Second-order pion-nucleus potential for scattering and photoproduction

Viacheslav Tsaran

Institute of Nuclear Physics, University of Mainz

June 23, 2023

Outlook

- Motivation: neutron skin
- Minimal model for π^0 photoproduction on nuclei
- Similarity to pion production in neutrino scattering
- Common approach for scattering and photoproduction
- Scattering: new potential, fits and prediction
- Application of our model to photoproduction

π^0 photoproduction – a tool for studying neutron distributions

π^0 photoproduction – a tool for studying neutron distributions

Precise theoretical model for photoproduction on nuclei is required

Neutron distribution can be extracted: $F_n(q) = F_N(q) - F_n(q)$

800 • $V_{\gamma\pi}$ for PWIA $\exists e(\gamma, \pi^0)^4 He$ • scattering amplitude T for FSI PWIA 600 FSI $V_{\nu\pi}$ Т (q**n**) 400 • Effective $\Delta(1232)$ self-energy Σ_{Δ} ь 200 D. Drechsel et al., Nuclear Physics A 660, 423 (1999) 250 350 300 E₂(MeV) $G^{\text{bound}}_{\Delta} = (W - m_{\Delta} + i\Gamma_{\Delta}/2 - \Sigma_{\Delta})^{-1}$

3 photoproduction components:

3 photoproduction components:

800 • $V_{\gamma\pi}$ for PWIA He(γ.π⁰)⁴He • scattering amplitude T for FSI PWIA 600 FSI (q**n**)400¹ Т $V_{\nu\pi}$ • Effective $\Delta(1232)$ self-energy Σ_{Δ} ь 200 D. Drechsel et al., Nuclear Physics A 660, 423 (1999) 250 300 350 E_(MeV) $G^{\text{bound}}_{\Lambda} = (W - m_{\Delta} + i\Gamma_{\Delta}/2 - \Sigma_{\Delta})^{-1}$

$$\hat{F}_{\gamma\pi} = \sum_{i} \hat{f}_{\gamma\pi}^{(i)} + \sum_{i} \sum_{j \neq i} \hat{t}^{(j)} \hat{G}(E) \hat{f}_{\gamma\pi}^{(i)} + \sum_{i} \sum_{j \neq i} \sum_{k \neq j} \hat{t}^{(k)} \hat{G}(E) \hat{t}^{(j)} \hat{G}(E) \hat{f}_{\gamma\pi}^{(i)} + \cdots,$$

What is the role of the intermediate charge exchange and spin-flip?

Pion scattering and photoproduction help to study neutrinos

Common approach for scattering and photoproduction

Non-resonant contributions from SAID and MAID2007

Common approach for scattering and photoproduction

The second-order potential is respecting the Pauli principle

Fit to $T_{\mathsf{lab}} = 80 - 180 \text{ MeV } \pi^{\pm} \text{-} {}^{12}\text{C}$ scattering data

3 energy-independent parameters fitted to SIN, TRIUMF, LAMPF, RAL and CERN data

Prediction for π^{\pm} -¹⁶O, ²⁸Si and ⁴⁰Ca

Prediction for coherent π^0 photoproduction on ${}^{12}C$

Prediction for coherent π^0 photoproduction on ${}^{12}C$

- The medium effects in π^{\pm} scattering are described by introducing the effective Δ self-energy Σ_{Δ}
- Derived second-order potential provides adequate fits for $T_{\rm lab}=80-180~{\rm MeV}$ scattering
- Heavier nuclei are successfully described without fitting
- The model is successfully applied to π^0 photoproduction
- Intermediate charge exchange and nucleon spin flip cause a non-negligible shift in the cross section
- Exploration: sensitivities of the model theoretical error estimate
- Extension: application to heavy nuclei: ^{40,48}Ca, ¹¹⁶Sn, ²⁰⁸Pb

- The medium effects in π^{\pm} scattering are described by introducing the effective Δ self-energy Σ_{Δ}
- Derived second-order potential provides adequate fits for $T_{\rm lab}=80-180~{\rm MeV}$ scattering
- Heavier nuclei are successfully described without fitting
- The model is successfully applied to π^0 photoproduction
- Intermediate charge exchange and nucleon spin flip cause a non-negligible shift in the cross section
- Exploration: sensitivities of the model theoretical error estimate
- Extension: application to heavy nuclei: 40,48 Ca, 116 Sn, 208 Pb

Thank you for your attention!

Spin-isospin- $\frac{3}{2}$ *p*-wave is dominant

$$t = t_0 + t_1 \, \hat{\boldsymbol{t}}_{\pi} \cdot \hat{\boldsymbol{\tau}}_N + (t_2 + t_3 \, \hat{\boldsymbol{t}}_{\pi} \cdot \hat{\boldsymbol{\tau}}_N) \, \hat{\boldsymbol{\sigma}} \cdot \mathbf{n}$$
(1)

$$t_{0} \propto \sum_{l} \left[l \left(f_{1\ 2l-1}^{l} + 2f_{3\ 2l-1}^{l} \right) + (l+1) \left(f_{1\ 2l+1}^{l} + 2f_{3\ 2l+1}^{l} \right) \right] P_{l}(\cos\theta)$$
(2a)
$$t_{1} \propto \sum_{l} \left[l \left(f_{3\ 2l-1}^{l} - f_{1\ 2l-1}^{l} \right) + (l+1) \left(f_{3\ 2l+1}^{l} - f_{1\ 2l+1}^{l} \right) \right] P_{l}(\cos\theta)$$
(2b)

Relativistic Δ -isobar model

X refers to $N(939)\text{, }\Delta(1232)$ and $N^*(1440)$ intermediate states

E. Oset, H. Toki, W. Weise, Phys. Reports 83, 281 (1982)

Second-order pion-nucleus optical potential

+2
$$t_1(\boldsymbol{k}',\boldsymbol{k}'')t_1(\boldsymbol{k}'',\boldsymbol{k})C_{\mathsf{ex}}(\boldsymbol{k}'-\boldsymbol{k}'',\boldsymbol{k}''-\boldsymbol{k})+\ldots$$
]

Correlation functions in the momentum space:

$$C_{0,\text{ex}}(\boldsymbol{q}_1, \boldsymbol{q}_2) = \int \mathrm{d}\boldsymbol{r}_1 \, \mathrm{d}\boldsymbol{r}_2 \, e^{-i(\boldsymbol{q}_1 \cdot \boldsymbol{r}_1 + \boldsymbol{q}_2 \cdot \boldsymbol{r}_2)} C_{0,\text{ex}}(\boldsymbol{r}_1, \boldsymbol{r}_2)$$

 $C_{\text{ex}}(\boldsymbol{r}_1, \boldsymbol{r}_2) = \rho_2(\boldsymbol{r}_1, \boldsymbol{r}_2) - \rho(\boldsymbol{r}_1)\rho(\boldsymbol{r}_2) \qquad C_0(\boldsymbol{r}_1, \boldsymbol{r}_2) = C_{\text{ex}}(\boldsymbol{r}_1, \boldsymbol{r}_2) - \frac{1}{A}\rho(\boldsymbol{r}_1)\rho(\boldsymbol{r}_2)$

Explicit scattering potential

$$f \approx b_0 + b_1 \, \hat{\boldsymbol{t}}_{\pi} \cdot \hat{\boldsymbol{\tau}}_N + (c_0 + c_1 \, \hat{\boldsymbol{t}}_{\pi} \cdot \hat{\boldsymbol{\tau}}_N) \, \boldsymbol{k}' \cdot \boldsymbol{k} + i(s_0 + s_1 \, \hat{\boldsymbol{t}}_{\pi} \cdot \hat{\boldsymbol{\tau}}_N) \, \hat{\boldsymbol{\sigma}} \cdot [\boldsymbol{k}' \times \boldsymbol{k}] \tag{1}$$

$$b_{1}^{\text{bound}}(T_{\text{lab}}) = b_{1}^{\text{free}}(T_{\text{lab}}) + b_{1}^{\text{free}}(0) \frac{\sigma \rho_{e}/m_{\pi}^{2} f_{\pi}^{2}}{1 - \sigma \rho_{e}/m_{\pi}^{2} f_{\pi}^{2}}$$
(2)

$$\operatorname{Im} \Delta b_0(T_{\mathsf{lab}}) = \operatorname{Im} \Delta b_0(0) + \alpha_{b_0} k_{0,2\mathsf{cm}}(T_{\mathsf{lab}})$$
(3)

$$\hat{U} \approx \hat{U}^{(1)} + \hat{U}^{(2)}$$
 (4)

$$U^{(1)}(\mathbf{k}',\mathbf{k}) = \gamma \operatorname{Tr}\left[\rho(\mathbf{q})t_{2\mathsf{cm}}(\mathbf{k}'_{2\mathsf{cm}}(\mathbf{k}',\mathbf{p}'_{\mathsf{eff}}),\mathbf{k}_{2\mathsf{cm}}(\mathbf{k},\mathbf{p}_{\mathsf{eff}})\right]$$
(5)

$$U^{(2)}(\mathbf{k}',\mathbf{k}) = -\int \frac{d\mathbf{k}''}{(2\pi)^3} G_0(\mathbf{k}'') \left[t^{(0)}(\mathbf{k}',\mathbf{k}'') t^{(0)}(\mathbf{k}'',\mathbf{k}) C_0(\mathbf{k}'-\mathbf{k}'',\mathbf{k}''-\mathbf{k}) + \left(2t^{(1)}(\mathbf{k}',\mathbf{k}'') t^{(1)}(\mathbf{k}'',\mathbf{k}) + \left(t^{(2)}(\mathbf{k}',\mathbf{k}'') t^{(2)}(\mathbf{k}'',\mathbf{k}) + 2t^{(3)}(\mathbf{k}',\mathbf{k}'') t^{(3)}(\mathbf{k}'',\mathbf{k}) \right) \mathbf{n}_1 \cdot \mathbf{n}_2 \right) C_{\text{ex}}(\mathbf{k}'-\mathbf{k}'',\mathbf{k}''-\mathbf{k}) \right]$$
(6)

Components of the scattering potential

Elementary photoproduction amplitude

$$F_2 = \sum_{l>1} \left[(l+1)M_{l+} + lM_{l-} \right] P'_l \tag{1b}$$

$$F_3 = \sum_{l \ge 1} \left[(E_{l+} - M_{l+}) P_{l+1}'' + (E_{l-} + M_{l-}) P_{l-1}'' \right]$$
(1c)

$$F_4 = \sum_{l \ge 2} \left[M_{l+} - E_{l+} - M_{l-} - E_{l-} \right] P_l'' \tag{1d}$$

