

$\pi\pi\text{-}\mathsf{Scattering}$ with IAM in the Finite Volume

Julián Andrés Sánchez, Raquel Molina and Angel Gómez Nicola

<ロト < 同ト < ヨト < ヨ

Introduction
000Finite Volume $\pi\pi$ -Scattering
000Green Functions and Differences
000Spectrum in a Finite Volume
000Conclusions and perspect
000

ヘロト ヘヨト ヘヨト

= 990

Overview

1 Introduction

- **2** Finite Volume $\pi\pi$ -Scattering
- 3 Green Functions and Differences
 - *DJ_H* Computation
 - t- and u-Differences ($DJ_{u,t}$, $DJ_{2u,2t}$)
 - s-Difference (DJ_s)
 - Exponential Volume Corrections
- 4 Spectrum in a Finite Volume
- **5** Conclusions and perspectives

Introduction Finite Volume $\pi\pi$ -Scattering Green Functions and Differences Spectrum in a Finite Volume Conclusions and perspective operation of the second second

Introduction

Tasks to do:

- Current methods:
 - Volume-dependence
 - LHC is ignored at loops
 - $\tilde{V} = V$
- Generalization:
 - Volume- and Exponentialdependencies
 - Correct treatment of the *LHC*
 - $\tilde{V} = V + \Delta V$

M. Luscher (DESY). Volume Dependence of the Energy Spectrum. Commun. Math. Phys. 105 (1986) 153-188.

Figure: Lattice QCD

イロト イヨト イヨト

Consequence of the Discretization

Figure: Cube rotations

- The SO(3)-symmetry is broken (3 generators) $\rightarrow O_h$ (24 generators)
- Lorentz-symmetry is broken \rightarrow PV is not applicable.
- Volume- and Exponential-dependence on amplitudes.

イロト イヨト イヨト

- Discretization of the momentum → Shell-labeling
- $T(p,p') \to T(p.p',p',p)$

Introduction Finite Volume $\pi\pi$ -Scattering Green Functions and Differences Spectrum in a Finite Volume Conclusions and perspective operations of the second second

For elastic scattering, every t partially projected, an amplitude:

$$t = t_2 + t_4 + \dots$$

must fulfill: Im $t^{-1} = \sigma |t|^2$ (Im $t_2 = 0$, Im $t_4 = \sigma t_2^2$). Then for a given $F(s) = \frac{t_2^2}{t}$, we have:

$$F(s) = F(0) + F'(s)s + \frac{1}{2}F''(0)s^2 + \frac{s^3}{\pi} \int_{4m_{\pi}^2}^{\infty} ds' \frac{ImF(s')}{s'^3(s'-s)} + LC(F) + PC$$

The perturbative conditions imply:

$$\frac{t_2^2}{t} = F = t_2 - t_1$$

then,

$$t_{IAM}(s) = \frac{t_2^2}{t_2 - t_4}$$

Figure: Contour of integration in the complex *s*-plane

ArXiv: 1205.35082v1 [hep-lat] (201

Finite Volume $\pi\pi$ -Scattering Green Functions and Differences Spectrum in a Finite Volume Conclusions and perspective Operation of the Volume Conclusions and Perspective Operations and Perspecti 000 Inverse Amplitude Method (IAM)

Introduction

Introduction $\underset{\bullet \circ \circ}{\text{Finite Volume } \pi \text{-Scattering}}$ Green Functions and Differences $\underset{\circ \circ \circ}{\text{Spectrum in a Finite Volume }}$ Conclusions and perspective $\underset{\circ \circ \circ}{\text{Conclusions and perspective}}$

Finite Volume $\pi\pi$ -Scattering

Figure: Feynman diagrams for $\pi\pi$ scattering amplitude up to fourth order in ChPT.

<ロト < 同ト < ヨト < ヨ

Introduction Finite Volume $\pi\pi$ -Scattering Green Functions and Differences Spectrum in a Finite Volume Conclusions and perspective OOO

Finite Volume $\pi\pi$ -Scattering

Amplitudes

$$T = T_{2} + T_{4} + \sum_{\substack{i = \{s,t,u\} \\ T_{4}^{(loop)}}} c_{i}\bar{J}(i) = T_{\infty} + c_{s}\bar{J}(s)$$

$$\tilde{T} = \underbrace{T_{\infty} + c_{s}\bar{J}(s)}_{T} + \underbrace{\sum_{i = \{H,s,t,u,i^{2},u^{2}\}}}_{DT} c_{i}DJ_{i} = T_{\infty} + DT + c_{s}\bar{J}$$

$$\mathcal{T}(E, L, \hat{p}, \hat{p}') = \frac{T_{2}^{2}}{DT + c(E, \hat{p}, \hat{p}') \left(\bar{J}(E, L) - \bar{J}(E)\right)}$$

Phys. Rev. D, vol 65, 054009 (2002). A. Gómez Nicola and J. R. Peláez

Phys. Rev. D 73, 074501 (2006). P.F. Bedaque, I. Sato and A. Walker-Loud

Dynamical equation and the Universal Function

TAM

$$\tilde{T} = \frac{\tilde{V}}{1 - \frac{2\tilde{V}c_s}{\sqrt{5T_2^2}}} S(s)$$
where $\tilde{V} = \frac{T_2^2}{T_2 - T_4 - DT}$, and
 $S = -\frac{1}{8\pi^2} \lim_{q \max \to \infty} (\frac{1}{2L} \sum_{\vec{n} \le q_{\max}} \frac{1}{\vec{n}^2 - \frac{k_{cm}^2 L^2}{4\pi^2}} - q_{\max})$
Quantum condition:
 $1 - \tau S(s) = 0$
Dynamical equation:
 $\tilde{T} = \tilde{V} + \tau S(s)\tilde{T}$

3

æ

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Phys. Rev. D 73, 074501 (2006). P.F. Bedaque, I. Sato and A. Walker-Loud

The loop sum-integrals can be defined as follows:

$$\begin{split} \tilde{H} &= \sum f \frac{1}{q^2 - m^2} \\ \tilde{J}(Q) &= \sum f \frac{1}{(q - Q)^2 - m^2} \\ \tilde{J}_{2Q}(Q) &= \sum f \frac{q_4^2}{q^2 - m^2} \frac{1}{(q - Q)^2 - m^2} \end{split}$$

Introduction Finite Volume $\pi\pi$ -Scattering Green Functions and Differences Spectrum in a Finite Volume Conclusions and perspective Operations and Perspecti

We should note that our discretization is only spatial, meaning that we divide the space into cubes, while the temporal component remains continuous.

We define the difference between the finite and infinite volume as follows:

$$Df = \int \frac{dq_0}{2\pi i} \left[\frac{1}{L^3} \sum_{\vec{q} = \frac{2\pi \vec{n}}{L}} - \int \frac{d^3q}{(2\pi)^3} \right] f(\vec{q})$$

Introduction Finite Volume $\pi\pi$ -Scattering Green Functions and Differences Spectrum in a Finite Volume Conclusions and perspective OOO OOO OOO

DJ_H Computation

The tadpole integral contributes to modifications in m_{π} and f_{π} , resulting in the following volume corrections:

$$\begin{split} DJ_{H} &= \int \frac{dq_{0}}{2\pi i} \left[\frac{1}{L^{3}} \sum_{\vec{q}=\frac{2\pi \vec{n}}{L}} - \int \frac{d^{3}q}{(2\pi)^{3}} \right] \frac{i}{q^{2} - m^{2}} \\ &= \left[\frac{1}{L^{3}} \sum_{\vec{q}=\frac{2\pi \vec{n}}{L}} - \int \frac{d^{3}q}{(2\pi)^{3}} \right] \frac{1}{2\omega_{q}} \\ &= \frac{m}{4\pi^{2}L} \sum_{n} \frac{O_{n}}{n} K_{1}(nmL) \\ &= \frac{m^{2}}{16\pi^{2}} \int_{0}^{\infty} x^{2} e^{-x} \left(\vartheta_{3} \left(0; e^{-\frac{m^{2}_{\pi}L^{2}}{4x}} \right)^{3} - 1 \right) \end{split}$$

Figure: Comparison between analytic and numeric DIH

t- and u-Differences $(DJ_{u,t}, DJ_{2u,2t})$

(a) Comparison between analytic and numeric $DJ_{t,u}$ at BSW's approach.

(b) Comparison between analytic and numeric $DJ_{2t,2u}$ at BSW's approach.

The integral/sum $J_{2t,2u}$ is given by:

$$DJ_{2t,2u} = \left[\frac{1}{L^3}\sum_{\vec{q}=\frac{2\pi\vec{u}}{L}} - \int \frac{d^3q}{(2\pi)^3}\right]\frac{1}{2\left(\omega_q + \omega_{q-Q}\right)}$$

where $\vec{Q} = \vec{T}, \vec{U}$. In the BSW limit, $DJ_{2u,2t} = \frac{1}{2}DJ_H$. With respect to $DJ_{u,t}$, we have:

$$DJ_{t,u} = \left[\frac{1}{L^3}\sum_{\vec{q}=\frac{2\pi\vec{n}}{L}} -\int \frac{d^3q}{(2\pi)^3}\right]\frac{1}{2\omega_q\omega_{q-Q}\left(\omega_q+\omega_{q-Q}\right)}$$

Indeed, it is straightforward to observe that $DJ_{u,t} = -\frac{1}{2} \frac{\partial}{\partial m} DJ_H$.

IntroductionFinite Volume $\pi\pi$ -ScatteringGreen Functions and DifferencesSpectrum in a Finite VolumeConclusions and perspective $\circ \circ \circ \circ$ $\circ \circ \circ \circ$

s-Difference(*DJ*_s)

$$DJ_{s} = \underbrace{\frac{2}{\sqrt{s}}S}_{DJ_{s},\text{conv}} + DJ_{s,\text{conv}}$$

where

$$\begin{split} \mathcal{S}(s) &= \sum_{n=0}^{q_{\text{max}}} \frac{\mathbf{O}_n}{L^3} \frac{1}{4\omega_n^2 - s} - \frac{q_{\text{max}} - \frac{\sqrt{4m_\pi^2 - s}}{2} \arctan \frac{2q_{\text{max}}}{\sqrt{4m_\pi^2 - s}}}{8\pi^2} \\ DJ_{s,\text{conv}} &= \sum_{\vec{n} \neq 0}^{\infty} \int \frac{d^3p}{(2\pi)^2} e^{iL\vec{q}\cdot\vec{n}} \left(-\frac{1}{\sqrt{s}} \frac{1}{\omega_q(2\omega_q + \sqrt{s})} \right) \end{split}$$

Figure: Comparison between analytic and numeric $DJ_{s,conv}$ at BSW's approach.

Exponential Volume Corrections

Figure: Where, $f = \frac{|\Delta k_{m} \cot \delta|}{k_{m} \cot \delta}$ (%). Which represents the comparison between analytic and numeric results in the BSW approach.

23

<ロト < 同ト < ヨト < ヨ

Introduction Finite Volume $\pi\pi$ -Scattering Green Functions and Differences Spectrum in a Finite Volume Conclusions and perspective operation of the second second

Spectrum in a Finite Volume

Figure: Cubic Lattice.

arXiv:1206.4141v2 [hep-lat] (2012) arXiv: 0806.4495v2 [hep-lat] (2012) Phys. Rev. D 97, 114508 (2018).

The symmetry group G of the cubic lattice. The irreps of the octahedral group of 24 elements (pure rotations) are:

- A1: trivial one-dimensional rotation.
- A2: one-dimensional representation, which assigns -1 to the conjugacy classes: $6C_4$ and $6C'_2$.
- E : two-dimensional rotations.
- T₁: three-dimensional rotations. $T_{\sigma \rho} =$

 $\cos(\omega_a)\delta_{\sigma\rho} + (1 - \cos\omega_a)n_{\sigma}^{(a)}n_{\rho}^{(a)} - \sin\omega_a\epsilon_{\sigma\rho\lambda}n_{\lambda}^{(a)}$

 T₂: three-dimensional rotations, which assigns -1 to the conjugacy classes: $6C_4$ and $6C'_2$.

The shells are the given surfaces where: $n_x^2 + n_y^2 + n_z^2 = \left|\frac{\vec{p}L}{2\pi}\right|^2$ and $\vec{p} = g\vec{p}_0$.

Introduction Finite Volume $\pi\pi$ -Scattering Green Functions and Differences Spectrum in a Finite Volume Conclusions and perspective Ooo

Alternatives of Expansion

$$\tilde{T}(p,p') = \tilde{V}(p,p') + \sum_{k} \underbrace{\left(\frac{2c\tilde{V}}{\sqrt{s}A_{2}^{2}}\right)}_{\tau(p,k)} \mathcal{S}(k)\tilde{T}(k,p')$$
(2)

An arbitrary function $f(\vec{p})$ can be characterized by the shell of the momentum \vec{p} belongs to and the orientation. So, the expansion over the cubic lattice is given by,

$$f(\vec{p}) = f(g\vec{p}_0) = \sum_{\Gamma} \sum_{\rho\sigma} T^{\Gamma}_{\rho\sigma}(g) f^{\Gamma}_{\sigma\rho}(\vec{p}_0)$$

The quantization condition is given by,

$$\det\left(\delta_{ss'}\delta_{\delta\sigma} - \frac{\mathbf{O}_s\mathcal{S}(s)}{G}\tilde{\tau}_{\delta\sigma}^{\Gamma}(s,s')\right) = 0$$
Phys. Rev. D 97, 114508 (2018).

The expansion in cubic harmonic (CH) basis is given by,

$$f^{s}(\hat{p}_{j}) = \sqrt{4\pi} \sum_{\Gamma \alpha} \sum_{u} f_{u}^{\Gamma \alpha s} \chi_{u}^{\Gamma u s}(\hat{p}_{j})$$

The quantization condition is given by,

$$\det\left(\delta_{uu'}\delta_{ss'} - \mathbf{O}_s\mathcal{S}(s)\tau_{su;s'u'}^{\Gamma}\right) = 0$$

Introduction	Finite Volume $\pi\pi$ -Scattering	Green Functions and Differences	Spectrum in a Finite Volume	Conclusions and persp
0000	000	00000	Ó0●	000

Figure: Energy levels for I = 0.

Figure: Energy levels for I = 2.

Conclusions:

■ The inclusion of the *t*− and *u*−channel loop is useful for the correct computation of the energy levels.

Introduction Finite Volume $\pi\pi$ -Scattering Green Functions and Differences Spectrum in a Finite Volume Conclusions and perspective operations and perspective operations and perspective operations of the second s

- The finite volume effects are stronger in Isospin I = 2 then I = 0.
- The connection between *T* and \tilde{T} is meadiated by $\tilde{J}(E,L)$ and the finite amplitud, *DT*.

Perpectives:

- To expand the formalism of CH and Irreps to the moving frame case.
- To study the dependence of the spectrum with the masses

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの

Bedaque-Sato-Walker-Loud (BSW) Approach

Using the K-matrix, defined as:

$$\frac{1}{K(s,t,u)} = \frac{p_{\mathsf{CM}} \cot \delta(s,t,u)}{16\pi \sqrt{s}} = V(s,t,u)$$

In this case, we can reexpress as follows:

$$\begin{split} \tilde{I} &= \frac{1}{\frac{1}{K(s,t,u)} - \frac{\Delta A}{T_2^2} - \frac{2c(s,t,u)}{\sqrt{s}A_2^2}\mathcal{S}(s)} \\ &= \frac{16\pi\sqrt{s}}{p_{\mathsf{cm}}\cot\delta - \frac{16\pi\sqrt{s}\Delta A}{A_2^2} - \frac{32\pi c(s,t,u)}{A_2^2}\mathcal{S}(s)} \end{split}$$

 \tilde{T} represents a modified version of the Lüscher relation that includes finite volume corrections. In the BSW approach, where $s \to 4m_{\pi}^2$, the correction can be expressed as $\Delta(p_{\rm cm} \cot \delta) = -32\pi m_{\pi} \frac{\Delta A(4m_{\pi}^2)}{A_2^2(4m_{\pi}^2)}$.

