Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Λ hyperon in covariant confined quark model

Tyulemissov Z.

INP Kazakhstan (Almaty)

17th International Workshop on Meson Physics

Nonleptonic two-body weak decays of baryons

- Ground states of baryons with J^P = ¹/₂⁺ can decay only weakly via the internal W-exchange.
- The nonleptonic two-body decays of baryons have five different color-flavor quark topologies.
- They can be divided into two groups:
 - reducible tree-diagrams
 - irreducible *W*-exchange diagrams
- The tree-diagrams are factorized into the lepton decay of the emitted meson and the baryon-baryon transition matrix elements of the weak currents.
- W-exchange diagrams are more difficult to evaluate from first principles.
- First attempts to estimate the *W*-exchange contributions have been made by using a pole model approach.
- It was shown that *W*-exchange contributions are sizeable and cannot be neglected.

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

æ

Topology of nonleptonic weak decays

Tree diagrams

W-exchange diagrams

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

Nonleptonic double charmed baryon decays

	la	I _b	ll _a	IIb	
$\Xi_{cc}^{++} o \Sigma_{c}^{(*)++} + ar{K}^{(*)0}$	-	\checkmark	_	—	-
$\Xi_{cc}^{++} ightarrow \Xi_c^{(\prime,*)+}+\pi^+(ho^+)$	\checkmark	_	_	\checkmark	_
$\Xi_{cc}^{++} o \Sigma^{(*)+} + D^{(*)+}$	_	_	_	\checkmark	_
$\Xi_{cc}^+ ightarrow \Xi_c^{(\prime,*)0} + \pi^+(ho^+)$	\checkmark	_	\checkmark	_	_
$\Xi_{cc}^+ ightarrow \Lambda_c^+(\Sigma_c^{(*)+}) + ar{K}^{(*)0}$	_		\checkmark	_	_
$\Xi_{cc}^+ ightarrow \Sigma_c^{(*)++} + K^{(*)-}$	_	_	\checkmark	_	_
$\Xi_{cc}^+ o \Xi_c^{(\prime,*)+} + \pi^0(ho^0)$	_	_	\checkmark	\checkmark	_
$\Xi_{cc}^+ ightarrow \Xi_c^{(\prime,*)+} + \eta(\eta^\prime)$	_	_	\checkmark	\checkmark	_
$\Xi_{cc}^+ ightarrow \Omega_c^{(*)0} + \mathcal{K}^{(*)+}$	_	_	\checkmark	_	_
$\Xi_{cc}^+\to\Lambda^0(\Sigma^{(*)0})+D^{(*)+}$	_	_	_	\checkmark	
$\Xi_{cc}^+\to \Sigma^{(*)+}+D^{(*)0}$	_	_	_	_	
$\Xi_{cc}^+ o \Xi^{(*)0} + D_s^{(*)+}$	_	_	_	_	\checkmark
$\Omega_{cc}^+ o \Xi_c^{(\prime,*)+} + ar{K}^{(*)0}$	_		_		_
$\Omega_{cc}^{+} ightarrow \Xi^{(*)0} + D^{(*)+}$	_	_	_	\checkmark	_
$\Omega_{cc}^+ o \Omega_c^{(*) 0} + \pi^+(ho^+)$	\checkmark	_	_	_	_

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

Nonleptonic double charmed baryon decays

We will consider the decays that belong to the same topology class:

$$\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} (\Xi_{c}^{\prime+}) + \pi^{+}(\rho^{+})$$
 T-Ia and W-IIb

$$\Omega_{cc}^{+} \rightarrow \Xi_{c}^{+} (\Xi_{c}^{\prime+}) + \bar{K}^{0}(K^{*0})$$
 T-Ib and W-IIb

Quantum numbers and interpolating currents:

Baryon	JP	Interpolating current	Mass (MeV)
Ξ_{cc}^{++}	$\frac{1}{2}^{+}$	$arepsilon_{abc} \gamma^{\mu} \gamma_5 u^a (c^b C \gamma_{\mu} c^c)$	3620.6
Ω_{cc}^+	$\frac{1}{2}^{+}$	$arepsilon_{abc}\gamma^{\mu}\gamma_{5}s^{a}(c^{b}\mathcal{C}\gamma_{\mu}c^{c})$	3710.0
$\Xi_c^{\prime+}$	$\frac{1}{2}^{+}$	$arepsilon_{abc} \gamma^{\mu} \gamma_5 c^a (u^b C \gamma_{\mu} s^c)$	2577.4
Ξ_c^+	$\frac{1}{2}^{+}$	$\varepsilon_{abc} c^a (u^b C \gamma_5 s^c)$	2467.9

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

Körner-Pati-Woo (KPW) theorem

J.G. Körner, Nucl. Phys. B25, 282 (1971); J.C. Pati and C.H. Woo, Phys. Rev. D3, 2920 (1971)

The *W*-exchange contributions to the above decays fall into two classes:

- The decays with a \equiv_c^{+} -baryon containing a symmetric {*us*} diquark described by the interpolating current $\varepsilon_{abc} (u^b C \gamma_{\mu} s^c)$.
- The *W*-exchange contribution is strongly suppressed due to the KPW theorem which states that the contraction of the flavor antisymmetric current-current operator with a flavor symmetric final state configuration is zero in the *SU*(3) limit.
- The decays with a \equiv_c^+ -baryon containing an antisymmetric [us] diquark described by the interpolating current $\varepsilon_{abc} (u^b C \gamma_5 s^c)$.
- In this case the *W*-exchange contribution is not a priori suppressed.

Effective Hamiltonian and nonlocal quark currents

The effective Hamiltonian describing the $\bar{q}_1 q_2 \rightarrow \bar{q}_1' q_2'$ transition is given by

$$\mathcal{H}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} V_{q_1 q_2} V_{q'_1 q'_2}^{\dagger} (C_1 Q_1 + C_2 Q_2)$$

 $Q_1 = (\bar{q}_{1\,a}O_Lq_{2\,b})(\bar{q}'_{1\,b}O_Lq'_{2\,a}) \qquad Q_2 = (\bar{q}_{1\,a}O_Lq_{2\,a})(\bar{q}'_{1\,b}O_Lq'_{2\,b})$

The notation is $O^{\mu}_{L/R} = \gamma^{\mu} (1 \mp \gamma_5).$

The nonlocal version of the interpolating currents:

$$J_B(x) = \int dx_1 \int dx_2 \int dx_3 F_B(x; x_1, x_2, x_3) \varepsilon^{a_1 a_2 a_3} \Gamma_1 q_1^{a_1}(x_1) (q_2^{a_2}(x_2) C \Gamma_2 q_3^{a_3}(x_3))$$

$$F_B = \delta^{(4)} \left(x - \sum_{i=1}^{3} w_i x_i \right) \Phi_B \left(\sum_{i < j} (x_i - x_j)^2 \right)$$

where $w_i = m_i / (\sum_{j=1}^3 m_j)$ and m_i is the quark mass. Γ_1, Γ_2 are the Dirac strings of the initial and final baryons.

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

Matrix elements

tree diagrams Ia, Ib

W-exchange diagram IIb

$$< B_2 M |\mathcal{H}_{eff}| B_1 >= \frac{G_F}{\sqrt{2}} V_{cs} V_{ud}^{\dagger} \bar{u}(p_2) \Big(12 C_T M_T + 12 (C_1 - C_2) M_W \Big) u(p_1).$$
$$C_T = \begin{cases} C_T = +(C_2 + \xi C_1) & \text{charged meson} \\ C_T = -(C_1 + \xi C_2) & \text{neutral meson} \end{cases}$$

The factor of $\xi = 1/N_c$ is set to zero in the numerical calculations.

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

Tree-diagram contribution: factorization

The contribution from the tree diagram factorizes into two pieces:

 $M_T = M_T^{(1)} \cdot M_T^{(2)}$

$$M_{T}^{(1)} = N_{c} g_{M} \int \frac{d^{4}k}{(2\pi)^{4}i} \widetilde{\Phi}_{M}(-k^{2}) \operatorname{tr} \left[O_{L} S_{d}(k - w_{d}q) \Gamma_{M} S_{s(u)}(k + w_{s(u)}q) \right]$$
$$M_{T}^{(2)} = g_{B_{1}} g_{B_{2}} \int \frac{d^{4}k_{1}}{(2\pi)^{4}i} \int \frac{d^{4}k_{2}}{(2\pi)^{4}i} \widetilde{\Phi}_{B_{1}} \left(-\vec{\Omega}_{1}^{2} \right) \widetilde{\Phi}_{B_{2}} \left(-\vec{\Omega}_{2}^{2} \right)$$

 $\times \Gamma_1 S_c(k_2) \gamma^{\mu} S_c(k_1 - p_1) O_R S_{u(s)}(k_1 - p_2) \Gamma_2 S_{s(u)}(k_1 - k_2) \gamma_{\mu} \gamma_5$

The $M_T^{(1)}$ is related to the leptonic decay constants:

$$M_T^{(1)} = \begin{cases} -f_P \cdot q & \text{pseudoscalar meson} \\ +f_V m_V \cdot \epsilon_V & \text{vector meson} \end{cases}$$

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

W-exchange diagram contribution: no factorization

$$M_{W} = g_{B_{1}}g_{B_{2}}g_{M}\int \frac{d^{4}k_{1}}{(2\pi)^{4}i}\int \frac{d^{4}k_{2}}{(2\pi)^{4}i}\int \frac{d^{4}k_{3}}{(2\pi)^{4}i}\widetilde{\Phi}_{B_{1}}\left(-\vec{\Omega}_{1}^{2}\right)\widetilde{\Phi}_{B_{2}}\left(-\vec{\Omega}_{2}^{2}\right)\widetilde{\Phi}_{M}\left(-P^{2}\right)$$

$$\times 2\Gamma_{1}S_{c}(k_{1})\gamma^{\mu}S_{c}(k_{2})(1-\gamma_{5})S_{d}(k_{2}-k_{1}+p_{2})\Gamma_{M}S_{s(u)}(k_{2}-k_{1}+p_{1})\gamma_{\mu}\gamma_{2}$$

$$\times \operatorname{tr}\left[S_{u(s)}(k_{3})\widetilde{\Gamma}_{2}S_{s(u)}(k_{3}-k_{1}+p_{2})(1+\gamma_{5})\right]$$

Here $\Gamma_1 \otimes \widetilde{\Gamma}_2 = I \otimes \gamma_5$ for $B_2 = \Xi_c^+$ and $-\gamma_\nu \gamma_5 \otimes \gamma^\nu$ for $B_2 = \Xi_c^{\prime+}$.

To verify the KPW theorem in the case of $B_2 = \Xi_c^{\prime +}$ we use the identity

$$tr[S_u(k_3)\gamma_{\nu}S_s(k_3-k_1+p_2)] = -tr[S_s(-k_3+k_1-p_2)\gamma_{\nu}S_u(-k_3)]$$

Then by shifting $k_3 \rightarrow -k_3 + k_1 - p_2$ one gets the same expression with opposite sign and $u \leftrightarrow s$ interchange. Thus, if $m_u = m_s$ then $M_W \equiv 0$.

It directly confirms the KPW-theorem.

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

Evaluation of the diagrams

• Use the Schwinger representation of the propagator:

$$\frac{m+k}{m^2-k^2}=(m+k)\int_0^\infty d\alpha\,\exp[-\alpha(m^2-k^2)]$$

• Choose a simple Gaissian form for the vertex function

 $\Phi(-\kappa^2) = \exp(\kappa^2/\Lambda^2)$

where the parameter Λ characterizes the hadron size.

• We imply that the loop integration k proceed over Euclidean space:

$$k^0 \to e^{i\frac{\pi}{2}}k_4 = ik_4$$
, $k^2 = (k^0)^2 - \vec{k}^2 \to -k_E^2 \le 0$.

• We also put all external momenta *p* to Euclidean space:

$$p^0 \to e^{i\frac{\pi}{2}}p_4 = ip_4, \qquad p^2 = (p^0)^2 - \vec{p}^2 \to -p_E^2 \le 0$$

so that the quadratic momentum form in the exponent becomes negative-definite and the loop integrals are absolutely convergent.

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

Evaluation of the diagrams

 Convert the loop momenta in the numerator into derivatives over external momenta:

$$k_i^{\mu}e^{2kr}=\frac{1}{2}\frac{\partial}{\partial r_{i\,\mu}}e^{2kr},$$

- Move the derivatives outside of the loop integrals.
- Calculate the scalar loop integral:

$$\prod_{i=1}^{n} \int \frac{d^{4}k_{i}}{i\pi^{2}} e^{kAk+2kr} = \prod_{i=1}^{n} \int \frac{d^{4}k_{i}^{E}}{\pi^{2}} e^{-k_{E}Ak_{E}-2k_{E}r_{E}} = \frac{1}{|A|^{2}} e^{-rA^{-1}r}$$

where a symmetric $n \times n$ real matrix A is positive-definite.

• Use the identity

$$P\left(\frac{1}{2}\frac{\partial}{\partial r}\right)e^{-rA^{-1}r} = e^{-rA^{-1}r}P\left(\frac{1}{2}\frac{\partial}{\partial r} - A^{-1}r\right)$$

to move the exponent to the left.

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Evaluation of the diagrams

Employ the commutator

$$\left[\frac{\partial}{\partial \mathbf{r}_{i\,\mu}},\mathbf{r}_{j\,\nu}\right] = \delta_{ij}\,\mathbf{g}_{\mu\nu}$$

to make differentiation in

$$\mathsf{P}\left(\frac{1}{2}\frac{\partial}{\partial r}-\mathsf{A}^{-1}r\right)$$

for any polynomial P. The necessary commutations of the differential operators are done by a FORM program.

• One obtains

$$\Pi = \int_{0}^{\infty} d^{n} \alpha F(\alpha_{1}, \ldots, \alpha_{n}),$$

where **F** stands for the whole structure of a given diagram.

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Evaluation of the diagrams

The set of Schwinger parameters α_i can be turned into a simplex by introducing an additional *t*-integration via the identity

$$1=\int_{0}^{\infty}dt\,\delta(t-\sum_{i=1}^{n}\alpha_{i})$$

leading to

$$\Pi = \int_{0}^{\infty} dt t^{n-1} \int_{0}^{1} d^{n} \alpha \, \delta \left(1 - \sum_{i=1}^{n} \alpha_{i}\right) F(t\alpha_{1}, \ldots, t\alpha_{n}) \, .$$

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Infrared confinement

• Cut off the upper integration at $1/\lambda^2$

$$\Pi^{c} = \int_{0}^{1/\lambda^{2}} dt t^{n-1} \int_{0}^{1} d^{n} \alpha \, \delta \left(1 - \sum_{i=1}^{n} \alpha_{i} \right) F(t\alpha_{1}, \ldots, t\alpha_{n})$$

- The infrared cut-off has removed all possible thresholds in the quark loop diagram.
- We take the cut-off parameter λ to be the same in all physical processes.

T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Körner and V. E. Lyubovitskij, Phys. Rev. D81, 034010 (2010)

Cabibbo-favored decays of doubly heavy baryons •000000000

Weak decays of A-hyperon

Invariant and helicity amplitudes

The transition amplitudes in terms of invariant amplitudes:

$$< B_2 P |\mathcal{H}_{eff}|B_1 > = \frac{G_F}{\sqrt{2}} V_{cs} V_{ud}^{\dagger} \bar{u}(p_2) (A + \gamma_5 B) u(p_1)$$

$$< B_2 V |\mathcal{H}_{eff}|B_1 > = \frac{G_F}{\sqrt{2}} V_{cs} V_{ud}^{\dagger}$$

$$\times \bar{u}(p_2) \epsilon_{V\delta}^* \left(\gamma^{\delta} V_{\gamma} + p_1^{\delta} V_p + \gamma_5 \gamma^{\delta} V_{5\gamma} + \gamma_5 p_1^{\delta} V_{5p}\right) u(p_1)$$

The helicity amplitudes in terms of invariant amplitudes:

$$\begin{aligned} H_{\frac{1}{2}t}^{V} &= \sqrt{Q_{+}} A \qquad H_{\frac{1}{2}t}^{1} = \sqrt{Q_{-}} B \\ H_{\frac{1}{2}0}^{V} &= +\sqrt{Q_{-}/q^{2}} \left(m_{+} V_{\gamma} + \frac{1}{2} Q_{+} V_{p} \right) \qquad H_{\frac{1}{2}1}^{V} = -\sqrt{2Q_{-}} V_{\gamma} \\ H_{\frac{1}{2}0}^{A} &= +\sqrt{Q_{+}/q^{2}} \left(m_{-} V_{5\gamma} + \frac{1}{2} Q_{-} V_{5p} \right) \qquad H_{\frac{1}{2}1}^{A} = -\sqrt{2Q_{+}} V_{5\gamma} \end{aligned}$$

Here $m_{\pm} = m_1 \pm m_2$, $Q_{\pm} = m_{\pm}^2 - q^2$ and $|p_2| = \lambda^{1/2} (m_1^2, m_2^2, q^2)/(2m_1)$.

The parity relations: $H^{V}_{-\lambda_{2},-\lambda_{M}} = + H^{V}_{\lambda_{2},\lambda_{M}}, H^{A}_{-\lambda_{2},-\lambda_{M}} = - H^{A}_{\lambda_{2},\lambda_{M}}$

Cabibbo-favored decays of doubly heavy baryons 000000000 Weak decays of A-hyperon

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Decay widths

The semileptonic decay widths read

$$\Gamma(B_1 \to B_2 + \ell^+ \nu_\ell) = \int_0^{(M_1 - M_2)^2} dq^2 \ \frac{d \ \Gamma(B_1 \to B_2 + \ell^+ \nu_\ell)}{dq^2},$$

$$\frac{d\,\Gamma(B_1\to B_2\,+\,\ell^+\,\nu_\ell)}{dq^2}=\frac{1}{192\pi}G_F^2\,\frac{\left|\mathsf{p}_2\right|q^2}{M_1^2}\left|V_{ij}\right|^2\mathcal{H}_V\,.$$

The two-body decay widths read

$$\begin{split} \Gamma \Big(B_1 \to B_2 + P(V) \Big) &= \frac{G_F^2}{32\pi} |V_{cs}V_{ud}^{\dagger}|^2 \frac{|p_2|}{m_1^2} \mathcal{H}_{P(V)} \\ \mathcal{H}_P &= \left| H_{\frac{1}{2}t} \right|^2 + \left| H_{-\frac{1}{2}t} \right|^2, \\ \mathcal{H}_V &= \left| H_{\frac{1}{2}0} \right|^2 + \left| H_{-\frac{1}{2}0} \right|^2 + \left| H_{\frac{1}{2}1} \right|^2 + \left| H_{-\frac{1}{2}-1} \right|^2, \end{split}$$
where $H = H^V - H^A$.

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

Semileptonic decays

Cabibbo-favored semileptonic decays of double heavy charm baryons induced by the charm level $c \rightarrow s$ transition ($\ell = e^+, \mu^+$).

	Г [10 ⁻¹³ Г э В]	Г [10 ⁻¹³ ГэВ]	B [%]
$1/2^+ ightarrow 1/2^+$			
$\Xi_{cc}^{++}\to \Xi_c^+ + \ell^+\nu_\ell$	0.70	0.77 ± 0.37 [1]	2.72
$\Xi_{cc}^{++}\to \Xi_c^{'+}+\ell^+\nu_\ell$	0.97	0.53 \pm 0.35 [1]	3.76
$\Xi_{cc}^+ o \Xi_c^0 + \ell^+ \nu_\ell$	0.69	0.77 \pm 0.37 [1]	2.00
$\Xi_{cc}^+ ightarrow \Xi_c^{'0} + \ell^+ u_\ell$	0.97	0.53 ± 0.35 [1]	2.79
$\Omega_{cc}^+ o \Omega_c^0 + \ell^+ u_\ell$	1.82	1.25 ± 0.80 [1]	7.07
$1/2^+ ightarrow 3/2^+$			
$\Xi_{cc}^{++}\to \Xi_c^{*+}+\ell^+\nu_\ell$	0.22	_	0.86
$\Xi_{cc}^+ o \Xi_c^{*0} + \ell^+ \nu_\ell$	0.22	—	0.64
$\Omega_{cc}^+ o \Omega_c^{*0} + \ell^+ u_\ell$	0.40	0.32 [2]	1.27

[1] Y. J. Shi, W. Wang and Z. X. Zhao, Eur. Phys. J. C 80, no.6, 568 (2020).

[2] Z. X. Zhao, Eur. Phys. J. C 78, no.9, 756 (2018).

T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij and Z. Tyulemissov, Phys. Rev. D 100, no.11, 114037 (2019)

▲ロト ▲御ト ▲ヨト ▲ヨト 三回 のへの

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

$$\Omega_{cc}^+
ightarrow \Xi_c^{\prime\,+} + ar{K}^0(ar{K}^{*\,0})$$

Helicity	Tree diagram	W diagram	total
$H^V_{\frac{1}{2}t}$	0.20	-0.01	0.19
$H^{A}_{\frac{1}{2}t}$	0.25	-0.01	0.24
Γ(Ω *	$ ightarrow \Xi_c^{\prime+} + ar{K}^0)$	$= 0.15 \cdot 10^{-13}$	GeV
$H^{V}_{\frac{1}{2}0}$	-0.25	0.04×10^{-1}	-0.25
$H^{\overline{A}}_{\frac{1}{2}0}$	-0.50	0.01	-0.49
$H_{\frac{1}{2}1}^{\overline{V}}$	0.27	-0.01	0.26
$H^{A}_{\frac{1}{2}1}$	0.56	0.04×10^{-2}	0.56
Γ(Ω ⁺ _{cc}	$\rightarrow \Xi_c^{\prime+} + \bar{K}^{*0})$	$= 0.74 \cdot 10^{-13}$	GeV

T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij and Z. Tyulemissov, Phys. Rev. D 99, no.5, 056013 (2019)

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

$$\Omega^+_{cc} o \Xi^+_c + ar{\kappa}^0(ar{\kappa}^{*\,0})$$

Helicity	Tree diagram	W diagram	total
$H_{\frac{1}{2}t}^{V}$	-0.35	1.06	0.71
$H^{A}_{\frac{1}{2}t}$	-0.10	0.31	0.21
<mark>Γ(Ω</mark>	$a ightarrow \Xi_c^+ + ar{K}^0) =$	$= 0.95 \cdot 10^{-13}$	GeV
$H^{V}_{\frac{1}{2}0}$	0.50	-0.69	-0.19
$H^{A}_{\frac{1}{2}0}$	0.18	-0.45	-0.27
$H^{\overline{V}}_{\frac{1}{2}1}$	-0.11	-0.24	-0.35
$H^{A}_{\frac{1}{2}1}$	-0.18	0.66	0.48
Γ(Ω ⁺ _{cc}	$\rightarrow \Xi_c^+ + \bar{K}^{*0})$	$= 0.62 \cdot 10^{-13}$	GeV

T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij and Z. Tyulemissov, Phys. Rev. D 99, no.5, 056013 (2019)

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

$$\Xi_{cc}^{++} \rightarrow \Xi_c^{\prime +} + \pi^+(\rho^+)$$

Helicity	Tree diagram	W diagram	total
$H_{\frac{1}{2}t}^{V}$	-0.38	-0.01	-0.39
$H^{A}_{\frac{1}{2}t}$	-0.55	-0.02	-0.57
Г(Ξ <u></u>	$^+ \rightarrow \Xi_c^{\prime +} + \pi^+)$	$= 0.82 \cdot 10^{-13}$	³ GeV
$H^{V}_{\frac{1}{2}0}$	0.60	0.04×10^{-1}	0.61
$H^{A}_{\frac{1}{2}0}$	1.20	0.01	1.21
$H^V_{\frac{1}{2}1}$	-0.49	-0.01	-0.50
$H^{A}_{\frac{1}{2}1}$	-1.27	0.01×10^{-1}	-1.27
Г(Ξ ⁺	$\Xi_c^{+} \rightarrow \Xi_c^{\prime +} + \rho^{+}$	$= 4.27 \cdot 10^{-13}$	GeV

T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij and Z. Tyulemissov, Phys. Rev. D 99, no.5, 056013 (2019)

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

$$\Xi_{cc}^{++}
ightarrow \Xi_c^+ + \pi^+(
ho^+)$$

Helicity	Tree diagram	W diagram	total
$H_{\frac{1}{2}t}^{V}$	-0.70	0.99	0.29
$H^{A}_{\frac{1}{2}t}$	-0.21	0.30	0.09
Г(Ξ ⁺⁺	$\overline{} ightarrow \Xi_c^+ + \pi^+)$	$= 0.18 \cdot 10^{-13}$	GeV
$H^{V}_{\frac{1}{2}0}$	1.17	-0.70	0.47
$H^{A}_{\frac{1}{2}0}$	0.45	-0.44	0.003
$H^{V}_{\frac{1}{2}1}$	-0.20	-0.23	-0.43
$H^{A}_{\frac{1}{2}1}$	-0.41	0.62	0.21
Г(Ξ ⁺⁺	$^{+} \rightarrow \Xi_{c}^{+} + \rho^{+}$)	$= 0.63 \cdot 10^{-13}$	GeV

T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij and Z. Tyulemissov, Phys. Rev. D 99, no.5, 056013 (2019)

Comparison with other approaches. Abbr.: M=NRQM, T=HQET

Mode		Width (in 10^{-13} GeV)				
	our	Dhir	Jiang	Wang	Yu	Likhoded
$\Omega_{cc}^+ o \Xi_c^{\prime+} + ar{\kappa}^0$	0.15	0.31 (M)				
		0.59 (T)				
$\Omega^+_{cc} o \Xi^+_c + ar{K}^0$	0.95	0.68 (M)				
		1.08 (T)				
$\Omega_{cc}^+ o \Xi_c^{\prime+} + ar{K}^{st0}$	0.74		$2.64^{+2.72}_{-1.79}$			
$\Omega_{cc}^+ o \Xi_c^+ + ar{\kappa}^{*0}$	0.62		$1.38^{+1.49}_{-0.95}$			
$\Xi_{cc}^{++}\to \Xi_c^{\prime+}+\pi^+$	0.82	1.40 (M)		1.10		
		1.93 (T)				
$\Xi_{cc}^{++} ightarrow \Xi_c^+ + \pi^+$	0.18	1.71 (M)		1.57	1.58	2.25
		2.39 (T)				
$\Xi_{cc}^{++} \rightarrow \Xi_c^{\prime+} + \rho^+$	4.27		$4.25^{+0.32}_{-0.19}$	4.12	3.82	
$\Xi_{cc}^{++} ightarrow \Xi_c^+ + ho^+$	0.63		$4.11^{+1.37}_{-0.86}$	3.03	2.76	6.70

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣 < ⊙

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

- N. Sharma and R. Dhir, Phys. Rev. D 96, 113006 (2017).
- **R. Dhir** and N. Sharma, Eur. Phys. J. C 78, 743 (2018).
- L. J. Jiang, B. He and R. H. Li, Eur. Phys. J. C 78, 961 (2018).
- W. Wang, F. S. Yu and Z. X. Zhao, Eur. Phys. J. C 77, 781 (2017).
- F. S. Yu, H. Y. Jiang, R. H. Li, C. D. Lü, W. Wang and Z. X. Zhao, Chin. Phys. C 42, 051001 (2018).
- V. V. Kiselev and A. K. Likhoded, Phys. Usp. 45, 455 (2002)
 [Usp. Fiz. Nauk 172, 497 (2002)].
- A. V. Berezhnoy, A. K. Likhoded and A. V. Luchinsky, Phys. Rev. D 98, 113004 (2018).

Estimating uncertainties in the decay widths

- The only free parameter in our approach is the size parameter Λ_{cc} .
- We have chosen $\Lambda_{cc} = \Lambda_c = 0.8675$ GeV.
- To estimate the uncertaintity caused by the choice of the size parameter we allow the size parameter to vary from 0.6 to 1.135 GeV.
- We evaluate the mean $\overline{\Gamma} = \sum \Gamma_i / N$ and the mean square deviation $\sigma^2 = \sum (\Gamma_i \overline{\Gamma})^2 / N$.

•	The	rate	errors	amount	to	6 —	15 %.
---	-----	------	--------	--------	----	-----	--------------

Mode	Width (in 10^{-13} GeV)
$\Omega_{cc}^+ o \Xi_c^{\prime+} + ar{\kappa}^0$	0.14 ± 0.01
$\Omega_{cc}^+ o \Xi_c^{\prime+} + ar{\kappa}^{*0}$	0.72 ± 0.06
$\Omega_{cc}^+ o \Xi_c^+ + ar{K}^0$	0.87 ± 0.13
$\Omega_{cc}^+ o \Xi_c^+ + ar{K}^{st 0}$	0.58 ± 0.07
$\Xi_{cc}^{++} \to \Xi_c^{\prime +} + \pi^+$	0.77 ± 0.05
$\Xi_{cc}^{++}\to \Xi_c^{\prime+}+\rho^+$	4.08 ± 0.29
$\Xi_{cc}^{++} \to \Xi_c^+ + \pi^+$	0.16 ± 0.02
$\Xi_{cc}^{++} ightarrow \Xi_{c}^{+} + ho^{+}$	0.59 ± 0.04

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

Cabibbo-favored decays of doubly heavy baryons

Λ-hyperon

Weak decays of A-hyperon

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ● の Q @

- Mass of Λ -hyperon $m_{\Lambda} = 1.115683 \pm 0.000006$ GeV.
- Mean life of Λ -hyperon $\tau_{\Lambda} = 2.632 \pm 0.020 \cdot 10^{-10}$ s.
- Modes

$$Br(\Lambda \to p\pi^-) = (63.9 \pm 0.5)\%,$$

 $Br(\Lambda \to n\pi^0) = (35.8 \pm 0.5)\%$

M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij and Z. Tyulemissov, Phys. Rev. D 104, no.7, 074004 (2021)

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

イロト 不得下 イヨト イヨト

э

There are two classes of the Feynman diagrams generating matrix elements of these processes:

- short-distance (SD) diagrams,
- long-distance (LD) or pole diagrams.

Cabibbo-favored decays of doubly heavy baryons

Weak decays of ∧-hyperon 00●0000000

Matrix element

Matrix element of $\frac{1}{2}^+ \rightarrow \frac{1}{2}^+ + 0^-$ decay reads $M(B_1 \rightarrow B_2 + M) = M_{SD}(B_1 \rightarrow B_2 + M)$ $+ M_{LD_1}(B_1 \rightarrow B_{res} \rightarrow B_2 + M) + M_{LD_2}(B_1 \rightarrow B'_{res} + M \rightarrow B_2 + M),$

$$\begin{split} M_{\rm SD} &= i^4 \bar{u}(p_2) \, \Gamma_{B_1 B_2 M}(p_1, p_2, q) \, u(p_1) \,, \\ M_{\rm LD_1} &= i^6 \int \frac{d^4 k}{(2\pi)^4 i} \, \bar{u}(p_2) \, \Gamma_{B_{\rm res} M B_2}(k, p_2, q) \, S_{B_{\rm res}}(k) \, \Gamma_{B_1 B_{\rm res}}(p_1, k) \, u(p_1) \,, \\ M_{\rm LD_2} &= i^6 \int \frac{d^4 k}{(2\pi)^4 i} \, \bar{u}(p_2) \, \Gamma_{B_{\rm res} B_2}(k, p_2) \, S_{B_{\rm res}}(k) \, \Gamma_{B_1 M B_{\rm res}}(p_1, k, q) \, u(p_1) \,, \end{split}$$

The propagator of the $\frac{1}{2}^+$ resonances is the ordinary Dirac propagator,

$$S(p) = rac{1}{m_{
m res} - \not p} = rac{m_{
m res} + \not p}{m_{
m res}^2 - p^2}.$$

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

The invariant matrix elements for the pole diagrams with intermediate $\frac{1}{2}^+$ resonances

$$\begin{split} \widetilde{M}_{\mathrm{LD}_{1}} &\equiv \widetilde{M}_{n} = \overline{u}(p_{2}) \left(A_{n} + \gamma_{5} B_{n} \right) u(p_{1}) \,, \\ A_{n} &= -\frac{B_{\Lambda n} (C_{n\pi p} - m_{\Lambda} D_{n\pi p})}{m_{n} + m_{\Lambda}} \,, \qquad B_{n} = -\frac{A_{\Lambda n} (C_{n\pi p} + m_{\Lambda} D_{n\pi p})}{m_{n} - m_{\Lambda}} \,, \\ \widetilde{M}_{\mathrm{LD}_{2}} &\equiv \widetilde{M}_{\Sigma} = \overline{u}(p_{2}) \left(A_{\Sigma} + \gamma_{5} B_{\Sigma} \right) u(p_{1}) \,, \\ A_{\Sigma} &= -\frac{B_{\Sigma^{+} p} (C_{\Lambda \pi \Sigma^{+}} - m_{p} D_{\Lambda \pi \Sigma^{+}})}{m_{\Sigma} + m_{p}} \,, \qquad B_{\Sigma} = -\frac{A_{\Sigma^{+} p} (C_{\Lambda \pi \Sigma^{+}} + m_{p} D_{\Lambda \pi \Sigma^{+}})}{m_{\Sigma} - m_{p}} \,, \end{split}$$

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

Dependence of the helicities $PI \equiv H_{1/2t}^V$ and $P5 \equiv H_{1/2t}^A$ on the size parameter in the case of the neutron resonance. Left panel: the decay $\Lambda \rightarrow p + \pi$; right panel: the decay $\Lambda \rightarrow n + \pi$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 のへで

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

・ロト ・ 日 ト ・ モ ト ・ モ ト æ

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

 $\Lambda^0 \to n + \ \pi^0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Cabibbo-favored decays of doubly heavy baryons

 $\Lambda
ightarrow p\pi^{-}$

SD contibutions to the amplitudes A and B of the decay $\Lambda \to p\pi^-$ in units of GeV².

	la	lla	llb	III	Sum(SD)
$A_{\rm SD}$	$-0.372 \cdot 10^{-1}$	$0.269 \cdot 10^{-3}$	$0.300 \cdot 10^{-1}$	$0.213 \cdot 10^{-1}$	$0.144\cdot10^{-1}$
$B_{\rm SD}$	-0.345	-0.116	0.167	-0.452	-0.746

LD contibutions to the amplitudes A and B of the decay $\Lambda \rightarrow p\pi^-$ in units of GeV².

	n	Σ^+	K	<i>K</i> *	$\frac{1}{2}^{-}$	Sum(LD)
$A_{\rm LD}$	$-2.1 \cdot 10^{-3}$	$-9.5 \cdot 10^{-3}$	0	$2.6 \cdot 10^{-2}$	$0.9\cdot10^{-1}$	$1.1 \cdot 10^{-1}$
$B_{\rm LD}$	-2.55	$2.3 \cdot 10^{-1}$	$2.8 \cdot 10^{-2}$	0	0	-2.3

Cabibbo-favored decays of doubly heavy baryons

 $\Lambda
ightarrow n\pi^0$

SD contibutions to the amplitudes A and B of the decay $\Lambda \to n\pi^0$ in units of GeV².

	lb	lla IIb		111	Sum(SD)
$A_{\rm SD}$	$-0.120 \cdot 10^{-1}$	$0.190\cdot 10^{-3}$	$0.211\cdot10^{-1}$	$0.150 \cdot 10^{-1}$	$0.243\cdot10^{-1}$
$B_{\rm SD}$	-0.112	$-0.82 \cdot 10^{-1}$	0.119	-0.319	-0.394

LD contibutions to the amplitudes A and B of the decay $\Lambda \rightarrow n\pi^0$ in units of GeV².

	п	Σ0	K	K*	$\frac{1}{2}^{-}$	Sum
$A_{\rm LD}$	$-1.5 \cdot 10^{-3}$	$-6.6 \cdot 10^{-3}$	0	$8.4 \cdot 10^{-3}$	$6.2 \cdot 10^{-2}$	$0.6\cdot10^{-1}$
$B_{\rm LD}$	-1.83	$1.6 \cdot 10^{-1}$	$0.9 \cdot 10^{-2}$	0	0	-1.67

Cabibbo-favored decays of doubly heavy baryons

Weak decays of ∧-hyperon ○○○○○○○○●○

Asymmetry in \land decays

- $\alpha = 0.87 \pm 0.09$
- $\alpha = 0.642 \pm 0.013$
- $\alpha = 0.750 \pm 0.009 \pm 0.004$
- $\alpha = 0.7542 \pm 0.0010 \pm 0.0020$

CCQM

Particle Data Group 2016.

BESIII Collab. 1808.08917.

BESIII Collab. 2204.11058.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Cabibbo-favored decays of doubly heavy baryons

Weak decays of A-hyperon

Thanks a lot for your attention