

Pion & proton emission channels in π⁻+**C reaction** at 0.7 GeV/c with HADES

Béatrice Ramstein, IJCLab, Orsay, France for the HADES collaboration

Based on Fatima Hojeij's PhD (IJCLab) Co-supervision: Izabela Ciepal (IFJ PAN)

June 26, 2023

Pion dynamics for heavy ion collisions at a few AGeV

Pion production dominates the inelastic NN cross section

- $\rightarrow\,$ pion dynamics crucial to describe the evolution of HI collisions and drives the thermal properties of nuclear medium
 - □ $\sqrt{s_{NN}} < 2.6 \text{ GeV}$ (A+A SIS18@GSI) most pions in the $\Delta(1232)$ region

 \Box $\sqrt{s_{NN}} > 2.6 \text{ GeV}$

Future experiments: p+A (SIS18@GSI & SIS100@FAIR) or A+A (SIS100)) : Higher lying resonances contribute.

Data base for pion-nucleus reactions

- $P_{\pi} < 250 \text{ MeV/c} : \Delta(1232) \text{ resonance region rather well-known.}$
- $300 < P_{\pi} < 500$ MeV/c : few measurements (π, πx) or (π, ππx) (LAMPF, TRIUMF, KEK).
- P_{π} > 500 MeV/c : only σ_{tot} (Saturne-1, NIMROD, BNL) and differential elastic cross sections (KEK).

 $\pi^{+}+^{12}C$

E.S. Pinzon Guerra et al., Phys. Rev. D 99, 052007 (2019)

 $(\pi^{-}+^{12}C \text{ is even more scarce }!)$

Measurements for p_{π} > 500 MeV/c are highly needed

for hadronic matter studies at Vs_{NN} > 2.6 GeV

2000

- for detector studies (e.g. e/π discrimination in calorimeters)
- for neutrino physics (v flux and v detection)

HADES results at $p_{\pi} = 1.7 \text{ GeV/c}$

 π^- + W/C : ϕ and kaon absorption *Phys. Rev. Lett.* 123 (2019), 022002 Λ + K⁰_S+X and inclusive Λ , K⁰_S, K[±], π^{\pm} , p spectra <u>arXiv:2301.03940</u> [nucl-ex]

4

Pion beam experiment @ GSI

August 2014 commissioning experiment

- Total ~15 days of measurements
- □ Main run: momentum $P_{\pi^-} = 0.690 \text{ GeV/c}$ ($Vs_{\pi N} = 1.49 \text{ GeV}$)
- Polyethylene (CH2) and carbon targets

- ★ Data on carbon mainly used for subtraction of π^-+C interactions in CH₂ target $\rightarrow \pi^-+p$ reaction (e⁺e⁻ production) [HADES collab.], Phys.Rev. C102 (2020) 024001. [HADES collab.], 2205.15914 [nucl-ex] Izabela Ciepal talk, Saturday June 24
- * Large statistics for hadronic channels (π^+ , π^- , p) on C target to be used for dedicated analysis.

Data analysis (π^+,π^-,p) with HADES

- Acceptance: θ: 18° 85° φ : 85% (6 sectors)
- Magnet (toroïdal field)
- Tracking: drift chambers
- Time of flight : RPC (θ < 45°) and scintillators (θ > 45°)
- Trigger : 2 charged particles

Particle identification

Uncertainties:

- Normalisation ±4%
- Point to point systematic errors 5%, (mainly due to rec. efficiency)

Main channels in $\pi^-+^{12}C$

- Quasi-elastic and charge exchange:
 - \circ π⁻ + p → π⁻ + p 17.8 mb (SAID)
 - \circ π⁻ + n → π⁻ + n 12 mb (SAID)
 - \circ π⁻ + p → π⁰ + n 10 mb (SAID)
- Inelastic (pion production)
 - $\circ \quad \pi^- + p \rightarrow n + \pi^- + \pi^+ \quad 6.1 \text{ mb}$
 - $\circ \quad \pi^- + p \rightarrow p + \pi^- + \pi^0 \quad 3.3 \text{ mb}$
 - $\circ \quad \pi^- + n \rightarrow p + \pi^- + \pi^- \ 0.4 \ mb$

Main contribution from s-channel N* excitations

- + rescatterings (multi step) πN→πN, πN→ππN, NN→NN, but NN→NNπ kinematically suppressed
 + absorption πNN→NN
- > Analysis of many exit channels : π^-p , π^+p , pp, π^-pp , $\pi^+\pi^-p$,
- Comparison between reconstructed events (in HADES acceptance) from measurements and from Geant simulations
 - RQMD.RMF, GiBUU, SMASH (transport models)
 - INCL++ cascade model (GEANT4 hadronic model)

Selection of quasi-elastic (π -p) channel

INCL++ provides the best description of angular distributions, but too large excitation energies by ~ 20 MeV

Tail at large p_{miss} (>500 MeV/c) consistent with Short Range Correlations implemented in INCL++ (parametrization based on existing data)

 $\pi^{-}+^{12}C \rightarrow p+\pi^{-}+\pi^{-}+X$

$\pi^{-}+^{12}C \rightarrow p+p+\pi^{-}+X$

Cross section summary table

Integrated cross sections in HADES acceptance

π [−] + ¹² C → reaction 2-3 charged particles channels	σ ^{acc} [mb]	σ ^{acc} SMASH [mb]	σ ^{acc} rQMD [mb]	σ ^{acc} GIBUU [mb]	σ^{acc}_{INCL} [mb]
$p\pi^-$ quasi- elastic	3.05749	12.6985	6.96586	3.44757	2.61393
$p\pi^-$ inelastic	3.35684	4.83481	7.45256	1.76097	2.15597
π ⁻ π ⁻	0.229554	0.187058	0.438986	0.0529949	0.324116
$\pi^-\pi^+$	1.06115	2.17662	2.39893	0.459961	1.46397
$\pi^+\pi^+$	0.00207372	0.00755551	0.00636384	0.000245144	0.00305625
$p\pi^+$	0.320214	0.774002	1.12059	0.140976	0.300638
pp	1.8327	3.30951	6.35023	1.19376	1.06719
p π ⁻ π ⁺	0.0463039	0.134989	0.202082	0.021943	0.0525704
p π ⁻ π ⁻	0.0646787	0.0596407	0.16292	0.0228274	0.0536891
p p π ⁻	0.337741	0.617297	1.07159	0.192891	0.153924
ррр	0.047972	0.082285	0.300865	0.039017	0.0238212

Preliminary conclusion:

rQMD.RMF and SMASH

strongly overestimate particle yields

• INCL and GIBUU

give the best overall description

Inclusive channel analysis: work in progress

+ inclusive π^+ and deuterons,

Conclusion

Pion and proton spectra measured with HADES in different exit channels in the π^- +¹²C reaction @0.69 GeV/c

 \rightarrow detailed comparison with model predictions

transport models used for hadronic matter studies

✓ INCL++ (GEANT4 hadronic model)

can be used to improve implementation of various processes

(quasi-elastic, pion production, absorption, ...)

 \rightarrow crucial benchmark for a realistic treatment of energy dissipation in Heavy-Ion collisions

- \rightarrow information about pion-nucleus dynamics in the second resonance region
- \rightarrow New data base of general interest

 \rightarrow possibility to explore Short Range Correlations in the π ⁻+C reaction at 1.7 GeV/c

Thank you for your attention !

Number of collisons in $\pi^- + {}^{12}C$ p $_{\pi} = 0.69 \text{ GeV/c}$

INCL++ prediction in 4π

Main properties

- Nucleon Fermi Gas.
- Binary interactions: Inelastic collisions through resonance/string excitation and decay
- All baryonic resonances included (Δ (1232), N(1440), N(1520), ... up to M=2 GeV/c²)
- Elementary cross-sections adjusted to data (c.f. slide 6).

SMASH

Potential Mean field 1

Distribution of nucleons

https://smash-transport.github.io/

GIBUU:

- Potential mean field
- Momentum-dependent potential 2.

RQMD:

- Sum of nucleons potentials; the mean field 1. propagation is the same for nucleons and baryonic resonance.
- 2. Momentum-dependent potential

gaussian wave packets

Relativistic Quantum Molecular Dynamics

http://web.archive.org/web/20130219223256/htt ps://quark.phy.bnl.gov/~ynara/jam/

Pion absorption investigation with INCL

 $\succ \quad \pi^- + p \rightarrow \pi^- + p$ $followed by (a) \pi^- + p + p \rightarrow n + p ; \quad n + p \rightarrow n + p$ $or (b) \pi^- + p \rightarrow \pi^0 + n ; \quad \pi^0 + p + p \rightarrow p + p$

- ★ INCL predicts >20% of absorption in channels with 2 protons but kinematics are not very different.
- ★ Better investigation of pion absorption would need neutron reconstruction.

Intranuclear cascade model INCL

Implementation of short range correlations

Constraints for the "extra" momentum generated by the SRCs

J.L. Rodríguez-Sánchez

