Femtoscopy studies in Heavy Ion collisions experiment in HADES: p-A correlation in AgAg collision at 1.58 A GeV

- Narendra Rathod,

Faculty of Physics, Nuclear Physics Division, Warsaw University of Technology, Warsaw, Poland.

PLAN OF THE TALK

- 1. Introduction motivation
- 2. HADES (GSI) detector system
- 3. RPC / ToF, particle identification
- 4. Weak Decay Recognition (A data / simulation)
- 5. Correlation theory
- 6. Femtoscopic correlation signal ($p-\Lambda$ signal)
- 7. Correction using simulations / Purity estimation of identified pairs
- 8. Final results (I,II), systematics and simulation modeling
- 9. Summary

Neutron Star and hyperon puzzle?

FOR MORE DETAIL : TALK : STRANGENESS IN NEUTRON STARS : DR. LAURA TOLOS

- Neutron stars (NS) are the remnants of the gravitational collapse of massive stars during supernova event.
- Their masses and radii are of the order of $1-2~M_{_\odot}$ and 10-12~km, respectively.
- Central densities in the range of 4 8 times the normal nuclear matter saturation density, $\epsilon_0 \sim 2.7 \times 10^{14} \text{ g/cm}^3$ ($\rho_0 \sim 0.16 \text{ fm}^{-3}$)

Best suitable theory takes hyperons into account,

- Hyperons are expected to appear in the core of NS at $\rho \sim 2-3 \rho_0$
- Hyperons softens the EoS —> Reduction on maximum NS mass
- Observation of the NS with $M_G > 2M_S$ is incompatible with such soft EoS
- Although the existence of hyperons is energetically favorable, their existence makes the EoS softer and is not consistent with the experimental results. This is the essence of the hyperon puzzle.

why hyperons are produced

Neutron (uud, m = 938 MeV)

 Λ Hyperon (uus, m = 1115 MeV)

why hyperons are produced

Neutron (uud, m = 938 MeV)

 Λ Hyperon (uus, m = 1115 MeV)

why hyperons are produced

Neutron (uud, m = 938 MeV)

 Λ Hyperon (uus, m = 1115 MeV)

HADES Spectrometer

- SIS18 beams: protons (1-4 GeV), nuclei (1-2 AGeV), pions (0.4-2 GeV/c) – secondary beam
- rare probes:(e^+ , e^-), strangeness: $K^{+/-,0}$, Λ , Ξ^- , ϕ
- ΔM/M 2% at ρ / ω
- PID : $\pi/p/K dE/dx$ (MDC) and TOF : $\sigma_{tof} \sim 80 \text{ ps}$ (RPC)
- electrons : RICH (hadron blind) TOF/Pre-Shower
- neutral particles: ECAL

Geometry :

• full azimuthal, polar angles 18° - 85°

24th JUNE 2023

Selected events, Multiplicity

24th JUNE 2023

Signal Reconstruction

Weak Decay Recognition

Schematic depiction of the Off-Vertex-Decay-Topology of Λ decays.

• Distance between the primary and secondary vertex (VDX) = > 65 mm

- Distance of closest approach (DCA) between the daughter tracks and the primary vertex,
- \rightarrow Dau1VD = > 8 mm
- \rightarrow Dau2VD = > 24 mm
- DCA between reconstructed mother track and primary vertex (**MotVD**) = < 5 mm
- DCA between the two daughter tracks (MTD)
 = < 6 mm
- Opening angle between the two daughter tracks (A) = > 15 $^{\rm O}$

Reconstructed Lambda Signal $(\pi^{-} + p \rightarrow \Lambda)$

24th JUNE 2023

Strategy of analysis :

 $C^{ab}(P,q) = rac{\mathbb{P}(\overrightarrow{p_a},\overrightarrow{p_b})}{\mathbb{P}(\overrightarrow{p_a})\mathbb{P}(\overrightarrow{p_a})} = \int d^3r^{'} \, \underline{S_p(r^{'})} | \underline{\phi(q,r^{'})}|^2$

region of homogeneity == "Source" = $S_{p}(\mathbf{r'})$

Emission profile of the Ag-Ag system : Source function :Distribution of relative distance between the particle pairs (in CMS)

Use the information of point 1 to investigate particle interactions which are not well known

Method 1 :

 Lednicky Model : Correlation formula as a function of the Λp scattering length and source radii r₀.

2

• Scan and extract strong interacting parameters (f_0, d_0) and source radii (r_0) .

Method 2 :

• SMASH simulation for particle correlation

1

• CRAB Afterburner to account for the Final State Interaction among the emitted particles.

24th JUNE 2023

 $|\phi(\mathbf{q},\mathbf{r})|^2$

p]

What does femtoscopy measure?

24th JUNE 2023

$$C(k^*) = \left\langle \left| \Psi_{-\mathbf{k}^*}^S(\mathbf{r}^*) \right|^2 \right\rangle,$$

where the wave function Ψ^s represents the approximate stationary solution of the scattering problem

 $\Psi_{-\mathbf{k}^{*}}^{S}(\mathbf{r}^{*}) = e^{-i\mathbf{k}^{*}\cdot\mathbf{r}^{*}} + \frac{f^{S}(k^{*})}{r^{*}}e^{ik^{*}\cdot r^{*}}.$

The effective range approximation for the scattering amplitude is

$$f^{S}(k^{*}) = \left(\frac{1}{f_{0}^{S}} + \frac{1}{2}d_{0}^{S}k^{*2} - ik^{*}\right)^{-1},$$

where $f_0^{\ S}$ is the scattering length and $d_0^{\ S}$ is the effective radius for a given total spin S = 1 or S = 0. The particle is assumed to be unpolarized (the polarization P = 0): singlet state $\rho_0 = \frac{1}{4} (1 - P^2)$ and triplet state $\rho_1 = \frac{3}{4} (1 - P^2)$. The normalized pair separation distribution (source function) **S(r*)** is assumed to be Gaussian,

$$S(\mathbf{r}^*) = (2\sqrt{\pi}r_0)^{-3}e^{-\frac{\mathbf{r}^{*2}}{4r_0^2}},$$

The correlated function can be calculated analytically by averaging Ψ^s over the total spin S and the distribution of the relative distances **S(r*)**

$$C(k^*) = 1 + \sum_{S} \rho_S \left[\frac{1}{2} \left| \frac{f^S(k^*)}{r_0} \right|^2 \left(1 - \frac{d_0^S}{2\sqrt{\pi}r_0} \right) + \frac{2\Re f^S(k^*)}{\sqrt{\pi}r_0} F_1(Qr_0) - \frac{\Im f^S(k^*)}{r_0} F_2(Qr_0) \right],$$

with $F_1(z) = \int_0^z dx e^{x^2 - z^2}/z$ and $F_2(z) = (1 - e^{-z^2})/z.$

L.L. papers: Sov.J.Nucl.Phys. 35 (1982) 770, Yad.Fiz. 35 (1981) 1316-1330 (also here: APH N.S., Heavy Ion Physics 3, 93–113 (1996). <u>https://doi.org/10.1007/BF03053635</u>)

$p\Lambda$ correlation – Data / Sim

24th JUNE 2023

$\Delta \theta$ vs $\Delta \phi$ distribution (Merging and Splitting)

RPC results

ToF results

24th JUNE 2023

$p\Lambda$ correlation – Simulation

- Additional opening angle cut introduced between reconstructed Λ track and p track (primary)
- Solution is new problem : huge reduction in statistics is observed ~ 40%
- Double ratio correction is acceptable

Purity plot

$$C_{pur,corr}(k) = rac{C_{pur,uncorr}(k)-1}{purity} + 1,$$

- Purity correction is included bin-by-bin
- performed on simulation
- Plotted with respect to k*
 PID, DCA, Mass cuts

In addition :

- GeantPID (protons, pions)
- GeantParentTrackNum
- GeantParentPID (lambda)

For all centrality classes estimated purity for pA : 90% -92% \pm 3% (data) (<400 MeV/c)

hop on Meson Physics : Narendra Rathod

Experimental raw spectra
 Model effect
 Detector effects + model
 Exp + corrected (detector+model)
 Exp + corrected + purity : final spectra

Systematic table

$p - \Lambda$ correlation

24th JUNE 2023

MESON CONFERENCE : 2013 : Narendra Rathod

Summary :

- The correlation signals in Ag-Ag collision is extracted : $p-\Lambda$, (p-p correlation benchmark) 1.
- Detector effects and Purity corrections 2.
- Resolution studies 4

2nd stage : (method1: work under progress)

- Use Lednicky and Lyuboshitz (LL) analytical model 3.
 - source radii (R),
 - extract strong interaction parameters, ۲
 - Uncertainties determination

(Please stay tuned for the talk in QM/2023)

To characterize the interaction, LL model applies the approximated scattering theory, which uses the effective range of expansion and has two parameters: the scattering length f_0^{S} (which is directly linked with total cross-section of the process), and the effective range d_0^{S} .

2nd stage : (method2: work under progress)

4. Extract source distribution from SMASH information for pp, pA, also check $\chi\chi$ (see talk : Mateusz Grunwald) source radii (R) [additional check - direct access to source radii] and use afterburner CRAB

3. Systematics studies are performed (final stage). for(int $\mathbf{r} = 0.5$; $\mathbf{r} < 5.0$; $\mathbf{r} + = 0.01$) upcoming framework for(int 10 = 0.5; 10 < 5.0; 10 + = 0.01) for(int **d** = 0.5; **d** < 5.0; **d** + = 0.01) for(int i = 0.5; i < 5.0; i + = 0.01) for(int dt = 1.0; dt < 5.0; dt + = 0.01) Calculate Lednicky-Luboshitz

correlation function : fit data

```
\square^2: value is extracted : minimizer
```


24

Thank you

24th JUNE 2023

Lambda multiplicity

DCA parameters				
VDX	> 65 mm			
Dau1VD	> 8 mm			
Dau2VD	> 24 mm			
MotVD	< 5 mm			
MTD	< 6 mm			
OA	> 15 ⁰			

Number of Lambdas from same events

24th JUNE 2023

Event Vertex determination

Obtained mean : -0.578 mm : x-direction -0.299 mm : y-direction

The 15 target segments are determined by a 15-fold Gaussian fit function with a common standard deviation (σ).

Lambda Resolution : Preparation for method II

$$ps1 = a + b\sqrt{x} + cx + dx^{2} + fx^{3}$$

$$ps2 = a + \frac{b}{x} + \frac{c}{x^{2}} + \frac{d}{x^{3}} + \frac{f}{x^{4}}$$

$$ps3 = a + \frac{b}{x} + \frac{c}{x^{2}} + dx + fx^{2}$$

$$mf = a + bexp(\frac{c}{x})$$

Formula	Linear	pol4	pol6	ps1	ps2	ps3	mf
χ^2	2.91	0.90	0.96	0.98	1.23	1.05	1.10

Proton Resolution

Pion Resolution

Result : STAR and SPS data : consistency check

RHIC : Au+Au @ 200 GeV and SPS : Pb+Pb @ 17.3 TeV

24th JUNE 2023

HADES results : p+Nb reaction

J. Adamczewski-Musch et al. (HADES Collaboration) Phys. Rev. C 94, 025201 – Published 4 August 2016

24th JUNE 2023

Systematics studies

PID variation

A WARS

pp correlation – RPC / ToF

24th JUNE 2023

Thank you

24th JUNE 2023