MESON2023

Hypernuclear halos with HYDRA at R³B- GSI/FAIR

Simone Velardita MESON2023 - Krakow 26/06/2023

Nuclear halo

- → Loosely bound system at the dripline
- → Nucleon(s) wave function extends into classically forbidden region
 - large nuclear size
- → Evidenced in exotic nuclei:
 - historically discovered in ¹¹Li (S_{2n} =0.378 MeV)
- → **Predicted** for hypernuclei:
 - ${}^{3}_{\Lambda}$ H (S_{Ad}=0.13 MeV) [1], ${}^{6}_{\Lambda}$ He (S_n=0.17 MeV) [2]
 - no experimental observation of hypernuclei halo

Hypertriton in a nutshell

- → Loosely bound system: A binding energy 148(40) keV (average 2023)
- → Large spatial extension predicted (unmeasured)→ "hyper"-halo nucleus
- → Lifetime expected to be compatible with the free Λ (263 ps)
 - Latest ALICE value (2022) [arXiv:2209.07360v2]: 253 ± 11 (stat.) ± 6 (syst.) ps

F. Hildenbrand, H.-W. Hammer, PRC 100 (2019)

Mainz's database: https://hypernuclei.kph.uni-mainz.de/

Introduction

Nature of nucleosynthesis in HIC

- → Statistical hadronization or coalescence model?
- \rightarrow $^{3}_{\Lambda}$ H is suggested to be a conclusive test for nucleosynthesis in Heavy Ion Collision (HIC)
- → Size of ${}^{3}_{\Lambda}$ H is central for coalescence predictions

Estimation of the hypertriton size

→ Measure hypernuclei interaction cross sections and from these deduce the matter radii:

 $\sigma_I(p,t) = \pi {\left[R_I(p) + R_I(t)
ight]^2}$

→ Hypernuclear version of I. Tanihata et al. experiment [I. Tanihata et al. PLB 160 (1985)]

Production in HIC at GSI/FAIR energies

- → Hypernuclei so far mainly produced using pions, kaons and electrons beams in direct kinematics
 - Iimited to hypernuclei close to stability
- → Relativistic HICs can potentially extend the hypernuclei studies far from stability
 - ◆ main strangeness production mechanisms

 $p + p \rightarrow p + \Lambda + K^+ (E_{lab} > 1.58 \,GeV)$

 $\pi^+ + n \rightarrow \Lambda + K^+ \ (E_{lab} > 0.76 \, GeV)$

- ◆ The HypHI0 experiment at GSI demonstrate the feasibility of the method using ⁶Li+¹²C at 2 AGeV [3]
 - light hypernuclear systems reconstructed by the invariant mass from weak decay products, e.g. $^{3}_{\Lambda}H \rightarrow \pi^{-}+^{3}He$

6

The two-target method

- → extract the interaction cross section by measuring the mesonic decay vertex distribution
- → the yield of the hypernuclei depends on 3 physical cross sections: σ_R beam interaction, σ_Λ production (unknown),

 $\sigma_{\Lambda R}$ interaction (unknown)

• two measurements with two targets of thicknesses, d_1 and d_2

$$rac{N_\Lambda(d_1)}{N_\Lambda(d_2)} \cdot rac{N_{0,d_2}}{N_{0,d_1}} \cdot ig(1-e^{B\,d_2}ig) \cdot e^{-n\sigma_R(d_2-d_1)} - 1 + e^{-B\,d_1} = 0$$

where

$$egin{aligned} B &= \, n \, \sigma_{\Lambda R} + rac{1}{\gamma eta c \, au} - n \, \sigma_R \ N_{0,d_1} &= I \, t \, lpha \quad ext{and} \quad N_{0,d_2} = I \, t \, (1 - lpha) \end{aligned}$$

7

The two-target method

- → extract the interaction cross section by measuring the mesonic decay vertex distribution
- → the yield of the hypernuclei depends on 3 physical cross sections: σ_R beam interaction, σ_A production (unknown),

 $\sigma_{\Lambda R}$ interaction (unknown)

• two measurements with two targets of thicknesses, d_1 and d_2

$$egin{aligned} & \overbrace{N_{0,d_{2}}}^{N_{0,d_{2}}} \cdot \left(1-e^{B\,d_{2}}
ight) \cdot e^{-n\sigma_{R}(d_{2}-d_{1})}-1+e^{-B\,d_{1}}=0 \ & ext{where} \ & B=n\,\sigma_{\Lambda R}+rac{1}{\gammaeta c\, au}-n\,\sigma_{R} \ & N_{0,d_{1}}=I\,t\,lpha \ & ext{and} \ & N_{0,d_{2}}=I\,t\,(1-lpha) \end{aligned}$$

The two-target method

- → extract the interaction cross section by measuring the mesonic decay vertex distribution
- → the yield of the hypernuclei depends on 3 physical cross sections: σ_R beam interaction, σ_A production (unknown),
 - $\sigma_{\Lambda R}$ interaction (unknown)
 - two measurements with two targets of thicknesses, d_1 and d_2

Sensitivity of measurement

→ Minimal uncertainty is reached for a large difference in the thickness of the two targets

• optimal values are $d_1 \sim 1 \text{ cm}$ and $d_2 \sim 6 \text{ cm}$

11

Experiment at R³B-GSI/FAIR (2025)

- → Hypertriton interaction cross section from ${}^{12}C+{}^{12}C \rightarrow X +^{3}_{\Lambda}H \rightarrow X +^{-}_{\pi}+{}^{3}He$
- → Large acceptance → Time Projection Chamber (TPC) inside GLAD dipole
- → $^{3}_{\Lambda}$ H low production cross section 1.8 µb (predicted) [4] → Off beam position to allow high intensity beam
- → High momentum and position resolution → Mylar entrance window and double-wire field-cage
- → B field inhomogeneities of GLAD dipole corrected by reference tracks → Built-in laser with micro-bundle mirrors [5]

[4] Y. Sun et al. PRC 98 (2018) [5] J. Abele et al. NIM A 499 (2003)

12

a) Double-wire field cage

[6] J. Giovinazzo et al., NIM A. 892 (2018) [7] D. Pfeiffer et al., NIM A. 1031 (2022)

Monte Carlo simulations

Geant4:

- → Total detection efficiency 12%
- → Vertex position resolution < 10 mm</p>
- → Momentum resolution < 2%
- → Rejection of background events with a signal over background ~3
- → Invariant mass resolution of 2 MeV/c² (σ)

Conclusions

- → Hypernuclear program initiated at R³B- GSI/FAIR
- \rightarrow ³_AH interaction cross section (experiment foreseen for 2025)
 - new method developed [S. Velardita et al., EPJA 59 (2023)]
 - validated with GEANT4 simulations
 - expected relative uncertainty interaction cross section ~15%
 - deduce the matter radius of $^{3}_{\Lambda}$ H to assess on its halo or non-halo nature
- → Hydra pion tracker built, under test measurements
 - hybrid MicroMegas/GEM
 - built-in laser system for reference tracks
 - VMM3 electronics for continuous readout

Collaborators

The R³B collaboration.

The HYDRA team:

M. Duer, A. Enciu, L. Ji, A. Obertelli, D. Rossi, Y. L. Sun, S. Velardita, F. Wienholtz TU Darmstadt, Germany

P. Gasik, J. Hehner, B. Löher, C. Schmidt, M. Träger GSI/FAIR, Germany

H. Alvarez-Pol, Y. Ayyad Universidade de Santiago de Compostela, Spain

S. Ota University of Osaka, Japan

J. Taieb CEA, France

Theory support:

H.-W. Hammer, R. Roth IKP, TU Darmstadt, Germany

M. Bleicher, A. Botvina, H. Elfner J.W. Goethe Universität, Frankfurt am Mainz, Germany

C. Bertulani Texas A&M Commerce, USA

Bundesministerium für Bildung und Forschung

Stiftung/Foundation

BACKGROUND (1)

4 possible sources of background:

BACKUP

- 1. the coincidence of π^- and ³He both produced from the fragmentation of ¹²C
 - a. it's mostly removed by selecting the decay vertex position upstream the target
- 2. the decay of an heavier hypernucleus which decay via π^- emission together with a multi-ion final state that includes ³He
 - a. The relative kinetic energy between π^- and ³He will be always < 43 MeV (Q-value for the decay of the hypertriton)
- 3. $a \pi^{-}$ from the decay of a free Λ , K^{0}_{short} and heavier hypernuclei, and ³He produced in coincidence from the fragmentation of the ¹²C projectile
 - a. Reduced by applying topological cuts
- Two-step strangeness production, i.e., the production of hypertriton from fragments with A≥3 and E_{kin} >1.6 GeV/A formed in the primary collision
 - a. Neglected because it contributes for <2% on the total number of hypertriton produced in the primary reaction

BACKGROUND (2)

