

The reaction $\pi N \rightarrow \omega N$ in a dynamical coupled-channel approach (17th International Workshop on Meson Physics)

June 26, 2023 | Yu-Fei Wang | Institute for Advanced Simulation, FZJ

Member of the Helmholtz Association

Outline

- Introduction
- 2 Theoretical Framework
- 3 Numerical results
- Conclusion and Outlook

Based on Phys. Rev. D **106** 094031 (2022) In collaboration with D. Rönchen, U.-G. Meißner, Y. Lu, C.-W. Shen, and J.-J. Wu

Introduction

Hadron spectroscopy

- Hadron spectroscopy \rightarrow crucial for understanding QCD
- Low energy region \rightarrow effective theories. High energy region \rightarrow asymptotic freedom.
- Intermediate energy region → abundant experimental observations, involved coupled-channel dynamics
- Textbook Breit-Wigner (BW) description sometimes fails
 - resonance v.s. background
 - interference

[source: ELSA; data: ELSA, JLab, MAMI]

Introduction

Hadron spectroscopy

- Extraction of resonances \rightarrow partial wave analyses (PWA)
- Decomposition under JLS basis

 $T \to T^{JLS}$

- Various methods
 - Unitary isobar models → unitary amplitudes + BW [MAID, Yerevan/JLab, KSU, ...]
 - *K*-matrix Unitarization → on-shell intermediate states

[GWU/SAID, BnGa, Gießen, ...]

■ Dynamical coupled-channel (DCC) approaches → interaction potentials + scattering equations (off-shell intermediate states)

[ANL-Osaka (EBAC), Dubna-Mainz-Taipeh, ...] & Jülich-Bonn Model

[spectra: PDG 2000. quark model calculations: Löring et. al., EPJA 10, 395 (2001)]

Introduction

Jülich-Bonn Model

Jülich-Bonn Model

- Powerful tool for the PWA
- Parameters → fit to a worldwide collection of data
- Unitarity, analyticity \rightarrow searching resonance poles on the second sheet [Döring et. al., NPA 829, 170 (2009)]
- Applications
 - Hadronic part: πN induced reactions [Schütz et. al., PRC 51, 1374 (1995)] [Schütz et. al., PRC 49, 2671 (1994)][Schütz et. al., PRC 57, 1464 (1998)] [Krehl et. al., PRC 62, 025207 (2000)] [Gasparyan et. al., PRC 68, 045207 (2003)][Döring et. al., NPA 851, 58 (2011)] [Rönchen et. al., EPIA 49, 44 (2013)][Wang et. al., PRD 106, 094031 (2022)]
 - Photoproduction [Rönchen et. al., EPJA 50, 101 (2014)] [Rönchen et. al., EPJA 51, 70 (2015)] [Rönchen et. al., EPJA 54, 110 (2018)] [Rönchen et. al., EPJA 558, 229 (2022)]
 - Electroproduction (Jülich-Bonn-Washington) [Mai et. al., PRC 103, 065204 (2021)] [Mai et. al., PRC 106, 015201 (2022)]
 - Hidden charm sector and Pc states [Shen et. al., CPC 42, 023106 (2018)] [Wang et. al., EPJC 82, 497 (2022)]

ωN physics

- Low-density nuclear matter → QCD chiral symmetry
- Vector meson dominance [Gell-Mann & Zachariasen, PR 124, 953 (1961)] $ightarrow \omega$ in the nuclear matter
- ω plays a very important role in the EOS of the neutron stars [H. Shen et. al., NPA 637, 435 (1998)]
- The ωN elastic scattering length \rightarrow in-medium bound states??

Cannot be measured directly by experiments!! \rightarrow comprehensive models like Jülich-Bonn

Theoretical Framework

Dynamics I

Central part of this model: hadronic (πN induced) reactions

The Lippmann-Schwinger-like equation (CM frame)

 $T_{\mu\nu}(p'',p',z) = V_{\mu\nu}(p'',p',z) + \sum_{\kappa} \int_{0}^{\infty} p^{2} dp V_{\mu\kappa}(p'',p,z) G_{\kappa}(p,z) T_{\kappa\nu}(p,p',z)$

- Reaction channels $\nu \to \kappa \to \mu$ (after PW and isospin projection, JLS basis [Jacob & Wick, Annals Phys. 7, 404 (1959)], $J \le 9/2$)
- Propagator: G ($\pi\pi$ N channel: effective channels ρ N, σ N, $\pi\Delta$. E/ ω /z baryon/meson/total energy.)

$$G_{\kappa}(z,p) = \begin{cases} (z - E_{\kappa} - \omega_{\kappa} + i0^{+})^{-1} & \text{(if } \kappa \text{ is a two-body channel)} , \\ \left[z - E_{\kappa} - \omega_{\kappa} - \Sigma_{\kappa}(z,p) + i0^{+} \right]^{-1} & \text{(if } \kappa \text{ is an effective channel)} . \end{cases}$$

- Observables \rightarrow dimensionless amplitude $\tau_{\mu\nu} = -\pi \sqrt{\rho_{\mu}\rho_{\nu}} T_{\mu\nu}$, ρ : kinematic factor
- Second Riemann sheet \rightarrow analytical continuation of G [Döring et. al., NPA 829, 170 (2009)]

Theoretical Framework

Dynamics II

- Separating the amplitude → with/without *s*-channel poles $T = T^P + T^{NP}$ ■ $T^{NP} = V^{NP} + \sum \int p^2 dp V^{NP} GT^{NP}$ ■ $T^{P}_{\mu\nu}(p'', p', z) = \sum_{i,i} \Gamma^{a}_{\mu,i}(p'') D_{ij}(z) \Gamma^{c}_{\nu,i}(p'),$
 - $(D^{-1})_{ij} = \delta_{ij}(z m_i^b) \Sigma_{ij}(z)$
 - Γ(γ): the dressed (bare) vertices
 (a annihilation, c creation)
 - Σ: self-energy functions
 - Nucleon mass renormalization
- V^{NP} , $\gamma \rightarrow$ constructed from effective Lagrangians + regulators (cut-offs) (details: Supplemental material [Wang et. al., PRD 106, 094031 (2022)])
- s-channel contact terms: $D \sim (1 \Sigma)^{-1}$

[Rönchen et. al., EPJA 51, 70 (2015)]

Numerical results

Numerical details

- Database \rightarrow over 9000 points, 174 of $\pi N \rightarrow \omega N$ Energy \in [1078, 2300] MeV
- Parameters: s-channel bare couplings + cut-offs (V^{NP})
 - $\rightarrow 225+79$
- $\begin{array}{l} \bullet \quad \mbox{Haftl-Tabakin matrix inversion} \\ \to \mbox{discretization via the Gaussian points} \end{array}$

[Haftel & Tabakin, NPA 158, 1 (1970)]

$$T_{ab}^{NP} = V_{ab}^{NP} + \sum_{i=1}^{n} p_i^2 w_i V_{ai}^{NP} G_i T_{ib}^{NP}, \quad \hat{T} = (1 - \hat{V}\hat{G})^{-1} \hat{V}$$

Supercomputer JURECA

[JSC, Journal of large-scale research facilities 7 (2021)]

■ NP parameters are much slower → nested fitting

Numerical fit

Estimation of the errors

- The statistics
 - Energy-dependent solutions of πN amplitudes [Arndt et. al., PRC 74, 045205 (2006)] \rightarrow no errors
 - Some problematic data points of ηN [Brown et. al., NPB 153, 89 (1979)]
 - Extra weights on important data sets (e.g. ωN)
 - Impossible to switch on all parameters in one attempt
 - Estimation of the uncertainties → fits with different initial values
- $\blacksquare \ \mathsf{Two fits} \to \mathsf{equally good fit qualities}$
 - Fit A → from intermediate values of [Röchen et. al., EPJA 54, 110 (2018)]
 - Fit B \rightarrow an extra narrow resonance in P₁₁ wave ($J^{P} = \frac{1}{2}^{+}$, $z_{r} = 1585 35i$ MeV)

June 24, 2023

Numerical fit Fit Results

ωN Data: [Danburg et. al., PRD 2, 2564 (1970)] [Kraemer et. al., PR 136, B496 (1964)] [Binnie et. al., PRD 8, 2789 (1973)] [Keyne et. al., PRD 14, 28 (1976)] [Karami et. al., NPB 154, 503 (1979)] Other channels: see the website

First: backward differential cross section. Second: forward. Third: total cross section.

Numerical fit

Fit Results

ω N Data: [Danburg et. al., PRD 2, 2564 (1970)] [Kraemer et. al., PR 136, B496 (1964)] [Binnie et. al., PRD 8, 2789 (1973)] [Keyne et. al., PRD 14, 28 (1976)] [Karami et. al., NPB 154, 503 (1979)] Other channels: see the website

June 24, 2023

Selected Results

 N^* Spectra (J^P convention. Empty symbols: fit A. Filled: fit B.)

Selected Results

N* Couplings

Physical couplings \rightarrow normalized residues at $z_r = M_r - \frac{i}{2} \Gamma_r {}_{[PDG]} \tau_{\mu\nu}^{II} \sim \frac{R_{\mu}R_{\nu}}{z_r - z} + \cdots, NR_{\mu} \equiv \frac{2R_{\pi N}}{\Gamma_r} \times R_{\mu}$

Our results

- ωN mainly couples to lower states (|NR| > 0.5): N(1535) $\frac{1}{2}^{-}$, N(1710) $\frac{1}{2}^{+}$ and N(1680) $\frac{5}{2}^{+}$
- Very large bare couplings $\rightarrow N^*(1535)$ and $N^*(1710)$
- Fit C (constraining the bare couplings) failed → left for the future with photonproduction included
- Higher states $\rightarrow N(2250) \frac{9}{2}^{-}$ relatively important (Br > 10%)

In the literature: which states are important for ωN

- N(1720) $\frac{3}{2}^+$ and N(1680) $\frac{5}{2}^+$ [Zhao, PRC 63, 025203 (2001)]
- $N(1535) \frac{1}{2}^{-}, N(1650) \frac{1}{2}^{-} \text{ and } N(1520) \frac{3}{2}^{-} [Lutz \, et. \, al., NPA 706, 431 (2002)]$
- N(1710) ¹/₂⁺, N(1675) ⁵/₂⁻ and N(1680) ⁵/₂⁺ [Penner & Mosel, PRC 66, 055211 (2002)][Penner & Mosel, PRC 66, 055212 (2002)] [Shklyar et. al., PRC 71, 055206 (2005)]
- $N(1675) \frac{5}{2}^{-}$ and $N(1680) \frac{5}{2}^{+} \rightarrow$ very large bare couplings [Muehlich et. al., NPA 780, 187 (2006)]

Selected Results

ωN Scattering Length

- Definition $\rightarrow a_{\kappa} \equiv \lim_{p_{\kappa} \to 0} p_{\kappa}^{-1} \tan \tilde{\delta}_{\kappa}^{(l=0)} = \lim_{p_{\kappa} \to 0} p_{\kappa}^{-1} \tau_{\kappa\kappa}^{(l=0)}$ ($\tilde{\delta}$: generalized phase shift)
- Spin average of $\omega N \rightarrow \bar{a}_{\omega N} = \frac{1}{3} a_{\omega N} \left(S = \frac{1}{2} \right) + \frac{2}{3} a_{\omega N} \left(S = \frac{3}{2} \right)$
- Fit A: $\bar{a}_{\omega N} = (-0.24 + 0.05i)$ fm. Fit B: $\bar{a}_{\omega N} = (-0.21 + 0.05i)$ fm.
- Re $\bar{a} < 0 \rightarrow$ in-medium bound states tend not to be formed

Other results: [Koke & Havashigaki, PTP 98. 631 (1997)][Klingl et. al., NPA 650, 299 (1999)] [Lutz et. al., NPA 706, 431 (2002)][Shklvar et. al., PRC 71, 055206 (2005)]

[Muehlich et, al., NPA 780, 187 (2006)][Paris, PRC 79, 025208 (2009)] [Ishikawa et, al., PRC 101, 052201 (2020)]

Conclusion and Outlook

Conclusion

- The Jülich-Bonn Model: a powerful model for the partial-wave analyses and extraction of the hadron spectra
- Study of the ωN channel
 - More than 9000 data points in πN induced reactions are refitted.
 - There are two fit solutions to evaluate the uncertainties.
 - Hadron spectra are reanalysed.
 - ωN couples mainly to lower states: $N(1535) \frac{1}{2}^{-}$, $N(1710) \frac{1}{2}^{+}$ and $N(1680) \frac{5}{2}^{+}$.
 - Negative real part of the scattering length of ωN .

Outlook

- $\blacksquare \ \omega$ photon production \rightarrow abundant and precise experimental measurements
- Numerical fit of the hidden charm sector
- Study of *KN* induced reactions
- More statistics $\rightarrow \pi N$ correlation matrix [Döring et. al., PRC 93, 065205 (2016)]
- LASSO method [Tibshirani, Statistics in medicine 16, 385 (1997)]
- The ω meson in the nuclear matter

Backups

Feynman diagrams

	πN	$\pi\Delta$	σN	ηN	КΛ	ΚΣ	ho N	ωN
πN	$ ho\sigma$	ρ	π	<i>a</i> 0	К*	К*	$\pi\omega a_1$	ρ
$\pi\Delta$	_	ρ	π				π	
σN	_	_	σ					
ηN	_	_	_	fo	К*	К*		ω
КΛ	_	_	_	_	$f_0\omega$	$ ho a_0$		KK*
ΚΣ	_	_	_	_	-	$f_0 \omega \rho a_0$		KK*
ρN	_	_	_	_	-	-	ρ	
ωN	_	_	_	-	_	_	_	σ
	πN	$\pi\Delta$	σN	ηN	κΛ	ΚΣ	ρN	ωN
πN	πN NΔ	πΔ ΝΔ	σN N	ηN N	<i>Κ</i> Λ ΣΣ*	ΚΣ ΛΣΣ*	ρΝ ΝΔ	ωN N
$\frac{\pi N}{\pi \Delta}$	πN NΔ -	πΔ ΝΔ ΝΔ	σN N	<u>ηΝ</u> Ν	<i>Κ</i> Λ ΣΣ*	ΚΣ ΛΣΣ*	ρΝ ΝΔ Ν	ωN N
$\pi N \ \pi \Delta \ \sigma N$	πN NΔ _	πΔ ΝΔ ΝΔ	σN N N	<u>ηΝ</u> Ν	<u>ΚΛ</u> ΣΣ*	ΚΣ ΛΣΣ*	ρΝ ΝΔ Ν	ωN N
πN πΔ σN ηN	πN NΔ 	πΔ ΝΔ ΝΔ 	σN N N –	<u>ηΝ</u> Ν Ν	<u>κη</u> ΣΣ* Λ	<u>ΚΣ</u> ΛΣΣ* ΣΣ*	ρΝ ΝΔ Ν	<u>ωΝ</u> Ν Ν
πN πΔ σN ηN KΛ	πN NΔ _ _ _	πΔ ΝΔ 	σN N 	<u>ηΝ</u> Ν Ν	κλ ΣΣ* Λ ΞΞ*	κΣ ΛΣΣ* ΞΞ*	ρΝ ΝΔ Ν	<u>ωΝ</u> Ν Ν
πΝ πΔ σΝ ηΝ ΚΛ ΚΣ	πN ΝΔ 	πΔ ΝΔ - - -	σN N 	ηΝ Ν Ν 	κλ ΣΣ* Δ ΞΞ*	<u>ΚΣ</u> ΛΣΣ* ΞΞ* ΞΞ*	ρΝ ΝΔ Ν	<u>ωΝ</u> Ν Λ ΣΣ*
πΝ πΔ σΝ ηΝ ΚΛ ΚΣ ρΝ	<u>πΝ</u> 	πΔ ΝΔ 	σN N 	<u>ηΝ</u> Ν 	κλ ΣΣ* 	κΣ ΛΣΣ* ΞΞ* ΞΞ* _	ρΝ ΝΔ Ν	<u>ωΝ</u> Ν Λ ΣΣ*

Δ spectra

Δ spectra

- Influence of $\omega N \rightarrow$ rearrangement of I = 1/2, 3/2 contributions via $K^0 \Sigma^0$ and $K^+ \Sigma^-$
- Channels of isospin $I = 3/2 \rightarrow$ smaller database
- The $\Delta(1910) \frac{1}{2}^+$ (P_{31} wave of πN) \rightarrow much broader 1765 339i(1813 319i) MeV while the line-shape is well described

Pole positions

Resonances	Fit A	Fit B	Estimation of PDG
N(1535) ¹ / ₂	1500 — 46i	1499 — 46i	1510 — 65i (****)
N(1650) $\frac{1}{2}^{-}$	1658 — 64i	1664 — 68i	1655 — 68i (****)
N(1440) 1/2+ (NP)	1318 — 126i	1411 — 121 <i>i</i>	1370 — 88i (****)
$N(1710) \frac{1}{2}^+$	1704 — 78i	1603 — 279i	1700 — 60i (****)
N(1880) $\frac{1}{2}^{+}$ (NP)	1715 — 233i	1755 — 220i	1860 — 115i (***)
$N(1720) \frac{3}{2}^+$	1680 — 91i	1679 — 95i	1675 — 125i (****)
N(1900) $\frac{3}{2}^+$	1717 — 354i	1750 — 320i	1920 — 75i (****)
N(1520) ³ / ₂	1498 — 53i	1499 — 52i	1510 — 55i (****)
N(1700) ³ / ₂ (NP)	1439 — 284i	1398 — 193i	1700 — 100i (***)
N(1875) $\frac{3}{2}^{-}$ (NP)	1905 — 331i	1891 — 261i	1900 — 80i (***)
N(1675) 5 -	1658 — 63i	1660 — 56i	1660 — 68i (****)
N(1680) ⁵ / ₂ +	1679 — 46i	1674 — 47i	1675 — 60i (****)
N(1990) ⁷ / ₂ +	1900 — 207i	1901 — 204i	omitted (* *)
N(2190) 7/2 -	1950 — 180i	1960 — 188i	2100 — 200i (****)
N(2250) $\frac{5}{2}^{-}$	2169 — 136i	2201 — 145i	2200 — 210i (****)
2nd pole $\frac{9}{2}^{-1}$ (NP)	1939 — 213i	1978 — 197i	_
N(2220) ⁹ / ₂ +	2121 — 182 <i>i</i>	2125 — 182i	2170 — 200i (****)

Pole positions

Resonances	Fit A	Fit B	Estimation of PDG
$\Delta(1620) \frac{1}{2}^{-}$	1602 — 44i	1602 — 43i	1600 — 60i (****)
$\Delta(1750) \frac{1}{2}^{+}$ (NP)	1882 — 157i	_	omitted (*)
$\Delta(1910)^{\frac{1}{2}+}$	1765 — 339i	1813 — 319i	1860 — 150i (****)
$\Delta(1232) \frac{3}{2}^+$	1216 — 45i	1213 — 44i	1210 — 50i (****)
$\Delta(1600) \frac{3}{2}^{+}$ (NP)	1572 — 81i	1577 — 85i	1510 — 135i (****)
$\Delta(1920)^{\frac{3}{2}+}$	1888 — 432i	1888 — 427i	1900 — 150i (***)
$\Delta(1700)^{\frac{3}{2}}$	1825 — 199i	1825 — 211 <i>i</i>	1665 — 125i (****)
$\Delta(1940) \frac{3}{2}^{-}$ (NP)	2111 — 396i	2116 — 412 <i>i</i>	1950 — 175i (**)
3rd pole $\frac{3}{2}^{-}$ (NP)	_	1358 — 372i	-
$\Delta(1930)^{\frac{5}{2}}$	1720 — 293i	1711 — 223i	1880 — 140 <i>i</i> (***)
$\Delta(1905)^{\frac{5}{2}+}$	1703 — 64i	1703 — 63i	1800 — 150i (****)
$\Delta(1950)\frac{7}{2}^+$	1884 — 77i	1885 — 79i	1880 — 120i (****)
$\Delta(2200) \frac{7}{2}^{-}$	2185 — 84i	2208 — 82i	2100 — 170i (***)
2nd pole $\frac{7}{2}^{-}$ (NP)	_	2037 — 324i	_
$\Delta(2400) \frac{9}{2}^{-}$	1942 — 255i	1941 — 257i	omitted (**)

Normalized residues: ωN channel

TABLE V. The normalized residues of the N^* states for the ωN channel. The values are written in the form (NR, θ) , with the phase θ in units of degrees. In each cell, the first (second) value is from fit A (B). The three subchannels are $(1)|J - L| = \frac{1}{2}$, $S = \frac{1}{2}$; $(2)|J - L| = \frac{1}{2}$, $S = \frac{3}{2}$; $(3)|J - L| = \frac{3}{2}$, $S = \frac{3}{2}$.

Resonances	Channel (1)	Channel (2)	Channel (3)
$N(1535)^{1-}_{2}$	(1.13, -156°) (1.13, -163°)	0	(0.14, 26°) (0.13, 18°)
$N(1650)^{1-}_{2}$	(0.19, 156°) (0.14, 148°)	0	(0.02, -9°) (0.02, -10°)
$N(1440)^{1+}_{2}$	(0.18, -37°) (0.21, 23°)	(0.34, 1°) (0.42, 64°)	0
$N(1710)^{1+}_{2}$	(0.10, 158°) (0.27, -86°)	(0.56, -172°) (0.73, -59°)	0
$N(1880)^{1+}_{2}$	(0.01, -24°) (0.00, 152°)	(0.03, 31°) (0.02, 157°)	0
$N(1720)^{3+}_{2}$	(0.01, 150°) (0.01, 155°)	$(0.05, -178^{\circ})$ $(0.06, -178^{\circ})$	(0.00, 69°) (0.00, 56°)
$N(1900)^{3+}_{2}$	(0.00, 33°) (0.01, -19°)	(0.02, 138°) (0.01, 91°)	(0.00, 6°) (0.00, -75°)
$N(1520)^{3-}_{2}$	(0.09, 139°) (0.14, 141°)	(0.04, 102°) (0.07, 115°)	(0.16, -108°) (0.22, -99°)
$N(1700)^{3-}_{2}$	(0.02, -35°) (0.03, 20°)	(0.01, -123°) (0.01, 5°)	(0.02, -4°) (0.01, 87°)
$N(1875)^{3-}_{2}$	$(0.00, -110^{\circ})$ $(0.00, -82^{\circ})$	$(0.00, -172^{\circ})$ $(0.00, -114^{\circ})$	$(0.00, -157^{\circ})$ $(0.00, -105^{\circ})$
$N(1675)^{5-}_{2}$	(0.01, 108°) (0.01, 117°)	(0.25, 82°) (0.30, 89°)	$(0.00, -51^{\circ})$ $(0.00, -48^{\circ})$
$N(1680)^{5+}_{2}$	$(0.00, -8^{\circ})$ $(0.00, -32^{\circ})$	(0.04, 31°) (0.04, 26°)	(0.95, 165°) (0.98, 162°)
$N(1990)^{7+}_{2}$	$(0.00, -46^{\circ})$ $(0.00, -42^{\circ})$	$(0.04, -60^{\circ})$ $(0.04, -62^{\circ})$	$(0.00, -105^{\circ})$ $(0.00, -107^{\circ})$
$N(2190)^{7-}_{2}$	$(0.00, -155^{\circ})$ $(0.00, -149^{\circ})$	(0.01, 146°) (0.01, 154°)	(0.07, 177°) (0.03, 177°)
$N(2250)^{9-}_{2}$	$(0.01, -31^{\circ})$ $(0.01, -47^{\circ})$	$(0.12, -28^{\circ})$ $(0.16, -38^{\circ})$	$(0.00, -42^{\circ})$ $(0.01, -52^{\circ})$
2nd pole $\frac{9}{2}$	(0.00, 92°) (0.00, 83°)	(0.06, 85°) (0.05, 78°)	(0.00, 44°) (0.00, 44°)
$N(2220)^{9+}_{2}$	(0.00, 50°) (0.00, 58°)	(0.01, 10°) (0.01, 14°)	(0.03, 21°) (0.03, 24°)