Two-particle angular correlations of identified particles in pp collisions at $\sqrt{s} = 13$ TeV with ALICE

Daniela Ruggiano on behalf of the ALICE Collaboration

Warsaw University of Technology

$\Delta \eta \Delta \varphi$ angular space

pseudorapidity : $\eta = -\ln|tg\frac{\theta}{2}|$ polar angle : θ

transverse momentum : $\textit{p}_{\rm T}$ azimuthal angle : φ

Fig. A.Zaborowska

$$C_P(\Delta\eta,\Delta\varphi) = rac{N_{pairs}^{mixed}}{N_{pairs}^{signal}} rac{S(\Delta\eta,\Delta\varphi)}{B(\Delta\eta,\Delta\varphi)}$$

 C_P is the Probability-ratio correlation function

Anatomy of angular correlations

22-27/06/2023, MESON 2023

Identified mesons and baryons

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

Identified mesons and baryons

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

22-27/06/2023, MESON 2023

Mesons and baryons compared to MC models

(c) pp pairs

in a second rear and second

C(A @)

2

1.5

22-27/06/2023, MESON 2023

Can we understand the anti-correlation of baryons?

Possible explanation:

- \Box Small p_{T} range
- \Box Coulomb repulsion
- \Box Effect of other baryons
- □ Fermi-Dirac quantum statistics

 \Box Other experimental measurements

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

$p_{\rm T}$ dependence

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

Can we understand the anti-correlation of baryons?

Possible explanation:

- \boxtimes Small p_{T} range
- \Box Coulomb repulsion
- \Box Effect of other baryons
- □ Fermi-Dirac quantum statistics

 \Box Other experimental measurements

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

22-27/06/2023, MESON 2023

Coulomb repulsion and other baryons

 \blacksquare A is a neutral particle useful for testing how much the influence of Coulomb repulsion

affects the anti-correlation \rightarrow Coulomb repulsion plays marginal role.

It is possible to check whether the effect also applies to baryons other than protons \rightarrow for all baryons, anti-correlation is a common feature.

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

Can we understand the anti-correlation of baryons?

Possible explanation:

- \boxtimes Small p_{T} range
- \boxtimes Coulomb repulsion
- \boxtimes Effect of other baryons
- □ Fermi-Dirac quantum statistics

 \Box Other experimental measurements

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

Fermi-Dirac quantum statistics

 \blacksquare Fermi-Dirac quantum statistics plays a marginal role, since p and Λ are not identical.

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

22-27/06/2023, MESON 2023

Can we understand the anti-correlation of baryons?

Possible explanation:

- oxtimes Small p_{T} range
- \boxtimes Coulomb repulsion
- \boxtimes Effect of other baryons
- ⊠ Fermi-Dirac quantum statistics

 \Box Other experimental measurements

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

STAR Au-Au data

- The anti-correlation effect is present for Au–Au results
- Beam energy, $p_{\rm T}$ range and centrality dependencies were studied

$$\mathsf{R}_{2}(\Delta y, \Delta \varphi) = \frac{\rho_{2}(\Delta y, \Delta \varphi)}{\rho_{1}(y_{1}, \varphi_{1})\rho_{2}(y_{2}, \varphi_{2})} - 1$$

Correlation amplitudes decrease as collisions become more central

STAR, Phys.Rev.C101,014916(2020)

Can we understand the anti-correlation of baryons?

Possible explanation:

- \boxtimes Small p_{T} range
- \boxtimes Coulomb repulsion
- ⊠ Effect of other baryons
- ⊠ Fermi-Dirac quantum statistics

 \boxtimes Other experimental measurements

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

Can we understand the anti-correlation of baryons?

Possible explanation:

- oxtimes Small p_{T} range
- \boxtimes Coulomb repulsion
- \boxtimes Effect of other baryons
- ⊠ Fermi-Dirac quantum statistics
- \boxtimes Other experimental measurements

How does anti-correlation behave in different multiplicity classes and collision systems in ALICE???

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

Limitation of the probability-ratio definition

pp, p-Pb and Pb-Pb results cannot be compared easily:

Using the probability-ratio definition we have:

- \Box Difference in multiplicities
- \Box Trivial multiplicity scaling, 1/N

Limitation of the probability-ratio definition

pp, p–Pb and Pb–Pb results cannot be compared easily:

- Using the probability-ratio definition we have:
- \Box Difference in multiplicities
- \Box Trivial multiplicity scaling, 1/N

NCREASING MULTIPLICITY

Rescaled two-particle cumulant definition

- How to overcome trivial multiplicity scale 1/N?
 - Use a **rescaled two-particle cumulant definition** (*C_C*) for correlation functions:

$$C_{C}(\Delta y \Delta \varphi) = \frac{N_{av}}{\Delta y \Delta \varphi}(\mathsf{R}_{2})$$

- $-R_2 =$ probability ratio correlation function 1.
- N_{av} = average number of particles produced in the analyzed multiplicity classes;

Change $\eta \to y$ (pseudorapidity to rapidity) because the latter is more natural for identified particles: $y = \frac{1}{2} \ln(\frac{E+p_z c}{E-p_z c})$

STAR Collaboration, Phys.Rev.C86(2012),064902.

22-27/06/2023, MESON 2023

Data samples & settings

 \blacksquare pp collisions at 13 TeV registered by ALICE in 2016, 2017 and 2018.

■ Tracking:

□ Inner Tracking System (ITS);
□ Time Projection Chamber (TPC);

Particle Identification:

□ Time Projection Chamber (TPC);□ Time of Flight (TOF);

Kinematic cuts:

□ |y| < 0.5;□ pions : 0.2 < p_T < 2.5 GeV/*c*; □ kaons : 0.5 < p_T < 2.5 GeV/*c*; □ protons : 0.5 < p_T < 2.5 GeV/*c*;

Multiplicity classes:

 \Box 0–20%,20–40%,40–70%,70–100%

 π like-sign

22-27/06/2023, MESON 2023

Probability-ratio ALICE preliminary, pp $\sqrt{s} = 13 \text{ TeV}$ K⁻K⁻+K⁺K⁺. 0–20% K⁻K⁻+K⁺K⁺, 20–40% K⁻K⁻+K⁺K⁺, 40–70% K⁻K⁺+K⁺K⁺. 70–100% $C_p(\Delta \varphi, \Delta y)$ $C_p(\Delta \phi, \Delta y)$ $C_p(\Delta \phi, \Delta y)$ $C_p(\Delta \varphi, \Delta y)$ 1.2 1.2 0.8 0.1 0.6 0.5 1, 1 1, ALI-PREL-541677 **Increasing multiplicity** Rescaled two-particle cumulant ALICE preliminary, pp $\sqrt{s} = 13 \text{ TeV}$ K⁻K⁻+K⁺K⁺, 0–20% K⁻K⁻+K⁺K⁺, 20–40% K⁻K⁻+K⁺K⁺, 40–70% K⁻K⁻+K⁺K⁺, 70–100% 15 ×10 10 $C_{C}(\Delta \varphi, \Delta y)$ 15 10 $\Im_{c}(\Delta \varphi, \Delta y)$ $C_{c}(\Delta \varphi, \Delta y)$ $\zeta_{C}(\Delta \varphi, \Delta y)$ 10 1, 1, NOT ALI-PREL-541695 22-27/06/2023, MESON 2023

Daniela Ruggiano – WUT

K like-sign

19/26

p like-sign

20/26

Projection of the correlation functions

like-sign

Rescaled two-particle cumulant

• Correlation functions rise with increasing multiplicity

Projection of the correlation functions

unlike-sign

Rescaled two-particle cumulant

• Correlation functions rise with increasing multiplicity

 π like-sign

PYTHIA8 EPOS

Rescaled two-particle cumulant

• The MC models are able to reproduce the correlation function well for mesons.

K like-sign

PYTHIA8 EPOS

Rescaled two-particle cumulant

ALI-PREL-541767

• The MC models are able to reproduce the correlation function well for mesons.

p like-sign

PYTHIA8 EPOS

Rescaled two-particle cumulant

• Baryonic correlations cannot be reproduced by MC models: no anti-correlation is visible.

- \circ probability ratio definition
- rescaled two-particle cumulant definition
- □ Comparison with Monte Carlo generators (PYTHIA8 and EPOS)

■ TAKE-HOME MESSAGE:

Rescaled two-particle cumulant definition is the most appropriate for multiplicity dependence studies because it allows to untangle and delve into the various phenomena that contribute to the structure of the $\Delta y \Delta \varphi$ correlation function. The baryon anti-correlation remains to be understood.

baryon-baryon anti-correlation

Rapidity correlations in e⁺e⁻

From the mechanism of jet production: Two primary hadrons with the same baryon number are separated by at least two steps in "rank" \rightarrow we are not likely to find two baryons or two antibaryons very close to each other. Nucl.Phys.B136(1978)131

2

..... FF

 $\overline{p}(\pi^{\dagger}\pi^{-}\pi^{-})$

Lund 6.2

- Lund 4.3

22-27/06/2023, MESON 2023

Strong Final-State Interaction

■ Femtoscopic measurements are more suitable for the study of the strong interaction;
■ Femto correlation generates peak at ΔηΔφ = (0,0) comparable with the peak observed in the anti-correlation;

Ł.K.Graczykowski and M.A.Janik, Phys. Rev. C 104, 054909

Multiplicity classes

0-5%: most central collision

80-100% : most peripheral collision

Spectators

Parameter b is defined as the distance perpendicular to the direction of the radius between two nuclei.

- For central collisions $b \sim 0$: For peripheral collisions b > 2R;
- Not measured directly \rightarrow estimated from centrality

N_{av} estimation

$$C(\Delta y \Delta \varphi) = \frac{N_{av}}{\Delta y \Delta \varphi}(R_2)$$

 $\rm N_{av}$ is the average number of particles produced in the multiplicity classes analyzed after applying the efficiency corrections;

Nav estimation	0-20%	20-40%	40-70%	70-100%
Pions	5.5	3.25	2.1	1.3
Kaons	0.65	0.35	0.2	0.1
Protons	0.3	0.2	0.1	0.06

Table: N_{av} values estimated for all particles involved in the analysis, i.e., pions, kaons and protons, and for the multiplicity classes involved. The values are applied as a normalization factor to the correlation function $\Delta y \Delta \varphi$ defined as the rescaled two-particle cumulant.

STAR collaboration, Phys. Rev. C 86 (2012), 064902.

Daniela Ruggiano – WUT

22-27/06/2023, MESON 2023

ALI-PREL-541692

22-27/06/2023, MESON 2023

ALICE preliminary, pp $\sqrt{s} = 13 \text{ TeV}$

Projection of $\Delta y \Delta \varphi$ correlation functions probability ratio definition

22-27/06/2023, MESON 2023

Projection of $\Delta y \Delta \varphi$ correlation functions

Probability ratio

Projection of $\Delta y \Delta \varphi$ correlation functions

Probability ratio

$\underset{\text{probability ratio definition}}{\text{Comparison to MC models}}$

Probability ratio

ALI-PREL-541743

Probability ratio

Probability ratio

Probability ratio

ALI-PREL-541752

Probability ratio

Probability ratio

ALI-PREL-541758

Comparison to MC models rescaled two-particle cumulant definition

Rescaled two-particle cumulant

Rescaled two-particle cumulant

22-27/06/2023, MESON 2023

Rescaled two-particle cumulant

ALI-PREL-541776