Model selection in electromagnetic production of kaons

Dalibor Skoupil

(in collaboration with P. Bydžovský, A. Cieplý, D. Petrellis and D. Trnková)

Phys. Rev. C 107, 045206 (2023)

Department of Theoretical Physics
Nuclear Physics Institute of the Czech Academy of Sciences, Řež, Czech Republic

17th International Workshop on Meson Physics, MESON 2023, Krakow, Poland
June 26, 2023
Motivation for the work on kaon photo/electroproduction

- We aim at understanding the baryon spectrum and production dynamics of particles with strangeness at low energies.

- Constituent Quark Model predicts a lot more N^* states than was observed in pion production experiments → “missing” resonance problem.

- Models for the description of elementary hyperon electroproduction are a suitable tool for hypernuclear physics calculations.

- New good-quality photoproduction data from BGOOD, LEPS, GRAAL, MAMI and (particularly) CLAS collaborations allow us to tune free parameters of the models.

- As the α_s increases with decreasing energy, we cannot use perturbative QCD at low energies → need for introducing effective theories and models.
Introduction

Photoproduction process

\[p(p) + \gamma(k) \rightarrow K^+(p_K) + \Lambda(p_\Lambda) \]

- Threshold: \(E_{\gamma}^{lab} = 0.911 \text{ GeV}, \ W = 1.609 \text{ GeV} \)

- In the lowest order, the reaction is described by the exchange of hadrons.
 - *The 3rd nucleon-resonance region:* many resonant states and no dominant one in the kaon photoproduction
 \(\rightarrow \) need to assume a large number of nucleon resonances with mass \(< 2.5 \text{ GeV} \)

- Resonance region: resonance contributions dominate \((N^*) \)

- Background: a plenty of nonresonant contributions \((p, K, \Lambda; K^* \text{ and } Y^*) \)
Isobar model

Single-channel approximation
• higher-order contributions (rescattering, FSI) included, to some extent, by means of effective values of the coupling constants

Use of effective hadron Lagrangian
• hadrons either in their ground or excited states
• amplitude constructed as a sum of tree-level Feynman diagrams
 • background and resonant part

• hadronic form factors account for the inner structure of hadrons

Free parameters (couplings, hff’s cutoffs) adjusted to experimental data.
Satisfactory agreement with the data in the energy range $W = 1.6 - 2.5 \text{ GeV}$.
Isobar model
Calculation procedure

- Reaction amplitude: sum of s-, t-, and u-channel (non) Born amplitudes

$$
\mathcal{M} = \sum_{x} \mathcal{M}_{x}, \text{ where } x \equiv s, t, u, N^*, K^*, Y^*
$$

- Each contribution can be rewritten in a compact form

$$
\mathcal{M}(p, p_\Lambda, k) = \bar{u}(p_\Lambda) \gamma_5 \left(\sum_{j=1}^{6} \mathcal{A}_j(s, t, u) \mathcal{M}_j \right) u(p), \\
\text{where } \mathcal{A}_j \text{ are scalar amplitudes and } \mathcal{M}_j \text{ are gauge-invariant operators, i.e. } k_\mu \mathcal{M}_j^\mu = 0,
$$

$$
\mathcal{M}_1 = \frac{1}{2} \left[k \not\cdot \varepsilon - \varepsilon \not\cdot k \right], \quad \mathcal{M}_2 = (p \cdot \varepsilon) - (k \cdot p) \frac{(k \cdot \varepsilon)}{k^2}, \\
\mathcal{M}_3 = (p_\Lambda \cdot \varepsilon) - (k \cdot p_\Lambda) \frac{(k \cdot \varepsilon)}{k^2}, \quad \mathcal{M}_4 = \varepsilon(k \cdot p) - k(p \cdot \varepsilon), \\
\mathcal{M}_5 = \varepsilon(k \cdot p_\Lambda) - k(p_\Lambda \cdot \varepsilon), \quad \mathcal{M}_6 = k(k \cdot \varepsilon) - \varepsilon k^2.
$$
Isobar model
Calculation procedure

- CGLN amplitudes \(f_i(k^2, s, t) \)

\[
\mathbb{M} = \chi_\Lambda \dagger \mathcal{F} \chi_p; \quad \mathcal{F} = f_1(\vec{\sigma} \cdot \vec{\varepsilon}) - i f_2(\vec{\sigma} \cdot \hat{p}_K)[\vec{\sigma} \cdot (\hat{k} \times \vec{\varepsilon})] + f_3(\vec{\sigma} \cdot \hat{k})(\hat{p}_K \cdot \vec{\varepsilon}) \\
+ f_4(\vec{\sigma} \cdot \hat{p}_K)(\hat{p}_K \cdot \vec{\varepsilon}) + f_5(\vec{\sigma} \cdot \hat{k})(\hat{k} \cdot \vec{\varepsilon}) + f_6(\vec{\sigma} \cdot \hat{p}_K)(\hat{k} \cdot \vec{\varepsilon})
\]

where e.g.
\[
f_1 = N^*[-(W - m_p)A_1 + (k \cdot p)A_4 + (k \cdot p_\Lambda)A_5 - k^2A_6]
\]

- Response functions, e.g. transverse cross section

\[
\frac{d\sigma}{d\Omega} = \sigma_T = C \left\{ |f_1|^2 + |f_2|^2 - 2 \text{Re} \, f_1 f_2^* \cos \theta_K \right. \\
+ \sin^2 \theta_K \left[\frac{1}{2}(|f_3|^2 + |f_4|^2) + \text{Re} \, (f_1 f_4^* + f_2 f_3^* + f_3 f_4^* \cos \theta_K) \right] \right\},
\]

(for other response functions see Z. Phys. A 352 (1995) 327)
Isobar model

Novel features of our isobar model

Exchanges of high-spin resonant states

• non physical lower-spin components removed by appropriate choice of \mathcal{L}_{int}

$$V_S^{\mu} \mathcal{P}_{ij,\mu\nu}^{(1/2)} V_{EM}^\nu = 0$$

Energy-dependent decay widths of nucleon resonances \rightarrow restoration of unitarity

$$\Gamma(\vec{q}) = \Gamma_{N^*} \frac{\sqrt{s}}{m_{N^*}} \sum_i x_i \left(\frac{||\vec{q}_i||}{||\vec{q}_i^{N^*}||} \right)^{2l+1} \frac{D(||\vec{q}_i||)}{D(||\vec{q}_i^{N^*}||)},$$

Extension from photoproduction to electroproduction

• Phenomenological form factors in the electromagnetic vertex

• Longitudinal couplings of N^*’s to γ^* (crucial at small Q^2)

$$V_{EM}^{\mu} (N_{1/2}^* p\gamma) = -i \frac{g_{EM}^3}{(m_R + m_p)^2} \Gamma_{\gamma^*} \gamma_\beta \mathcal{F}^\beta,$$

$$V_{EM}^{\mu} (N_{3/2}^* p\gamma) = -i \frac{g_{EM}^3}{m_R(m_R + m_p)^2} \gamma_5 \Gamma_{\gamma^*} \left(\not{q} g_{\mu\beta} - q_{\beta} \gamma_\mu \right) \mathcal{F}^\beta,$$

$$V_{EM}^{\mu\nu} (N_{5/2}^* p\gamma) = -i \frac{g_{EM}^3}{(2m_p)^5} \Gamma_{\gamma^*} \left(q_{\alpha} q_{\beta} g_{\mu\nu} + q^2 g_{\alpha\mu} g_{\beta\nu} - q_{\alpha} q_{\nu} g_{\beta\mu} - q_{\beta} q_{\nu} g_{\alpha\mu} \right) p^\alpha \mathcal{F}^\beta.$$
Fitting the data in the $K^+\Lambda$ channel

Minimization of $\chi^2/n.d.f.$ with help of MINUIT library

Resonance selection

- **s channel**: spin-1/2, 3/2, and 5/2 N^* with mass < 2.5 GeV;
- **t channel**: $K^*(892)$, $K_1(1272)$
- **u channel**: $Y^*(1/2)$ and $Y^*(3/2)$

Free parameters ($\approx 30 + 10$):

- **SU(3)$_f$**: $-4.4 \leq g_{K\Lambda N}/\sqrt{4\pi} \leq -3.0,$
 $0.8 \leq g_{K\Sigma N}/\sqrt{4\pi} \leq 1.3$
- **K^*’s have vector and tensor couplings**
- spin-1/2 resonance \rightarrow 1 parameter;
 spin-3/2 and 5/2 resonance \rightarrow 2 parameters
- 2 cut-off parameters for the hff
- 1 longitudinal coupling for each N^*
- 2 cut-off parameters for the emff of K^* and K_1

Experimental data

3383 $p(\gamma, K^+)\Lambda$ data

- cross section for $W < 2.355$ GeV
 (CLAS 2005 & 2010; LEPS, Adelseck-Saghai)
- hyperon polarisation for $W < 2.225$ GeV
 (CLAS 2010)
- beam asymmetry (LEPS)

171 $p(e, e'K^+)\Lambda$ data

- $\sigma_U, \sigma_T, \sigma_L, \sigma_{LT'}, \sigma_K$
Resulting models for the $K^+\Lambda$ photo- and electroproduction

BS1 model ($\chi^2/n.d.f. = 1.64$)
- $S_{11}(1535), S_{11}(1650), F_{15}(1680), P_{13}(1720), F_{15}(1860), D_{13}(1875), F_{15}(2000)$;
- $K^*(892), K_1(1272)$;
- $\Lambda(1520), \Lambda(1800), \Lambda(1890), \Sigma(1660), \Sigma(1750), \Sigma(1940)$;
- Multidipole form factor:
 $\Lambda_{bgr} = 1.88$ GeV, $\Lambda_{res} = 2.74$ GeV

BS3 model ($\chi^2/n.d.f. = 1.74$)
- $S_{11}(1535), S_{11}(1650), F_{15}(1680), P_{11}(1710), P_{13}(1720), F_{15}(1860), D_{13}(1875), P_{13}(1900), F_{15}(2000), D_{13}(2120)$;
- $K^*(892), K_1(1272)$;
- $\Lambda(1405), \Lambda(1600), \Lambda(1890), \Sigma(1670)$;
- Dipole form factor:
 $\Lambda_{bgr} = 1.24$ GeV, $\Lambda_{res} = 0.89$ GeV
Transverse, σ_T, and longitudinal, σ_L, cross sections of $p(e, e'K^+)\Lambda$

Extension from photo- to electroproduction

- **BS1**: naive extension by adding em. form factors only
- **BS3**: em. form factors and longitudinal couplings of N^*'s to γ^* added
New fits for $K^+\Sigma^-$ channel

χ^2 minimization and overfitting

Fitting procedure with MINUIT library: **minimizing the χ^2**

$$
\chi^2 = \sum_{i=1}^{N} \frac{[d_i - p_i(c_1, \ldots, c_n)]^2}{\sigma_{d_i}^2},
$$

(c_1, \ldots, c_n) - set of free parameters, (d_1, \ldots, d_N) - set of data points, p_i - theory, σ_{d_i} - error

Problem: χ^2 minimization cannot prevent overfitting

Example: polynomial curve fitting

- $f(x, w) = w_0 + w_1 x + w_2 x^2 + \cdots + w_k x^k$
- increasing order of polynomial k fits the data well...

 ...but gives only poor description of the function which generated them...

 ...and may fail to generalize to new data

- **Occam’s razor** (law of parsimony): simpler models should be preferred

Model fits the noise in the sample
New fits of $K^+\Sigma^-$ channel
Least Absolute Shrinkage and Selection Operator (LASSO)

Remedy to the overfitting issue: regularization

- introduce a penalty term to the $\chi^2 \rightarrow$ penalization of large parameter values
- penalized χ^2_P: $\chi^2_P = \chi^2 + P(\lambda)$
- penalty term: $P(\lambda) = \lambda^4 \sum_{i=1}^{N_{\text{res}}} |g_i|$
 λ - regularization parameter, g_i - resonances' couplings
- LASSO forces some of the parameters to zero
 \rightarrow selection of a subset of the fit parameters
- λ controls the strength of the penalty and thus the complexity of the model
 \rightarrow higher powers of λ allow fine sampling of the region of small λ
New fits of $K^+\Sigma^-$ channel

Information criteria:

- Akaike information criterion
 $$\text{AIC} = 2n_i + \chi_P^2$$

- Corrected Akaike information criterion
 $$\text{AICc} = \text{AIC} + \frac{2n_i(n_i+1)}{N-n_i-1}$$

- Bayesian information criterion
 $$\text{BIC} = n_i \ln(N) + \chi_P^2$$

 n_i - no. of parameters corresponding to λ_i
 N - number of data points

Applying the information criteria – forward selection

1. start with the full model: parameters initialized within $\langle -1; +1 \rangle$; use λ_{\max}
2. perform LASSO χ_P^2 minimization and compute IC
3. in each run reduce λ and run LASSO with the values of the previous run as starting values
4. repeat until λ_{\min} is reached

Optimal λ occurs at the minimum of the IC.
New fits of $K^+\Sigma^-$ channel

Fitting procedure

- resonance selection: motivation from previous analysis of $K^+\Lambda$ channel
- non resonant part: Born terms and exchanges of K^* and K_1 and Σ^*’s
- resonant part: exchanges of N^*’s and Δ^*’s in the s channel
- around 600 data utilized to fit ≤ 25 parameters
- result with the smallest $\chi^2/\text{ndf} = 2.3 \rightarrow$ fit M (25 parameters, 14 resonances)
- LASSO applied at fit M: $\chi^2_P/\text{ndf} = 3.4 \rightarrow$ fit L (17 parameters, 9 resonances)

Characteristics of models

- only one Δ resonance introduced
- no hyperon resonances needed for reliable data description
- results in very good agreement with the cross-section and beam-asymmetry data
- fit L is very economical
New fits of $K^+\Sigma^-$ channel

Differential cross section in dependence on the photon lab energy
New fits of $K^+\Sigma^-\hspace{0.1cm}$ channel
Differential cross section in dependence on the photon lab energy - fit L w/o individual resonances

Notation: N7: N(1720)3/2^+, M4: N(2060)5/2^−
New fits of $K^+\Sigma^- \text{ channel}$

Beam asymmetry in dependence on the kaon center-of-mass angle - fit L w/o individual resonances
LASSO in the $K^+\Lambda$ channel

Selecting a subset of resonances (results very preliminary!)

Resonances in BS1 and BS1L:

- $S_{11}(1535), S_{11}(1650), F_{15}(1680), P_{13}(1720), F_{15}(1860), D_{13}(1875), F_{15}(2000)$;
- $K^*(892), K_1(1272)$;
- $\Lambda(1520), \Lambda(1800), \Lambda(1890), \Sigma(1660), \Sigma(1750), \Sigma(1940)$

<table>
<thead>
<tr>
<th>Model</th>
<th>no. of resonances</th>
<th>no. of parameters</th>
<th>χ^2/n.d.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS1</td>
<td>16</td>
<td>31</td>
<td>1.6</td>
</tr>
<tr>
<td>BS1L</td>
<td>9</td>
<td>20</td>
<td>3.6</td>
</tr>
</tbody>
</table>
Refitting the model’s parameters in the $K^+\Lambda$ channel

Ridge regression and cross validation for suppressing hyperon couplings

Why refit?

- include recent measurements of polarization observables (PR C 93, (2016) 065201)
- need to investigate more the role of hyperon resonances in KY photoproduction
- large values of hyperon couplings: ridge regression to suppress them during the fitting procedure

Ridge regularization

- penalized χ^2_P: $\chi^2_P = \chi^2 + \lambda^4 \sum_{i=1}^{n_\Lambda} g_i^2$, ($n_\Lambda =$ no. of Y couplings)
- parameter values reduced but they are not reduced to zero

Cross validation

Bias-Variance trade-off
"One standard-error rule" for selecting appropriate model

Errors on the validation set help us determine the optimal value of λ

- average of validation errors over all k runs
 \[\overline{CV}(\lambda) = \frac{1}{k} \sum_{j=1}^{k} CV_j(\lambda) \]

- optimal λ^* is then:
 \[\lambda^* = \arg\min_{\lambda \in \{\lambda_{\min}, \ldots, \lambda_{\max}\}} \overline{CV}(\lambda) \]

"One standard-error rule": the most parsimonious model within one standard error from the minimum of the validation error should be chosen

- new optimal $\tilde{\lambda}$ is such that
 \[\overline{CV}(\tilde{\lambda}) = \overline{CV}(\lambda^*) + SE(\lambda^*) \]
Relative percentage reduction of the resonance couplings

\[100 \times \left(\frac{|g_j| - |\tilde{g}_j|}{|g_j|} \right) \]

- \(g_j \) - values from the unregularized fitting
- \(\tilde{g}_j \) - values after performing Ridge regularization
$K^+\Lambda$ channel: beam asymmetry Σ
$K^+\Lambda$ channel: target asymmetry T
Summary

New version of isobar model for the $K^+\Lambda$ channel

- available for calculations online at:

Description extended from the $K^+\Lambda$ channel to the $K^+\Sigma^-$ channel.

Regularization methods introduced as a remedy for overfitting and as model selection tools.

Outlook

- testing the models in the DWIA calculations for hypernucleus production
- performing an analysis of Σ photoproduction channels
- extending the analysis of electroproduction beyond $Q^2 = 1 \text{ GeV}^2$
- studying the production of Ξ hypernuclei
- etc., etc....

Thank you for your attention!