Revealing violations of macrorealism in flavor oscillations

Leggett-Garg inequalities and no-signaling-in-time conditions

Kyrylo Simonov

MESON 2023

Uniwersytet Jagielloński Kraków, Poland

June 23rd, 2023

Standard quantum mechanics

• linearity of Schrödinger equation allows superpositions:

$$\psi_1, \psi_2$$
 are solutions $\Rightarrow \psi = c_1 \psi_1 + c_2 \psi_2$ is also a solution

- evolution of quantum system due to Schrödinger equation is deterministic
- measurement destroys superposition with outcomes distributed due to Born rule:

$$P_1 = |c_1|^2$$
, $P_2 = |c_2|^2 (\langle \psi_1 | \psi_2 \rangle = 0)$.

Troubles with standard QM

Standard quantum mechanics exposes two different regimes:

- 1. Schrödinger evolution: linear, deterministic and reversible.
- 2. Measurement: non-linear, stochastic and irreversible.

Is there a border between Q and C worlds?

Conditions of macrorealism

• Macrorealism per se: A system with several macroscopically distinct states will always be in some of these states.

Conditions of macrorealism

- Macrorealism per se: A system with several macroscopically distinct states will always be in some of these states.
- *Non-invasive measurability*: We can determine the state the system with arbitrary small perturbation to its subsequent dynamics.

Conditions of macrorealism

- Macrorealism per se: A system with several macroscopically distinct states will always be in some of these states.
- *Non-invasive measurability*: We can determine the state the system with arbitrary small perturbation to its subsequent dynamics.

Scenario

If we perform a measurement of a dichotomic (Yes/No $=\pm 1$) observable Q of the macroscopic system, we find its well-defined pre-existing value without disturbing the dynamics of the system.

A. J. Leggett and A. Garg, Phys. Rev. Lett. **54**, 857 (1985)

C. Emary, N. Lambert, and F. Nori, Rep. Prog. Phys. 77, 016001 (2014)

Three times case

Constraints from macrorealism

Macrorealism implies certain constraints on the measurement statistics in the considered scenario, e.g., on correlation functions $C_{ij} = \langle Q_i Q_j \rangle \equiv \langle Q(t_i) Q(t_j) \rangle.$

Three times case

Leggett-Garg inequalities (Stand.)

$$1 + C_{12} + C_{23} + C_{13} \ge 0,$$

$$1 - C_{12} - C_{23} + C_{13} \ge 0,$$

$$1 + C_{12} - C_{23} - C_{13} \ge 0.$$

$$1 - C_{12} + C_{23} - C_{13} \ge 0,$$

Constraints from macrorealism

Macrorealism implies certain constraints on the measurement statistics in the considered scenario, e.g., on correlation functions $C_{ij} = \langle Q_i Q_j \rangle \equiv \langle Q(t_i) Q(t_j) \rangle$.

Leggett-Garg inequalities (Wigner)

$$P(Q_2, Q_3) - P(-Q_1, Q_2) - P(Q_1, Q_3) \le 0,$$

$$P(Q_1, Q_3) - P(Q_1, -Q_2) - P(Q_2, Q_3) \leq 0,$$

$$P(Q_1, Q_2) - P(Q_2, -Q_3) - P(Q_1, Q_3) \le 0$$

C. Budroni et al., Phys. Rev. Lett. 115, 200403 (2015)

Testing LGI in flavor oscillations

Dichotomic flavor observable

We can ask: Are you in flavor F or not?

$$Q = 2|F\rangle\langle F| - I,$$

We can take $F=\nu_e$ for neutrinos and $F=K^0$ for neutral kaons.

Testing LGI in flavor oscillations

Dichotomic flavor observable

We can ask: Are you in flavor F or not?

$$Q = 2|F\rangle\langle F| - I,$$

We can take $F = \nu_e$ for neutrinos and $F = K^0$ for neutral kaons.

- J. A. Formaggio, D. I. Kaiser, M. M. Murskyj, and T. E. Weiss, Phys. Rev. Lett. 117, 050402 (2016).
- J. Naikoo, A. K. Alok, and S. Banerjee, Phys. Rev. D 97, 053008 (2018).
- J. Naikoo, A. K. Alok, S. Banerjee, and S. U. Sankar, Phys. Rev. D 99, 095001 (2019).
- J. Naikoo, S. Kumari, S. Banerjee, and A. K. Pan, J. Phys. G: Nucl. Part. Phys. 47, 095004 (2020).
- J. Naikoo, A. K. Alok, S. Banerjee, S. U. Sankar, G. Guarnieri, C. Schultze, and B. C. Hiesmayr, Nucl. Phys. B 951, 114872 (2020).
- S. Shafaq and P. Mehta, J. Phys. G: Nucl. Part. Phys. 48, 085002 (2021).
- M. Blasone, F. Illuminati, L. Petruzziello, and L. Smaldone, arXiv:2111.09979 (2021).

Testing LGI in flavor oscillations: Neutrinos

J. Naikoo, S. Kumari, S. Banerjee, and A. K. Pan, J. Phys. G: Nucl. Part. Phys. 47, 095004 (2020).

Testing LGI in flavor oscillations: K^0/\bar{K}^0

Necessary and sufficient conditions

In contrast to Bell inequalities, Leggett-Garg inequalities are not a necessary and sufficient condition for macrorealism: *Macrorealism implies no violation of LGI, but satisfaction of LGI can still hide quantumness!*

Necessary and sufficient conditions

No Fine's theorem!

In contrast to Bell inequalities, Leggett-Garg inequalities are not a necessary and sufficient condition for macrorealism: Macrorealism implies no violation of LGI, but satisfaction of LGI can still hide quantumness!

Alternative conditions for macrorealism

- No signaling in time: Past measurements do not influence the outcomes of future ones.
- Arrow of time: Future measurements do not influence the outcomes of past ones.
- L. Clemente and J. Kofler, Phys. Rev. A 91, 062103 (2015)
- L. Clemente and J. Kofler, Phys. Rev. Lett. 116. 150401 (2016)

Necessary and sufficient conditions

$$NSIT^{(1)}: P(Q_3) = \sum_{Q_2} P(Q_2, Q_3),$$

$$\mathsf{NSIT}^{(2)}:\ P(Q_1,Q_3)\ =\ \sum_{Q_2} P(Q_1,Q_2,Q_3)\,,$$

$$\mathsf{NSIT}^{(3)}:\ P(Q_2,Q_3)\ =\ \sum_{Q_1}P(Q_1,Q_2,Q_3)\,,$$

$$\mathsf{AoT}^{(1)}: \ P(Q_1, Q_2) = \sum_{Q_3} P(Q_1, Q_2, Q_3),$$

$$AoT^{(2)}: P(Q_1) = \sum_{Q_2} P(Q_1, Q_2),$$

$$\mathsf{AoT}^{(3)}:\ P(Q_2)\ =\ \sum_{Q_3} P(Q_2,Q_3)\,.$$

L. Clemente and J. Kofler, Phys. Rev. A **91**, 062103 (2015)

Tests of macrorealism with flavored particles

There is a single necessary and sufficient condition of macrorealism in two-flavor oscillations:

$$\mathcal{N}(t) \equiv P_{F \to \tilde{F}}(2t) - 2P_{F \to \tilde{F}}(t) P_{F \to F}(t) = 0.$$

M. Blasone, F. Illuminati, L. Petruzziello, K. Simonov, and L. Smaldone, arXiv:2211.16931 (2022).

NSIT and AoT conditions: Neutrinos

NSIT and AoT conditions: Neutral kaons

Conclusions and outlook

 The set of necessary and sufficient NSIT/AoT conditions reduces to a single, non-trivial NSIT relation for macrorealism which can be potentially probed in two-flavor neutrino and neutral kaons experiments.

Conclusions and outlook

- The set of necessary and sufficient NSIT/AoT conditions reduces to a single, non-trivial NSIT relation for macrorealism which can be potentially probed in two-flavor neutrino and neutral kaons experiments.
- The effect of decoherence for long detection times/distances allows for a net deviation from macrorealism. For this reason, neutrinos can never be described in a macrorealistic way, even when quantum coherence is apparently degraded because of the wave packet spreading.

Conclusions and outlook

- The set of necessary and sufficient NSIT/AoT conditions reduces to a single, non-trivial NSIT relation for macrorealism which can be potentially probed in two-flavor neutrino and neutral kaons experiments.
- The effect of decoherence for long detection times/distances allows for a net deviation from macrorealism. For this reason, neutrinos can never be described in a macrorealistic way, even when quantum coherence is apparently degraded because of the wave packet spreading.
- At late times, the LGIs are not faithful quantifiers of the macrorealistic description, since they are fulfilled whilst the NSIT condition is always violated.

Thank you for your attention!

