J/ψ and XYZP photo production

Adam Szczepaniak (IU/JLab)

- Quarkonium near threshold possibly relevant for extracting novel nucleon properties (mass radius, gravitational form factors, etc.)
- Signal channel also contains hidden-charm pentaquark candidates seen at LHCb.
- Abundance of new data coming from Jefferson Lab on energy and angular dependence of x-section.
- New window onto the nature of the XYZ states.

Adam Szczepaniał

Indiana University

Daniel Winney South China Normal II

Mikhail Mikhasenko

LMU Munich

University of Barcelona

Indiana Universit

Ramírez

UNED/ICN-UNAN

Miquel Albaladei

Viktor Mokee

Jefferson Lab

IFIC-CSIC Valer

- Focus on light exotic hybrids
 - predicting their properties from lattice QCD
 - extracting meson
 resonances from experimental
 data

interpreting both the experiment and theoretical results

INDIANA UNIVERSITY

- Established in 2013 to develop theory and phenomenology in support of experimental program at JLab12.
- JPAC served as a liaison between many theoretical and experimental analysis efforts BaBar,BESIII,COMPASS,EIC, LHCb,JLab
- Over 40 researchers have been associated with JPAC.

Jefferson Lab

Exp and Theory

• Over the past 50 years data has improved dramatically

 It allows model independent analysis

INDIANA UNIVERSITY

76

Model independent analysis

Jefferson Lab

INDIANA UNIVERSITY

Amplitude analysis

1. Amplitudes are analytical functions of $s_1, \dots t_1, \dots$

2. Partial wave amplitudes are analytical functions angular momentum $f_l(s) = f(l, s)$

3. Physical sheet singularities are given by unitarity

4. Unphysical sheet singularities need to be parametrized in order to test microscopic models

Holy Grail: Al as a tool for physics discovery

Importance of high quality data : split a2

 $\pi^- + p \rightarrow X^- + p$

The puzzle of the A2 meson

The A2 may be two distinct but similar particles or a single object of an entirely new type. Either way, it has experimentalists arguing and theorists confused.

Proton-antiproton annihilation shows evidence for a split A2. The dip at the A2 (mass)², shown by the colored arrow, in the K₁°K⁺ effective mass spectrum indicates that the A2 splitting is independent of the production reaction. The data were taken by a CERN-College de France-Liverpool bubble-chamber group. Figure 5

 $a_2(1320)$

split Pc

 $P_c(4450) \rightarrow P_c(4440) + P_c(4457)$

XYZP's : real or not ?

Many XYZ's are unconfirmed but some appear more "real" then other

Jefferson Lab

INDIANA UNIVERSITY

 $M_{{
m di-}J/\psi}$ [MeV/ c^2] resonance $(cc\bar{c}\bar{c})$? [LHCb, Sci.Bull. 65 (2020) 23, 1983-1993] **∂**300 135 fb⁻¹ (13 TeV) Events / 0.075 GeV CMS Preliminary 50 ATLAS Preliminary Data ATLAS Preliminary Data Candidates / 25 MeV _____ 250 ⊢ √s = 13 TeV, 139 fb⁻¹ 180 Sig.+Bkg. $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ Data — Fit 0 200 di-J/ψ Sig.+Bkg. 160 40^{[-J/ψ+ψ(2S)} Background BW1 BW2[X(6900)] Background 140 Events 100 Sig. w/o Int. Signal 120 E BW3 - Background Sig. Int. 100 E 30 80 F 50 60 40 F 20 0 20 -50 10 **-100 -150**[⊢] $m_{J/\psi J/\psi}$ [GeV] 0 6.5 8.5 7.5 8 9 7 7.5 8 8.5 9 m_{4u}^{con} [GeV] m_{4u}^{con} [GeV] [CMS-PAS-BPH-21-003]

• $T_{\psi\psi}$ or X(6900) a ψ

[ATLAS-CONF-2022-040]

[ATLAS-CONF-2022-040]

220

200

180

160

120

20

LHCb

7000

8000

Weighted Candidates / (28 MeV/ c^2)

9000

XYZP's : real or not ? *X*(3872) (*x*_{c1}(3872))

REMARK ON ENERGY PEAKS IN MESON SYSTEMS

If the width

of particle X is not very large we will stay close to the physical region. This almost singular behavior of A(s) for certain physical s causes the peaking effect to which we refer as an (X, Y, Z)peak.

Very close to $D\bar{D}^*$ threshold Is X(3872) a molecule ? $M_{X(3872)} - M_{D^0} - M_{\bar{D}^{*0}}$

 $= -0.01 \pm 0.14 MeV$

Even Virtual OPE exchange is tricky

$$-\frac{\vec{q}^2}{\mu^2 + \vec{q}^2} = -1 + \frac{\mu^2}{\mu^2 + \vec{q}^2}$$

Attractive = Attractive + Repulsive

Need to understand Production !

Triangles are everywhere

INDIANA UNIVERSITY Jefferson Lab

τĿ

Kinematic reflections

Are the Z's true resonances or kinematic effects

Jefferson Lab

INDIANA UNIVERSITY

Understanding production cont.

Spectroscopy at the future facilities

Z^+ , Production @JLab++, EIC

M. Albaladejo et al. [JPAC], PRD (2020) D.Winney et al. (JPAC).

		$17{ m GeV}$		$24\mathrm{GeV}$	
		produced	detected	produced	detected
2	$Z_c(3900)^+$	2.2 k	371	4.2 k	588
	X(3872)	1.1 k	32	4.2 k	63

TABLE I. Estimates of yields for day of data taking at CLAS24 assuming a zero-angle electron detector

TABLE II. Summary of results for production of some states of interest at the EIC electron and proton beam momentum $5 \times 100 (GeV/c)$ (for electron x proton). Columns show : the meson name; our estimate of the total cross section; production rate per day, assuming a luminosity of 6.1×10^{33} cm⁻²s⁻¹; the decay branch to a particular measurable final state; its ratio; the rate per day of the meson decaying to the given final state.

Meson	Cross Section (nb)	Production rate (per day)	Decay Branch	Branch Ratio (%)	Events (per day)
$\chi_{c1}(3872)$	2.3	2.0 M	$J/\Psi \pi^+\pi^-$	5	6.1 k
Y(4260)	2.3	2.0 M	$J/\Psi \pi^+\pi^-$	1	1.2 k
$Z_{c}(3900)$	0.3	0.26 M	$J/\Psi \pi^+$	10	1.6 k
X(6900)	0.015	0.013 M	$J/\Psi J/\Psi$	100	46
$Z_{cs}(4000)$	0.23	0.20 M	$J/\Psi K^+$	10	1.2 k
$Z_b(10610)$	0.04	0.034 M	$\Upsilon(2S) \pi^+$	3.6	24

- Couplings from data as much as possible, not relying on the nature of XYZ
- The model is expected to hold in the highest x- bin
- Model underestimates lower bins, conservative estimates

15

Production at EIC

Artoisenet, Braaten, PRD83(2011)014019; FKG, Meißner, W. Wang, Z. Yang, EPJC74(2014)3063

$\sigma(pp/\bar{p}\rightarrow X)$	[nb]Exp.	$\Lambda = 0.5 \text{ GeV}$	Λ =1.0 GeV	
Tevatron	37-115	7(5)	29 (20)	
LHC-7	13-39	13(4)	55(15)	

Albaladejo, FKG, Hanhart et al., CPC41(2017)121001

 Order-of-magnitude estimates of the semi-inclusive electro-production of hidden/doublecharm hadronic molecules (in units of pb)

	Constituents	$I, J^{P(C)}$	EicC	EIC
X(3872)	$D\bar{D}^*$	0,1++	21(89)	216(904)
Z _c (3900) ⁰	$Dar{D}^*$	1, 1+-	0.4×10 ³ (1.3×10 ³)	3.8×10 ³ (14×10 ³)
Z_{cs}^{-}	$D^{*0}D_s^-$	1/2, 1+	19(69)	250(900)
<i>P_c</i> (4312)	$\Sigma_c \bar{D}$	1/2,1/2-	0.8(4.1)	15(73)
<i>P_{cs}</i> (4338)	$\Xi_c\overline{D}$	0,1/2-	0.1(1.6)	1.8 (30)
Predicted	$\Lambda_c\overline{\Lambda}_c$	0,0^+	0.3 (3.0)	10 (110)
Predicted	$\Lambda_c \overline{\Sigma}_c$	1,0-	0.01 (0.12)	0.5 (5.5)
<i>T</i> ⁺ _{<i>cc</i>}	DD^*	0,1+	0.3×10 ⁻³ (1.2×10 ⁻³)	0.1 (0.5)

F-K Guo @ EIC Workshop

XYZP's : real or not ?

76

INDIANA UNIVERSITY

P_c's

Jefferson Lab

- "Dip" above 9 GeV has
 2.6σ (1.3σ) local (global)
 significance
- Full GlueX-I data yields $2270 \pm 58 \text{ J/\psi}$'s

Threshold effects ? Du et al, EPJC 80, 1053 (2020)

Confirmation of gluon dominated dynamics? ... but

GlueX [Phys.Rev.Lett. 123 (2019) 7, 072001]

 J/ψ photo production

• Two (distinct) approaches:

-t-channel partial waves $l_{max} \le 2$ $A(s,t) = \sum_{l} f_{l}(t) P_{l}(z_{t}) \longleftarrow$

smooth s-dependence

mass radius, gravitational form factors, etc.

 J/ψ -007 [Nature 615 (2023) 7954, 813-816]

GlueX [arXiv:2304.03845]

Kharzeev et al. (1999), Brodsky et al (2001) Ji et al.Guo et al. (2021) Z, Mamo Zahed, (2020)

-s-channel partial waves

s-channel thresholds

Du et al [Eur. Phys. J. C 80 (2020) 1053]

Fit results/conclusions

 "Exponential" behavior from the few lowest partial waves

$$l_{max} \leq 3$$

 The expected hierarchy of partial waves S>P>D>F with the flattening at larger-t accounted for by p.w interferences

FIG. 2: Fit results for the differential cross section compared to GlueX data from [37]. The bands correspond to the 1σ uncertainties from the bootstrap analysis.

Fit results/conclusions

FIG. 1: Fit results for the integrated cross section compared to GlueX data from [37]. Bands correspond to 1σ uncertainties from bootstrap analysis.

- Elastic $\psi p \rightarrow \psi p$ scattering length $a_S \sim O(0.1 fm)$ found incompatible with VMD expectations (albeit with large errors)
- Inclusion of open charm reduces the discrepancy

INDIANA UNIVERSITY

Jefferson Lab

- Fits also suggests relevance of open charm production and compatible with pentaquark production
- Need more precise data, including open charm production

Summary

- Discoveries of XYZP phenomena show there is a large "hadronic landscape" yet to be discovered (also in the light flavor sector).
- Properly constrained S-matrix amplitude analysis can determine if these "exotic" states are real (e.g. true partial wave poles) or something else (e.g. kinematic artifacts).
- At JLab++(EIC) yields are expected to be comparable to colliders at ~10³⁴ (higher luminosity, lower energy) and triggers optimized for charmonium final states;
- Direct (photo) production needed for confirmation particularly true for the Z's which so far seen only in 3body final states. Null results are as important as observations !
- In a decade we will have a very different view of hadrons compared to that proposed by Gell-Mann and Zweig.

Jefferson Lab

INDIANA UNIVERSITY

F-K.Guo

