

Dilepton production in the proton-proton reaction at 4.5 GeV with the HADES spectrometer

Rayane ABOU YASSINE

IJCLAB/ TU-Darmstadt

Meson Conference 2023 22-27 June 2023 Kraków, Poland

HADES motivations

- \Box Explores the high- $\mu_{\rm B}$ region of the QCD phase diagram.
- \Box Complementary to LHC, RHIC, SPS and uses heavy-ion, p, d and π beams in few GeV range.
- **U**nderstand the equation of state of baryon dominated matter.

Dileptons from heavy-ion to elementary reactions

- □ Study of thermal dileptons from baryon rich matter requires knowledge of physics background →pp/pn measurements are needed.
- $\Box \quad \text{Meson Dalitz decays } (\pi^0/\eta \rightarrow \gamma e^+ e^- \text{ and } \omega \rightarrow \pi^0 e^+ e^-).$
- □ Vector meson direct decays $(\rho/\omega/\phi \rightarrow e^+e^-)$.
- □ Baryon Dalitz decay ($\Delta/N^* \rightarrow Ne^+e^-$).

Elementary reactions studies by HADES

- **p+p** at 1.25, 2.2 and 3.5 GeV.
- **p+p** at **4.5** GeV (**Feb22**)
 - □ Reference for future HIC at SIS100 energies .
 - $\Box \quad \text{Inclusive } e^+e^- \text{ cross sections.}$
 - **D** Baryonic resonance contribution.

No strong interaction in the final state \rightarrow can carry information from production site to detectors.

HADES experimental setup

- □ Fixed target experiment.
- \Box Focuses on the e⁺e⁻ measurements.
- □ Large geometrical acceptance: $0^{\circ} < \varphi < 360^{\circ}$ and $18^{\circ} < \theta < 85^{\circ}$.
- $\Box \quad \text{Tracking system} = 4 \text{ MDC planes} + \text{magnet.}$
- **L**epton identification:
 - $\Box \quad \text{RICH} \rightarrow \text{rings.}$
 - $\Box \quad \text{ECal} \rightarrow \text{deposit energy.}$
 - $\Box \quad \text{Time of flight detectors TOF and RPC} \rightarrow \beta.$
- **FWD:** $0.5^{\circ} < \theta < 7^{\circ}$.

Single lepton selection 3

- RICH: Ring-Track correlation: A. $\Delta \theta (\Delta \varphi) = \theta_{\text{Track}} - \theta_{\text{Ring}}.$ ECal: Energy deposit.
- B.

Strategy:

- Make projections for different momentum bins.
- Gaussian fit of the peak around 0.
- Take σ values to define the cuts. 3.

 $\Delta \theta$ distributions in function of momentum

Energy deposit in ECAL - momentum in

function of momentum

Define cuts on ECal parameters

Reconstruction of signal e⁺e⁻

CB reduction

- CB mainly due to conversion (close tracks/rings).
- <u>Cut on rings:</u>
 - ш
 - Cut on the ring opening angle $\theta_{\text{Ring}} > 9^{\circ}$. Cal dependent double ring identification (cut on N_{Cals}).

Tracks with a not fitted track in the vicinity of 4° are excluded from the analysis.

p+p, E[']_{kin} = 4.5 GeV

HADES work in progress

 $p_{\rm e} > 100 \; {\rm MeV}/c$

Signal to background ratio

10'

 10^{3}

e⁺e⁻ invariant mass spectrum

- □ Very low CB thanks to appropriate rejection of leptons from real photon conversion.
 - Vector mesons, ω and φ , are clearly seen.
 - At high invariant mass $(M_{e^+e^-} > 1.02 \text{ GeV/c}^2) \text{ e}^+\text{e}^-$ are also reconstructed.

Number of e⁺e⁻ pairs

$\frac{M_{ee}^{}<150}{(MeV/c^2)}$	150 <m<sub>ee<700 (MeV/c²)</m<sub>	$\frac{M_{ee}}{(MeV/c^2)}$
2×10^{6}	33×10^{4}	100

Estimated counts of ω and φ

N_{ω}	\mathbf{N}_{arphi}
16000	350

η meson decay into e^+e^-

w cross section

Conclusion and outlook

- **pp** at 4.5 GeV is a reference for heavy-ion collisions at SIS100 energies.
- □ Large statistics are measured. Data are calibrated and the analysis is ongoing.
- \Box Raw data are extracted \rightarrow work on efficiency and acceptance correction.
- **\Box** Inclusive π^0 , ω and φ cross sections will be extracted.
- □ Ongoing simulations (PLUTO, SMASH).
- Exclusive channels studies : $pp \rightarrow ppe^+e^-$ for selective study of baryon Dalitz decay and ρ/ω decays, using missing mass.

Thank you for your attention