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y*~* transition form factors for the axial vector meson and spacelike photons

An exotic axial vector: x.1(3872), can one pin down its cc component?
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v*~*-transition form factors for J°¢ = 17+ axial mesons
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@ Above we introduced
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and the polarization vectors of longitudinal photons
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o Frr(0,0) =0, there is no decay to two photons (Landau-Yang).

(absence of kinematical singularities).

o Fr(Q%0) x Q
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o f17(0) gives rise to so-called “reduced width” T.



Accessing transition form factors

@ We need at least one virtual photon to produce an
axial vector in photon photon collisions. This excludes
ultraperipheral heavy ion collisions, where photons are
quasi-real.

@ Electron scattering gives us access to finite Q2 and a
whole polarization density matrix of virtual photons.
@ Feasible options are:

@ single tag e”e™ collisions. Here the tagged lepton
couples to the virtual photon, while photons from the
lepton “lost in the beampipe” are quasireal.

@ electron-proton or electron-ion scattering. Here especially
heavy ions such as Gold which large charge Z = 79 give
rise to a large quasireal photon flux enhanced by Z2.




Transition amplitude in the Drell-Yan frame

LF-Fock state expansion
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@ We evaluate the v*v* — X1 amplitude in the Drell-Yan frame where g1, = q1+n:; +qi-ny
and q2; = q2—n;, + qj;t, using the light front plus-component of the current:
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o for spacelike photons, the plus component of the current is free from parton number changing
or instantaneous fermion exchange contributions.



Quarkonium light front wave functions

@ We adopt two different approaches to LFWFs:
Terentev substitution - LFWF from potential model

o Quark three-momentum in bound state rest frame
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o radial WF u,p(k) becomes (with appropriate Jacobian) radial LFWF (z, k)
e canonical spin is substituted by LF helicity via Melosh transform

me + zMez — i - (7 x k)

£o=R(z,k)xa, =R (1-z,-kxgz Rlz,k)=
(me + zMce)? + k2

o We use a variety of interquark potentials summarized in J. Cepila et al.,
Eur. Phys. J. C 79 (2019) no.6, 495

Basis light front quantization (BLFQ)

o bound state WFs from effective LF-Hamiltonian
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we use LFWFs from Y. Li, P. Maris and J. P. Vary, Phys. Rev. D 96 (2017), 016022

effective Hamiltonian which contains a term motivated by a “soft-wall” confinement from LF-holography, as
well as a longitudinal confinement potential supplemented by one gluon exchange including the full
spin-structure.



https://link.springer.com/article/10.1140/epjc/s10052-019-7016-9
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.016022

Light front wave functions from potential models

@ For the weakly bound systems a procedure to obtain the LFWF from Schrédinger WFs has
been proposed by Terentev. In this case the helicity dependent WF \U(/\_A)(z, k) factorizes into

AN
a “radial” part, and a spin-orbit part obtained by a Melosh-rotation R(z, k).

@ Rest frame:
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@ Light front:
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Transition form factor from light front wave functions

o We use the well known perturbative LFWF of the longitudinal photon
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@ Only the S; = 0 component with antiparallel quark helicities and one unit of orbital angular
momentum contributes.
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o For the QQ state, 5
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@ In the Melosh transform formalism for the n3P; state, we have
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Here, k = /M2 — 4m2/2, with M2, = (k* + m2)/z(1 - z).




v*v* cross sections and the reduced width

@ photon-photon cross sections:
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where {i,j} € {T,L}, and Np = 2, Ni, = 1 are the numbers of polarization states of photons.
In terms of our helicity form factor, we obtain for the LT configuration, putting at the
resonance pole § — M2, and J = 1 for the axial-vector meson:

reduced width
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@ provides a useful measure of size of the relevant ete™ cross section in the 4y mode. For a c¢

state:
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[ v-transition form factors for

F (Q%0)

Xc1(1P) axial meson

Figure: Form factor fir(Q%) = Frr

(@0

)/ Q for one virtual photon.

@ substantial reduction of reduced width when relativistic corrections are included.
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Q?-dependence of the v*v cross section
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Figure: The square of the effective form factor as a function of photon virtuality within LFWF approach (on the
I.h.s.) and in the nonrelativistic limit (on the r.h.s.).
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Reduced width of x.1(1P)

Table: Reduced width

potential model | m¢ (GeV) | |R'(0)] (GeV5/?) | F(xc1)nrqep (keV) | F(xer) (keV)
power-law 1.33 0.22 0.97 0.50
Buchmiiller-Tye 1.48 0.25 0.82 0.30
Cornell 1.84 0.32 0.56 0.09
harmonic oscillator 1.4 0.27 1.20 0.53
logarithmic 15 0.24 0.72 0.27

o Considerably larger values of f(xcl) are quoted in the literature. For example Danilkin &
Vanderhaeghen (2017) report a value of I'(xc1) = 1.6 keV from a sum rule analysis. Li et al.
(2022) obtain I'(xc1) = 3keV from a LFWF approach.

@ A measurement of the reduced width would therefore be very valuable.



Xc1(3872) — the [cE] 23P; component
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Figure: The dimensionless v,y — xc1(2P) transition form factor fLT(Qz).

@ We use LFWFs for n = 1 radial excitation of the p-wave charmonium.

o We trace the different Q?—dependences to differences of the z—dependence and constituent
c-quark mass used in different models.

@ error band for BLFQ reflects dependence on basis-size as proposed by its authors.



Reduced 7}~ width for x.1(3872)

Table: The reduced width of the x1(2P) state for several models of the charmonium wave functions with
specific c-quark mass.

cC potential l mc (GeV) l fir(0) l Py (keV)
harmonic oscillator 1.4 0.041 0.36
power-law 1.334 0.033 0.24
Buchmiiller-Tye 1.48 0.029 0.18
logarithmic 1.5 0.025 0.14
Cornell 1.84 0.018 0.07
BLFQ 1.6 0.044 0.42

@ First evidence for the production of x1(3872) in single-tag e*e™ collisions was reported by
Belle Phys. Rev. Lett. 126 (2021) no.12, 122001 From three measured events, they provided a

range for its reduced width, 0.02keV < f.w < 0.5keV. Recent update by Achasov et al.
Phys. Rev. D 106 (2022) no.9, 093012
using a corrected value for the branching ratio Br(xc1(3872) — nTn~J/4) and reads

0.024keV < '+ (xc1(3872)) < 0.615keV

@ all our results, including the BLFQ approach, lie well within the experimentally allowed
range. Therefore, 77y data do not exclude the cc option, although there is certainly some
room for a contribution from an additional meson-meson component.


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.122001
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.093012

Possible molecule contribution to I'?

@ apparently nothing (?) is known about the molecular contribution to the reduced width.

@ What about the analogous contribution to the one we adopted in the hadronic case? Say
v*y — c¢€ — DD*, and FSI of DD* generates the X(3872).

@ Spins of heavy quarks in x1(3872) are entangled to be in the spin-triplet state (M. Voloshin,
2004). But near threshold the cC state produced via yy-fusion is in the 1Sy state. (It's
different for gluons, where color octet populates 35;!)

o — “handbag mechanism” suppressed in heavy quark limit.

@ Purely hadronic models?



Summary

@ We have derived the LFWF representation of axial quarkonia v*~™* transition form factors.
o These FFs contain valuable information on the structure of the meson.

@ The reduced width of the ground state xc1(1P), for one longitudinal and one real photon iis
obtained in the ballpark of ~ 0.5 keV.

@ In the case of x1(3872), the values obtained for a 23P; charmonium are well within the range
of the first Belle data. This suggests an important role of the c¢ Fock state for production in
the v*y mode. (Of course there is still room for additional contributions.)

o Electroproduction of x¢1(1P), xc1(3872) in the Coulomb field of a heavy nucleus may give
access to form factor f;r(Q?). This is additional information on the structure. We know how
to calculate it for cC states.
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