJC 80, 1053 (2020)

- "Dip" above 9 GeV has 2.6σ (1.3σ) local (global) significance
- Full GlueX-I data yields 2270 ± 58 J/ψ’s

Confirmation of gluon dominated dynamics? … but
• Two (distinct) approaches:

 — t-channel partial waves
 \[A(s, t) = \sum_l f_l(t)P_l(z_t) \quad l_{\text{max}} \leq 2 \]
 smooth s-dependence

 — s-channel partial waves
 \[A(s, t) = \sum_l f_l(s)P_l(z_s) \quad l_{\text{max}} \leq 3 \]
 s-channel thresholds

\[J/\psi \text{ photo production} \]

\[007_{J/\psi} \]

\[\text{GlueX} \]

- Kharzeev et al. (1999), Brodsky et al (2001), Ji et al., Guo et al. (2021), Z, Mamo, Zahed, (2020)
- GlueX [arXiv:2304.03845]
Fit results/conclusions

• “Exponential” behavior from the few lowest partial waves

\[l_{\text{max}} \leq 3 \]

• The expected hierarchy of partial waves S>P>D>F with the flattening at larger-\(t \) accounted for by p.w interferences

FIG. 2: Fit results for the differential cross section compared to GlueX data from [37]. The bands correspond to the 1\(\sigma \) uncertainties from the bootstrap analysis.
Fit results/conclusions

- Elastic $\psi p \rightarrow \psi p$ scattering length $a_S \sim O(0.1 fm)$ found incompatible with VMD expectations (albeit with large errors)

- Inclusion of open charm reduces the discrepancy

- Fits also suggests relevance of open charm production and compatible with pentaquark production

- Need more precise data, including open charm production

FIG. 1: Fit results for the integrated cross section compared to GlueX data from [37]. Bands correspond to 1σ uncertainties from bootstrap analysis.
Discoveries of XYZP phenomena show there is a large “hadronic landscape” yet to be discovered (also in the light flavor sector).

Properly constrained S-matrix amplitude analysis can determine if these “exotic” states are real (e.g. true partial wave poles) or something else (e.g. kinematic artifacts).

At JLab++(EIC) yields are expected to be comparable to colliders at $\sim 10^{34}$ (higher luminosity, lower energy) and triggers optimized for charmonium final states;

Direct (photo) production needed for confirmation particularly true for the Z’s which so far seen only in 3body final states. Null results are as important as observations!

In a decade we will have a very different view of hadrons compared to that proposed by Gell-Mann and Zweig.