

Nuclear Physics Division University of Warsaw

# Systematics of strange hadron yields from heavy-ion collisions at few GeV

### Krzysztof Piasecki, Piotr Piotrowski

University of Warsaw, Faculty of Physics

- A bit of history and motivation
- **Output** Glauber model extraction of  $\langle A_{part} \rangle$
- Global parametrization of yields
- **O** Behaviour of  $\alpha$  exponent in  $P \sim \langle A_{part} \rangle^{\alpha}$

# Motivation

- Exploring the map of strangeness production in HI near threshold throughout last 40 years
  - **1981,82**: First Bevalac results on  $K^+$  and  $\Lambda$

S

K. Piasecki

**1993**: V. Metag's systematic of meson production: 2 K<sup>+</sup> points



Good to look at yields, assuming  $P = f(\sqrt{s_{NN}}, \langle A_{part} \rangle)$ , and to find the parametrizations

(1981

229

47

PRL

аJ

еt

Ŋ

.Harri

Ь

Ar + KCl @ 1.8A GeV

0.7

# **Motivation**

- **Output** Published  $\langle A_{part} \rangle_{b}$ : ambiguity of modelling
  - S6 values from geometrical model
    (most of Fopi, some of KaoS, some of HADES)
  - B 19 values from optical Glauber model
    ( some of KaoS )
  - © 22 values from Glauber Monte Carlo ( most of Hades, STAR )
  - 6 unspecified(Bevalac, some of Fopi)



**Idea**: upgrade all the data  $\rightarrow$  to Glauber Monte Carlo.

For A<sub>part</sub> obtained by non-GlauberMC, take stated centralities (MUL-based) and simulate Glauber MC.

# (ZOO of) nuclear density profiles



Refs: > H. de Vries et al., Atom. Data Nucl. Data Tab. 36, 495 (1987) > P. Möller et al., Atom. Data Nucl. Data Tab. 59, 185 (1995)

17<sup>th</sup> Int. Workshop on MESON physics 2023.06.26

K. Piasecki

# How our analysis changed extracted $\langle Apart \rangle$ ?

Let's take K⁺ as an example:



# **Parameterizations of yields**

Global parameterization  $P = f[\sqrt{s_{NN}}, \langle A_{part} \rangle]$ .

① Usual approach
$$P = N \cdot \langle A_{part} \rangle^{\alpha} \cdot \sqrt{s}^{\beta}$$
(worse  $\chi^2/\nu$ )② Best-fit approach $P = N \cdot \langle A_{part} \rangle^{\alpha} \cdot \exp\left[-(C \cdot \sqrt{s})^{\beta}\right]$ C fitted for K<sup>±</sup> but adjusted for  $\Lambda$ ,  $\phi$ , K<sup>0</sup>s

| Hadron       | K⁺                             | K⁻                             | ٨                              | φ                              | Ko                 |
|--------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------|
| No. points   | 40                             | 25                             | 12                             | 9                              | 11                 |
| $\chi^2/\nu$ | 3.6                            | 2.2                            | 1.4                            | 0.2                            | 2                  |
| N            | (3.0 ± 1.0) · 10 <sup>-3</sup> | (1.6 ± 0.7) · 10 <sup>-4</sup> | (5.1 ± 1.0) · 10 <sup>-4</sup> | (2.6 ± 1.4) · 10 <sup>-5</sup> | (4.5 ± 0.9) · 10⁻³ |
| α            | $1.32 \pm 0.02$                | $1.32 {\pm} 0.04$              | $1.22 \pm 0.04$                | 1.27±0.12                      | $1.05 {\pm} 0.05$  |
| β            | -6.2±0.5                       | -7.3±0.7                       | <b>-</b> 67±6                  | $-10.0\pm0.2$                  | -5.7±0.1           |
| С            | 0.32±0.01                      | $0.32 {\pm} 0.01$              | 0.41 (fixed)                   | 0.35 (fixed)                   | 0.32 (fixed)       |

#### (see arXiv:2305.13760v1 for detailed information)

#### **Solution** Good or rather good $\chi^2/\nu$ .

**Usable for yield prediction** (see <u>arXiv</u> for cov. matrices). E.g. for K<sup>+</sup>,  $P[\sqrt{s_{NN}} = 2.55 \text{ GeV}, \langle A_{part} \rangle = 100] = 0.0453 (18)$ 

 $\alpha$  parameters very close together, although  $\alpha({\rm K^0}_{\rm s})$  away from the others.

#### How do these functions look?



K. Piasecki

17<sup>th</sup> Int. Workshop on MESON physics 2023.06.26

#### **Data – Fit deviations**

0

Projection onto  $\sqrt{s_{NN}}$  by dividing Yield per  $\langle A_{part} \rangle^{\alpha}$ 

Standard deviations between exp. data points and fit prediction:



K. Piasecki

17<sup>th</sup> Int. Workshop on MESON physics 2023.06.26

# $\alpha$ exponent dependency on beam energy

Let's examine  $\alpha$  in  $P \sim \langle A_{part} \rangle^{\alpha}$ .

The parametrization assumes that:

 $\alpha = \text{const}(\sqrt{s})$ 

But is it true? We can check it by selecting experiments where yields are available for a range of centralities.

#### Hypothesis ①

 $\alpha$  = Linear function ( $\sqrt{s}$ )

 $\Rightarrow$  Linear coefficient: 0.11 ± 0.16

 $\Rightarrow$  agrees with 0.

• Hypothesis (2)

 $\alpha = \text{const}(\sqrt{s})$ 

 $\Rightarrow$  Constant = 1.30 ± 0.02 ( $\chi^2/\nu$  = 1.4)



#### Global $\alpha$ exponent: relation to other expts



 $\langle A_{part} \rangle^{\alpha}$  dependency *common for "bulk strangeness"* is a good hypothesis also in 2 experiments, although some 2.5...3  $\sigma$  tension between results.

K. Piasecki 17<sup>th</sup> Int. Workshop on MESON physics 2023.06.26

# **Predictive power of global parametrization**



Benchmark point: Ar+KCl @  $\sqrt{s}$  = 2.61 GeV (HADES) : all the yields are available at the same centrality. Let's compare deviations from exp. data of: parametrization and transport models (public versions).





| Hadron                  | K+  | K⁻  | ٨   | φ   | Kº  | Σ dev |
|-------------------------|-----|-----|-----|-----|-----|-------|
| Phenom. parametrization | 3.3 | 1.5 | 0   | 0.5 | 0.7 | 6.0   |
| RQMD.RMF MD2            | 5.2 | 2.4 | 4   | 2.5 | 0.5 | 14.6  |
| RQMD.RMF MD4            | 9.3 | 2.9 | 9   | 1.7 | 6.6 | 29.4  |
| SMASH κ = 240           | 3.3 | 0.2 | 1.2 | 1.8 | 7   | 13.5  |
| SMASH κ = 380           | 0.8 | 1.1 | 0.8 | 2.3 | 4   | 9.0   |
| UrQMD Hard EoS          | 4.6 | 5.6 | 3.1 | 3.6 | 8.5 | 26.7  |

Phenomenological parametrization currently offers better overall estimation of yields than all the benchmarked transport codes (public versions)

K. Piasecki

#### How parametrization predicts unpublished yields

Predictions of strange hadron yields from HADES on Ag+Ag @  $\sqrt{s}$  = 2.41 and 2.55 GeV.



Feel free to include our parametrization into predictions or comparisons to exp data 🙂

# Summary

- □ ~100 published yields of strange hadrons ( $K^{\pm 0} \varphi \Lambda$ ) within  $\sqrt{s_{NN}} \in [2-3]$  GeV
- Calculations of  $\langle A_{part} \rangle$  using **TGlauberMC** for all the data points
  - > Improvement of  $\langle A_{part} \rangle$  estimation methods (changes up to 20% wrt to published values)
- Yield parametrization as  $f(\sqrt{s_{NN}}, \langle A_{part} \rangle)$ . See *arXiv:2305.13760v1* for details.
  - $\succ$  reasonable  $\chi^2/\nu$  , nearly all data points remain within  $3\sigma$
- Tracing  $\alpha$  exponent of  $P \sim \langle A_{part} \rangle^{\alpha}$ 
  - >  $\alpha$  seems not to depend on hadron specie and not change with  $\sqrt{s_{NN}}$  (within 2 3 GeV)
  - > Overall  $\alpha = 1.30 \pm 0.02$  (common scaling)
- Benchmark: Ar+KCl @  $\sqrt{s_{NN}} = 2.61 \text{ GeV}$ 
  - > Parametrization seems **better** than the public versions of RQMD.RMF, SMASH, UrQMD.
- **Predictons** for strangeness yields for Ar+Ag @  $\sqrt{s_{NN}}$  = 2.41 and 2.55 GeV

# **Backup slides**

#### **Inelastic NN cross sections**

1)  $\sigma(pp)$  is different from  $\sigma(pn)$  and  $\sigma(np)$ 2) Assumption: isospin symmetry [ $\sigma_{nn} = \sigma_{pp}$ ]

$$\sigma_{NN} = \frac{Z_p Z_t \sigma_{pp} + N_p N_t \sigma_{nn} + (Z_p N_t + N_p Z_t) \sigma_{np}}{A_p A_t}$$

- 3 Experimentally,  $\sigma(pn)$  is not the same as  $\sigma(np)$
- (4)  $\sigma(np)$  at low  $\sqrt{s}$  and  $\sigma(pn)$  at higher  $\sqrt{s}$  are rare

 $\sigma$ (pn)

3

[3, 4] contribute to systematic errors

2.5

s [GeV]



▶ B. Kardan's Ms. C.

K. Piasecki

2

30

20

10

0

σ<sub>inel</sub> [mb]

17<sup>th</sup> Int. Workshop on MESON physics 2023.06.26

30

20

10

2

2.5

√s [GeV]

3

σ<sub>inel</sub> [mb]

# Glauber model extraction of $\langle A_{part} \rangle$



- Method: ① For every data point find centrality [%]
  - Simulate via TGlauberMC (2)
  - Cut *Npart* at given centrality 3
  - Find  $\langle A_{part} \rangle$  for accepted sample (4)

...but: iterate [2, 4] over  $\sigma_{NN}$  and shape variants

**Examples:** 

- $(\mathbf{A})$ TGlauberMC simulation of Ni+Ni @ 1.9A GeV (input:  $\sigma_{NN} = 26.4 \text{ mb}$ ), selection of 12.9% central events  $\rightarrow$   $\langle A_{part} \rangle = 80.0$
- B TGlauberMC simulation of Au+Au @ 1.23A GeV (input:  $\sigma_{NN} = 23.7 \text{ mb}$ ),  $\oplus$  selection of 10% central events  $\rightarrow \langle A_{part} \rangle = 300.8$



# $\alpha$ exponent dependency on beam energy

Data is often available for similar but not the same beam energies (e.g.  $T_{\text{Beam}} = 1.756$  vs 1.8 A GeV).

- o 7 single-energy cases: enough points at <u>the same beam energy</u>, so the fit is stable.
- 5 adjacent-energy cases: points were fitted using the best-fit function (2)
  - 1 hopeless case : fit of K<sup>+</sup> data at  $T_{\text{Beam}}$  = 1.8A GeV gives very bad  $\chi^2/\nu \rightarrow$  unstable



For "adjacent-energy cases" the fit stability of  $\alpha$  was traced, if 1 point was removed from highest or lowest energy. It contributed to systematic errors. Currently,  $\Delta \alpha = \sqrt{(\Delta \alpha_{stat})^2 + (\Delta \alpha_{syst})^2}$ 

# Common scaling of yields with $\sqrt{s}$ ?



K. Piasecki 17<sup>th</sup> Int. Workshop on MESON physics 2023.06.26

**Yields and Apart data for strangeness** 

**Data on yields and**  $\langle A_{part} \rangle$  **for** K<sup>+</sup>, K<sup>-</sup>, K<sup>0</sup>,  $\Lambda$ ,  $\phi$  and even  $\Xi^-$  :) *@*  $T_{Beam} = [0.6 .. 10.7]$  A GeV. Here: K<sup>+</sup> data [link to table]

| K+     | Tb/A  | √s    | √sth  | As published      |         |         |          |       | 0     | verlap | TGlaub       | erMC         |          |                |           |           |      |       |      |                        |
|--------|-------|-------|-------|-------------------|---------|---------|----------|-------|-------|--------|--------------|--------------|----------|----------------|-----------|-----------|------|-------|------|------------------------|
| System | [GeV] | [GeV] | [GeV] | <apart>_b</apart> | type    | Р       | dP       | Cen   | [%] < | Ap>b   | <ap>b Δ</ap> | ( <ap>b</ap> | <b>)</b> | Ref.           |           |           |      |       |      |                        |
| AI+AI  | 1,91  | 2,666 | 2,549 | 42                | geom    | 0,035   | 0,0049   | 08    | 3.6   | 34.8   | 36,78        | 1,13         | P. G     | asik et al. (F | 0         |           |      |       |      |                        |
| Ni+Ni  | 1,06  | 2,348 | 2,549 | 75                | geom    | 0,0033  | 0,000825 | 01    | 2.9   | 73.5   | 75,31        | 0,75         | D. B     | est et al. (FC | <b>DF</b> |           |      |       |      |                        |
| Ni+Ni  | 1,45  | 2,499 | 2,549 | 75                | geom    | 0,0195  | 0,005005 | 01    | 2.9   | 76.6   | 78,05        | 0,7          | D. B     | est et al. (FC | <b>DF</b> |           |      |       |      |                        |
| Ni+Ni  | 1,93  | 2,673 | 2,549 | 75                | geom    | 0,0825  |          |       |       |        |              |              |          |                |           |           |      |       |      |                        |
| Ni+Ni  | 1,91  | 2,666 | 2,549 | $46,5 \pm 2$      | geom    | 0,03598 | C+C      | 1,8   | 2,627 | 2,549  | 6            | (            | geom     | 0,00318        | 0,00032   | 0100      | 4.8  | 6,4   | 0,11 | F. Laue et al. (Kao    |
| Au+Au  | 1,23  | 2,415 | 2,549 | 303 ± 11,0        | glauMC  | 0,0598  | Ni+Ni    | 1     | 2,324 | 2,549  | 16.2         |              | geom     | 0.00023        | 0.000045  | 41.0 59.6 | 13.7 | 17.25 | 0.37 | R. Barth et al. (Ka    |
| Au+Au  | 1,23  | 2,415 | 2,549 | 213,1 ± 11,1      | glauMC  | 0,0339  | Ni+Ni    | 1     | 2,324 | 2,549  | 37,6         |              | geom     | 0,00074        | 0,000135  | 17.9 41.0 | 32.4 | 36,45 | 0,46 | R. Barth et al. (Ka    |
| Au+Au  | 1,23  | 2,415 | 2,549 | 149,8 ± 9,7       | glauMC  | 0,0188  | Ni+Ni    | 1     | 2,324 | 2,549  | 61,6         |              | geom     | 0,00179        | 0,00033   | 11.4 17.9 | 54.3 | 57,62 | 0,82 | R. Barth et al. (Ka    |
| Au+Au  | 1,23  | 2,415 | 2,549 | 103,1 ± 6,8       | glauMC  | 0,012   | Ni+Ni    | 1     | 2,324 | 2,549  | 85.7         |              | geom     | 0.00322        | 0,00056   | 011.4     | 74.3 | 76,49 | 0.81 | R. Barth et al. (Ka    |
| Ar+KCl | 1,756 | 2,611 | 2,549 | $38,5 \pm 3,9$    | geom    | 0,028   | Ni+Ni    | 1.8   | 2,627 | 2,549  | 15,4         | Č            | geom     | 0.00375        | 0,00061   | 41.0 59.6 | 14.5 | 18,11 | 0,36 | R. Barth et al. (Ka    |
| Au+Au  | 1,5   | 2,518 | 2,549 | 16                | glauOpt | 0,00328 | Ni+Ni    | 1.8   | 2.627 | 2.549  | 37.3         |              | aeom     | 0.0178         | 0.0028    | 17.941.0  | 34.5 | 38.77 | 0.45 | R. Barth et al. (Ka    |
| Au+Au  | 1,5   | 2,518 | 2,549 | 88,2              | glauOpt | 0,024   | Ni+Ni    | 1.8   | 2.627 | 2.549  | 61.3         | Č            | geom     | 0.0423         | 0.0066    | 11.4 17.9 | 58.1 | 61.64 | 0.54 | R. Barth et al. (Ka    |
| Au+Au  | 1,5   | 2,518 | 2,549 | 164,8             | glauOpt | 0,0606  | Ni+Ni    | 1,8   | 2,627 | 2,549  | 85,7         | (            | geom     | 0,0638         | 0,0099    | 011.4     | 79.5 | 81,52 | 0,59 | R. Barth et al. (Ka    |
| Au+Au  | 1,5   | 2,518 | 2,549 | 252               | glauOpt | 0,116   | C+C      | 0.8   | 2.242 | 2,549  | 6            |              | aeom     | 0.0000175      | 0.0000032 | 0100      | 3.9  | 5.67  | 0.11 | A. Foerster et al. (   |
| Au+Au  | 1,5   | 2,518 | 2,549 | 336,2             | glauOpt | 0,158   | C+C      | 1.5   | 2 518 | 2 549  | 6            |              | neom     | 0.0013         | 0.00016   | 0 100     | 4 73 | 6.27  | 0.11 | A Foerster et al. (    |
| Ni+Ni  | 1,5   | 2,518 | 2,549 | 7                 | glauOpt | 0,00119 |          | 0.9   | 2,010 | 2,040  | 09.5         |              | geom     | 0.00147        | 0.00010   | 0 100     | 80.2 | 0,27  | 2.5  | A. Foorster et al. (   |
| Ni+Ni  | 1,5   | 2,518 | 2,549 | 31                | glauOpt | 0,00815 | AutAu    | 0,0   | 2,242 | 2,049  | 90,0         | Į.           | geom     | 0,00147        | 0,00027   | 0100      | 00.2 | 00    | 2,5  | A. Foerster et al. (   |
| Ni+Ni  | 1,5   | 2,518 | 2,549 | 52,8              | glauOpt | 0,0168  | Au+Au    | 1     | 2,324 | 2,049  | 90,0         | (            | geom     | 0,0045         | 0.0007    | 0100      | 04.7 | 6.47  | 2,0  | A. Foerster et al. (   |
| Ni+Ni  | 1,5   | 2,518 | 2,549 | 77                | glauOpt | 0,028   |          | 2     | 2,090 | 2,049  | 09.5         | (            | geom     | 5,30E-03       | 0.00056   | 0100      | 4.03 | 0,47  | 0,1  | A. FOEISIEI et al. (Ka |
| Ni+Ni  | 1,5   | 2,518 | 2,549 | 101               | glauOpt | 0,0311  | Au+Au    | 0,0   | 2,100 | 2,549  | 90,0         | (            | geom     | 7,30E-05       | 0.000016  | 0100      | 00.1 | 75,7  | 3,0  | A. FOErster et al. (Ka |
| C+C    | 1     | 2,324 | 2,549 | 6                 | geom    | 0,00008 |          | 1,2   | 2,403 | 2,549  | 00.5         | (            | geom     | 3,10E-04       | 0.00046   | 0100      | 4.58 | 0,07  | 0,12 | A. Foerster et al. (Ka |
|        |       |       |       |                   |         |         | Au+Au    | 1,135 | 2,378 | 2,549  | 98,5         | (            | geom     | 9,40E-03       | 0.0021    | 0100      | 80.0 | 90,9  | 2,6  | A. Foerster et al. (Ka |
|        |       |       |       |                   |         |         |          | 1,93  | 2,073 | 2,549  | 12.1         | (            | geom     | 0,000          | 0.003     | 021.4     | 08.5 | 71,29 | 0,69 | M. Menzel et al. (r    |
|        |       |       |       |                   |         |         | Ne+NaF   | 2,1   | 2,732 | 2,549  | UNKNOV       | vn ç         | geom     | 0.0171         | 0.0060    | 0100      |      | 9,78  | 0,22 | S. Schnetzer et al. t  |
|        |       |       |       |                   |         |         | Au+Au    | 10,7  | 4,859 | 2,549  | 304          | (            | geom     | 24.2           | 0.9       | 00        |      | 341,5 | 3,0  | L. Anie et al. (E-80 f |
|        |       |       |       |                   |         |         | Au+Au    | 10,7  | 4,859 | 2,549  | 312          | (            | yeom     | 19.7           | 0.0       | 512       |      | 278,2 | 3,9  | L. Anie et al. (E-80 t |
|        |       |       |       |                   |         |         | Au+Au    | 10,7  | 4,859 | 2,549  | 248          | Ç            | geom     | 13.3           | 0.4       | 1223      |      | 205,7 | 4,2  | L. Anie et al. (E-802  |
|        |       |       |       |                   |         |         | Au+Au    | 10,7  | 4,859 | 2,549  | 164          |              | geom     | 8.0            | 0.3       | 2339      |      | 128,1 | 4,6  | L. Ahle et al. (E-802  |

17<sup>th</sup> Int. Workshop on MESON physics 2023.06.26

K. Piasecki