

 $\Lambda(1520)$ and $\Sigma^{*}(1385)$ in p+p and p+Nb reactions measured with HADES

Konrad Sumara

Jagiellonian University Institute of Physics

Hyperon production in HADES in p+p/A collisions

1.3

0.15

do/dM [µb/(MeV/c²)] 00 10

- Strangeness production in pp and pA collisions is a significant part of HADES Physics Program:
 - Inclusive Λ(1116) production, polarization and p-Λ
 correlations in pp/pNb Phys.Rev.C 95 (2017) 1, 015207, Eur.Phys.J.
 A50 (2014) 81, Phys.Rev.C 94 (2016) 2, 025201
 - Inclusive Λ(1116) and Σ0 production in pNb@3.5 GeV
 Phys.Lett. B781 (2018) 735-740
 - Exclusive Σ(1385)+ production in pp@3.5 GeV Phys.Rev. C85 (2012) 035203
 - Exclusive Λ(1405) production and line shape measurement in pp Phys.Rev. C87 (2013) 025201
 - A *E* production in pA Phys.Rev.Lett. 114 (2015) 212301, Phys. Rev. Lett.103, 132301 (2009)
 - Inclusive A(1520) production in pp and pNb at 3.5 GeV and 4,5 GeV

New p+p run at 4,5 GeV \rightarrow ~60 times greater integrated accepted luminosity.

$\Sigma(1385)$ 300 cross-section [hb] 10³ $pp \rightarrow \Lambda + X$ selected world data $\Sigma(1385)^+ \rightarrow \Lambda + \pi^+$ HADES $pp \rightarrow A+X$ counts/(8MeV/c²) 00 00 $pp \rightarrow A + X \mod I$ - data HADES pp→pKA $-\Lambda$ non. res. $-\Sigma^0$ non, res. - misidentification **Breit-Wigner** 2.5

1.5

 $\Lambda(1405)$

 $\Sigma^+\pi^-+\Sigma^-\pi^+$

1.5

 $MM(p,K^{+})$ [MeV/c²]

[MeV/c²]

1.4

 $M(\Lambda,\pi^+)$

1.4

1.6

 $x10^{3}$

1.6

COSY pp→pKA

pKA phase-space fit

LB pp→pKA

Ξ(1321)

Strong enhacement above models (Statistical Hadron Model (SHM), UrQMD, GiBUU

Case of $\Lambda(1520)$ and $\Sigma^*(1385)$

- **Λ(1520)** structure is controversially discussed:
 - Excited quark state
 - Baryon meson molecule : Λ(1520) is a dynamically generated state resulting from decouplet baryon x meson interaction (S.Sarkar, E. Oset, J. Vacas *"Baryonic resonances from baryon decuplet-meson octet interaction"*)
- Modification of $\Sigma^*(1385) \pi$ loop in medium (p+A) \rightarrow Important implication for properties of $\Lambda(1520)$
 - **M**↓(1500-1490 MeV)
 - **Г**↑(40-70 MeV)
 - BR(Λ ππ) ↑(~25%)
 - Changes for **Σ*(1385)** even stronger
- Hadronic decays of $\Lambda(1520) \rightarrow \Lambda \pi^+ \pi^-$ in p+p and p+A, particularly interesting:
 - Currently poorly studied
 - Complementary channel to Dalitz decay: $\Lambda(1520) \rightarrow \Lambda(1116)e^{-e^{+\frac{2}{4}}}$
 - High branching ratio compared to Dalitz decay, BR = $6.6 \cdot 10^{-2}$

'\(1520)and <u>5</u>(1385)in the nuclear medium" Murat M. Kaskulov and E. Oset

Event selection

- Track reconstruction and Particle Identification (PID) \rightarrow based on β vs mom or dE/dx vs mom distributions.
- Track combinations for $\Lambda(1520)$ (p, π^- , π^+ , π^-) and $\Sigma^*(1385)$ (p, π^- , π^+) reconstruction.
- Minimal bias conditions for **\(1115)** background reduction use cuts on:
 - Minimal Track Distance: MTD(p, π^-)
 - Vertexes Positions and Distance
 - In p+p Missing Mass (MM_{pπ-}) > M_{nucleon} + M_{kaon}

A(1115) identification with Neural Networks

- Background reduction performed using TMVA based,
 Multilayer Perceptron type Neural Network approach utilizing data driven so-called Classification without Labels ("CWoLa") method (no simulations needed).
- Optimal classifier for distinguishing between M1 and M2 (L_{M1/M2}) is a monotonically related to classifier L_{S/B} and as such L_{S/B} and L_{M1/M2} can be used interchangeably.

- Sideband subtraction for **Σ^{*}(1385)** reconstruction.
- Breit-Wigner distribution fitting to **Σ*(1385)** invariant mass.

Breit-Wigner
$$\propto \frac{q^2}{q_0^2} \frac{m_0^2 \Gamma_0^2}{(m_0^2 - m^2)^2 + m_0^2}$$

 $\Gamma = \Gamma_0 \frac{m_0 q^3}{m q_0^3} F_1(q),$
 $F_1(q) = \frac{1 + (q_0 R)^2}{1 + (q R)^2},$

- **q** momentum
- *q*₀ momentum that corresponds to the mass m_{0} ,
- *m* mass variable,
- *Γ*₀ resonance width,
- **\Gamma** mass-dependent resonance width,
- F₁(q) Blatt-Weisskopf parameter
- **R** = 1/197.327 MeV⁻¹ centrifugal barrier parameter.

 $M_0 = 1378.7 + -1.4 \text{ MeV/c}^2$ $\Gamma_0 = 32.2 + -4.1 \text{MeV/c}^2$

 $\Sigma^{*+}(1385)$ in p+p @ 3,5 GeV

case of Σ (1385)+ in pp collisions. Physical Review C. 85. 10.1103

Λ(1520) in p+p and p+Nb @ 3,5 GeV

Λ(1520) in p+p and p+Nb @ 3,5 GeV

p+p

p+Nb

• $\Lambda(1520)$ invariant mass reconstruction results:

	M _{Λ0π+π-} [MeV]	σ [MeV]	Γ [MeV]
pNb	1519 ± 4.2	14.7	24 ± 10
рр	1509 ± 4.7	14.7	15.6 ± 1

- Peak position in p+p smaller than PDG (interferences, systematics? \rightarrow To be checked in p+p @ 4,5 GeV).
- Calculated cross section values for inclusive channels:

 $\sigma_{p+p\to\Lambda(1520)X} = 7.1 \pm 1.1 \pm \frac{0.0}{2.14} \,\mu b$

 $\sigma_{p+Nb\to\Lambda(1520)X} = 4.97 \pm 0.45 \pm \frac{3.58}{2.53} \text{ mb}$

- Λ(1520) Invariant mass decomposition:
 - points experimental data
 - green Λ(1520) simulated signal
 - red simulated non-resonant background (UrQMD for pNb)
 - magenta sum of simulated channels (fit)

Λ(1520) in p+p and p+Nb @ 3,5 GeV

- In **p+Nb** case, compared to **p+p** case:
 - transverse momentum broader and shifted to higher values
 - rapidity distribution shifted to lower values
- **Conclusion** $\rightarrow \Lambda(1520)$ events from **p+Nb** are emitted from a slower source, as compared to **p+p** reaction, as expected for re-scattering in the medium.
 - $\Lambda(1520)$ transverse momentum and rapidity \rightarrow p+p
 - $\Lambda(1520)$ transverse momentum and rapidity \rightarrow p+Nb
 - blue experimental data
 - green $\Lambda(1520)$ resonant contribution (sim)
 - orange $\Sigma(1385)$ resonant contribution
 - red simulated non-resonant background (URQMD)
 - magenta fit of simulated channels

Summary & outlook

- Λ (1520) measured for the first time in pp and pA collisions close to threshold (@ 3.5 GeV)
- New high statistics data from pp @ 4.5 GeV will provide:
 - Cross sections for $\Sigma^*(1385)$ (all isospin states) and Λ (1520)
 - Dalitz plot $\Lambda \pi \pi$ to analyse Σ^{*}(1385)-π decay branch
 - Reference for Dalitz $\Lambda(1520)$, $\Sigma^*(1385) \rightarrow \Lambda$ e⁺e⁻ decays (branching ratio)

~100x (Lumi x cross section) increase in statistics for Λ (1520) expected in 4,5 GeV in comparison to 3,5 GeV.

BACKUP

$\Sigma^{+}(1385)$ in p+p at 4,5 GeV p+p $\rightarrow \Sigma^{+}(1385) + X$

PV

 Σ^+

- Two cases:
 - \circ **HHH** All three particles (p, π^- , π^+) in HADES
 - **HHF** π^- and π^+ in HADES + p in FwDet (no PID in FwDet assumption of a proton)
- Lambda (1115) candidates reconstruction Minimum bias conditions:
 - At least 3 tracks in event (considering combinations of all tracks in event)
 - Particle Identification (PID) ($p+\pi^-$) + π^+ (based on β vs mom distributions)
 - InvMass_{Lambda(p π -)} \in (1080 MeV;1150 MeV) Relevance window
 - Minimal Track Distance: MTD(p, π^-) < 20 mm
 - Vertex_Z_{Primary} < Vertex_Z_{Lambda}
 - Dist(Vertex_{Primary}; Vertex_{Lambda}) > 10 mm
 - \circ MissMass_{Lambda} > Mass_{nucleon} + Mass_{kaon}
- **Sigma (1385)** candidates reconstruction conditions:
 - MissMass_{Sigma(p $\pi-\pi+$)} > Mass_{nucleon} + Mass_{kaon} (more restrictive than MM cut for Lambda Cand)

Strange baryonic resonances in p+p 3.5 GeV

	id	$pp \rightarrow reaction$	$\sigma_0^{(\mathrm{id})}$ cross section [µb]	∡ var.	$\measuredangle(a$	$_{2}, a_{4})$	Η	notes	fit result	
				3-body channels						
	1	ΛpK^+	$35.26 \pm 0.43 \begin{array}{c} +3.55 \\ -2.83 \end{array}$	$ heta_{\Lambda}^{ m cms}$	0.798	0.134	~	[16]	38.835 ± 0.026	Т
	2	$\Sigma^0 \mathrm{pK}^+$	$16.5 \pm 20 \%$	$ heta_{\Sigma^0}^{ m cms}$	0.034 ± 0.241			[21]+calc.	19.800 ± 0.094	Т
	3	$\Lambda\Delta^{++}\mathrm{K}^{0}$	$29.45 \pm 0.08 \ ^{+1.67}_{-1.46} \pm 2.06$	$\theta_{\Delta + +}^{\rm cms}$	1.49 ± 0.3		~	[13]	32.10 ± 0.11	Т
	4	$\Sigma^0 \Delta^{++} \mathrm{K}^0$	$9.26 \pm 0.05 \ ^{+1.41}_{-0.31} \pm 0.65$	$\theta_{\Delta^{\pm\pm}}^{\mathrm{cms}}$	0.08 ± 0.02	—	~	[13]	8.5 ± 2.1	\perp
	5	$\Lambda \Delta^+ \mathrm{K}^+$	$9.82 \pm 20 \%$	$\theta_{\Delta^+}^{\rm cms}$	from Λ	$\Delta^{++}K^{0}$		res. mod.	11.78 ± 0.15	Т
	6	$\Sigma^0 \Delta^+ \mathrm{K}^+$	$3.27\pm20\%$	$ heta_{\Delta^+}^{\mathrm{cms}}$	from Σ	$^{0}\Delta^{++}\mathrm{K}^{0}$		res. mod.	2.6 ± 1.3	T
	7	$\Sigma(1385)^+ nK^+$	$22.42 \pm 0.99 \pm 1.57 \ ^{+3.04}_{-2.23}$	$\theta_{\Sigma^{\pm}*}^{\mathrm{cms}}$	1.427 ± 0.3	0.407 ± 0.108	~	[17]	17.905 ± 0.075	T
	8	$\Delta(2050)^{++}$ n	33% feeding for $\Sigma^* nK^+$	$\theta_{\rm n}^{\rm cms}$	1.27	0.35	1	[17]	8.82 ± 0.13	Т
	9	$\Sigma(1385)^+ \mathrm{pK}^0$	$14.05 \pm 0.05 \stackrel{+1.79}{_{-2.14}} \pm 1.00$	$\theta_{\Sigma^{\pm}*}^{\mathrm{cms}}$	1.42 ± 0.3		1	[13]	16.101 ± 0.072	Т
	10	$\Sigma(1385)^0 \mathrm{pK}^+$	$6.0 \pm 0.48 \stackrel{+1.94}{_{-1.06}}$	$\theta_{\Sigma^{0*}}^{\mathrm{cms}}$	from $\Sigma(1$	$(385)^{+} nK^{+}$	1	[17]	7.998 ± 0.069	Т
	11	$\Lambda(1405) \mathrm{pK^+}$	$9.2 \pm 0.9 \pm 0.7 \stackrel{+3.3}{_{-1.0}}$	_		_	~	[18]	7.7 ± 3.0	\perp
	12	$\Lambda(1520) \mathrm{pK^+}$	$5.6 \pm 1.1 \pm 0.4 \ ^{+1.1}_{-1.6}$	—	_		~	[18]	7.2 ± 3.6	Т
	13	$\Delta^{++}\Lambda(1405)\mathrm{K}^{0}$	$5.0\pm20\%$			<u></u>		[23]	6.0 ± 1.6	Т
	14	$\Delta^{++}\Sigma(1385)^{0}\mathrm{K}^{0}$	$3.5\pm20\%$	1				[23]	4.90 ± 0.46	Т
\mathbf{i}	15	$\Delta^+\Sigma(1385)^+K^0$	$2.3\pm20\%$					[23]	3.2 ± 1.1	Т
	16	$\Delta^+\Lambda(1405){ m K}^+$	$3.0 \pm 20 \%$					compl. to above	4.2 ± 1.9	Т
,	17	$\Delta^+\Sigma(1385)^0\mathrm{K}^+$	$2.3\pm20\%$	_	_	_		compl. to above	3.2 ± 1.1	Т
				4-body channels						
	18	$\Lambda p \pi^+ K^0$	$2.57 \pm 0.02 \ ^{+0.21}_{-1.98} \pm 0.18$				~	[13]	2.8 ± 1.5	Т
	19	$\Lambda n\pi^+ K^+$	from $\Lambda p \pi^+ K^0$		_				2.8 ± 1.5	Т
	20	$\Lambda p \pi^0 K^+$	from $\Lambda p \pi^+ K^0$						2.8 ± 1.4	Т
	21	$\Sigma^0 p \pi^+ K^0$	$1.35 \pm 0.02 \stackrel{+0.10}{_{-1.35}} \pm 0.09$				~	[13]	1.48 ± 0.76	Т
	22	$\Sigma^0 n \pi^+ K^+$	from $\Sigma^0 p \pi^+ K^0$		· · · · · · · · · · · · · · · · · · ·				1.48 ± 0.84	Т
	23	$\Sigma^0 p \pi^0 K^+$	from $\Sigma^0 p \pi^+ K^0$		_				1.48 ± 0.75	Т

Artificial Neural Networks

- Artificial Neural Networks machine learning methods inspired by structure of biological neural networks present in human and animal brains.:
 - Training information presented in the form of examples.
 - Information gathered during training stores in the form of strength (weights)
 of connection between neurons in the network.
- Multilayer Perceptron (MLP) most commonly used class of feedforward artificial neural networks.

A(1115) classification with Neural Networks

- Neymann-Pearson Lemma: the optimal classifier is the ratio of probabilities of the event being signal and background respectively, <u>or any classifier that is</u> <u>monotonically related to it</u>.
- Optimal classifier for distinguishing between M1 and M2 (L_{M1/M2}) can be expressed through classifier L_{S/B}:

$$L_{M_1/M_2} = \frac{p_{M_1}}{p_{M_2}} = \frac{f_1 \, p_S + (1 - f_1) \, p_B}{f_2 \, p_S + (1 - f_2) \, p_B} = \frac{f_1 \, L_{S/B} + (1 - f_1)}{f_2 \, L_{S/B} + (1 - f_2)},$$

- Which is a monotonically increasing rescaling of the likelihood $L_{S/B}$ as long as f1 > f2.
- Therefore, L_{S/B} and L_{M1/M2} define the same classifier.

Neural Network training details

- Neural Network Parameters:
 - Type: Multi Layer Perceptron
 - Activation function: Sigmoid
 - Number of Hidden Layers: 4
 - Number of neurons in layer: 23

- List of variables utilized for neural network training:
 - \circ Lambda 1115 candidate (p π ⁻):
 - Minimal Track Distance (MTD)
 - Opening Angle (OA)
 - Momentum Theta
 - Momentum Phi
 - Decay Vertex coordinates (X, Y, Z)
 - Distance Z from Primary Vertex
 - Absolute Distance from Primary Vertex
 - Sigma 1385: candidate ($\Lambda \pi^+ = (p \pi^-) \pi^+$):
 - Minimal Track Distance (MTD)
 - Opening Angle (OA)
 - Momentum Theta
 - Momentum Phi
 - Decay Vertex coordinates (X, Y, Z)
 - Primary Vertex coordinates (X, Y, Z)

Classifier

Classifier produced by training a Multilayer Perceptron type network on two sets of data, each containing 50000 events (currently only for HHH case):

- (Green) Data in range of Lambda
 InvMass (1108 MeV 1122 Mev) Signal +
 Background
- (Red) Data outside of range of Lambda InvMass (1108 MeV - 1122 Mev) - Just Background

Confusion matrix

- **Confusion matrix**, also known as an error matrix, is a specific table layout that allows visualization of the performance of an algorithm.
- Each **row of the matrix** represents the instances in a predicted class, while **each column** represents the instances in an actual class (or vice versa).
- The name stems from the fact that it makes it easy to see whether the system is confusing two classes (i.e. commonly mislabeling one as another).
- Possible combinations in binary classification:
 - True Positive (TP) eqv. with hit
 - True Negative (TN) eqv. with correct rejection
 - **False Positive (FP)** eqv. with false alarm, type I error
 - False Negative (FN) eqv. with miss, type II error

		Actual Value (as confirmed by experiment)			
		positives	negatives		
d Value of the test)	positives	TP True Positive	FP False Positive		
Predicte (predicted t	negatives	FN False Negative	TN True Negative		

ROC curve

- A **receiver operating characteristic curve**, or **ROC curve**, is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied.
- The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings.
- True Positive Rate:

$$\mathrm{TPR} = \frac{\mathrm{TP}}{\mathrm{P}} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}} = 1 - \mathrm{FNR}$$

• False Positive Rate:

$$\mathrm{FPR} = \frac{\mathrm{FP}}{\mathrm{N}} = \frac{\mathrm{FP}}{\mathrm{FP} + \mathrm{TN}} = 1 - \mathrm{TNR}$$

ROC curve

FPR