Light front approach to axial meson photon transition form factors: probing the structure of $\chi_{c1}(3872)$

Wolfgang Schäfer ¹,

¹ Institute of Nuclear Physics, Polish Academy of Sciences, Kraków

17th International Workshop on Meson Physics, Kraków, Poland, 22.-27. June 2023

▲□▶▲□▶▲□▶▲□▶ □ ● ●

 $\gamma^*\gamma^*$ transition form factors for the axial vector meson and spacelike photons

An exotic axial vector: $\chi_{c1}(3872)$, can one pin down its $c\bar{c}$ component?

- I. Babiarz, R. Pasechnik, W. Schäfer and A. Szczurek, "Light-front approach to axial-vector quarkonium γ*γ* form factors," [arXiv:2208.05377 [hep-ph]], JHEP09(2022)170.
- I. Babiarz, R. Pasechnik, W. Schäfer and A. Szczurek, "Probing the structure of $\chi_{c1}(3872)$ with photon transition form factors," Phys. Rev. D **107** (2023) no.7, L071503 [arXiv:2303.09175 [hep-ph]].

・ロト ・ 目 ・ ・ ヨト ・ ヨト ・ シック

 $\gamma^*\gamma^*$ -transition form factors for $J^{PC} = 1^{++}$ axial mesons

$$\begin{aligned} \frac{1}{4\pi\alpha_{\rm em}}\mathcal{M}_{\mu\nu\rho} &= i \Big(q_1 - q_2 + \frac{Q_1^2 - Q_2^2}{(q_1 + q_2)^2}(q_1 + q_2)\Big)_{\rho} \tilde{G}_{\mu\nu} \frac{M}{2X} F_{\rm TT}(Q_1^2, Q_2^2) \\ &+ ie_{\mu}^L(q_1) \tilde{G}_{\nu\rho} \frac{1}{\sqrt{X}} F_{\rm LT}(Q_1^2, Q_2^2) + ie_{\nu}^L(q_2) \tilde{G}_{\mu\rho} \frac{1}{\sqrt{X}} F_{\rm TL}(Q_1^2, Q_2^2). \end{aligned}$$

Above we introduced

$$ilde{\mathcal{G}}_{\mu
u}=arepsilon_{\mu
ulphaeta}q_1^lpha q_2^eta\,,\, X=(extbf{q}_1\cdot extbf{q}_2)^2- extbf{q}_1^2 q_2^2$$

and the polarization vectors of longitudinal photons

$$e^L_\mu(q_1) \quad = \quad \sqrt{rac{-q_1^2}{X}} \left(q_{2\mu} - rac{q_1 \cdot q_2}{q_1^2} q_{1\mu}
ight), \qquad e^L_
u(q_2) = \sqrt{rac{-q_2^2}{X}} \left(q_{1
u} - rac{q_1 \cdot q_2}{q_2^2} q_{2
u}
ight).$$

- $F_{TT}(0,0) = 0$, there is no decay to two photons (Landau-Yang).
- $F_{\rm LT}(Q^2,0) \propto Q$ (absence of kinematical singularities).

$$f_{\rm LT}(Q^2) = \frac{F_{\rm LT}(Q^2,0)}{Q}$$

• $f_{\rm LT}(0)$ gives rise to so-called "reduced width" $\tilde{\Gamma}.$

Accessing transition form factors

- We need at least one virtual photon to produce an axial vector in photon photon collisions. This excludes ultraperipheral heavy ion collisions, where photons are quasi-real.
- Electron scattering gives us access to finite Q² and a whole polarization density matrix of virtual photons.
- Feasible options are:
 - single tag e⁺e⁻ collisions. Here the tagged lepton couples to the virtual photon, while photons from the lepton "lost in the beampipe" are quasireal.
 - **2** electron-proton or electron-ion scattering. Here especially heavy ions such as Gold which large charge Z = 79 give rise to a large quasireal photon flux enhanced by Z^2 .

(日) (四) (日) (日) (日)

Transition amplitude in the Drell-Yan frame

• We evaluate the $\gamma^* \gamma^* \to \chi_{c1}$ amplitude in the Drell-Yan frame where $q_{1\mu} = q_{1+}n_{\mu}^+ + q_{1-}n_{\mu}^$ and $q_{2\mu} = q_{2-}n_{\mu}^- + q_{2\mu}^\perp$, using the light front plus-component of the current:

$$egin{aligned} &\langle \chi_{c1}(\lambda)|J_{+}(0)|\gamma_{L}^{*}(Q^{2})
angle &=2q_{1+}\sqrt{N_{c}}\intrac{dzd^{2}k}{z(1-z)16\pi^{3}}\ & imes\sum_{\sigma,ar{\sigma}}\Psi_{\sigmaar{\sigma}}^{\lambda*}(z,m{k})\,(m{q}_{2}\cdot
abla_{m{k}})\Psi_{\sigmaar{\sigma}}^{\gamma_{L}}(z,m{k},Q^{2})\,. \end{aligned}$$

 for spacelike photons, the plus component of the current is free from parton number changing or instantaneous fermion exchange contributions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Quarkonium light front wave functions

• We adopt two different approaches to LFWFs:

Terentev substitution - LFWF from potential model

· Quark three-momentum in bound state rest frame

$$\vec{k} = (k, k_z), \qquad k_z = \left(z - \frac{1}{2}\right) M_{c\bar{c}} \qquad M_{c\bar{c}}^2 = \frac{k^2 + m_c^2}{z(1-z)}$$

- radial WF $u_{nP}(k)$ becomes (with appropriate Jacobian) radial LFWF $\psi(z, k)$
- canonical spin is substituted by LF helicity via Melosh transform

$$\xi_Q = R(z, \mathbf{k})\chi_Q, \qquad \xi_{\bar{Q}}^* = R^*(1-z, -\mathbf{k})\chi_{\bar{Q}}^* \qquad R(z, \mathbf{k}) = \frac{m_c + zM_{c\bar{c}} - i\vec{\sigma} \cdot (\vec{n} \times \mathbf{k})}{\sqrt{(m_c + zM_{c\bar{c}})^2 + \mathbf{k}^2}}$$

 We use a variety of interquark potentials summarized in J. Cepila et al., Eur. Phys. J. C 79 (2019) no.6, 495

Basis light front quantization (BLFQ)

bound state WFs from effective LF-Hamiltonian

$$H_{\mathrm{eff}}|\chi_{c};\lambda_{A},P_{+},\boldsymbol{P}
angle=M_{\chi}^{2}|\chi_{c};\lambda_{A},P_{+},\boldsymbol{P}
angle\,,$$

- we use LFWFs from Y. Li, P. Maris and J. P. Vary, Phys. Rev. D 96 (2017), 016022
- effective Hamiltonian which contains a term motivated by a "soft-wall" confinement from LF-holography, as well as a longitudinal confinement potential supplemented by one gluon exchange including the full spin-structure.

Light front wave functions from potential models

- For the weakly bound systems a procedure to obtain the LFWF from Schrödinger WFs has been proposed by Terentev. In this case the helicity dependent WF Ψ^(λ_λ)_{λ_λ}(z, k) factorizes into a "radial" part, and a spin-orbit part obtained by a Melosh-rotation R(z, k).
- Rest frame:

ιIJ

$$\begin{array}{lll} {}^{(\lambda_A)}_{\tau\bar{\tau}}(\vec{k}) & = & \displaystyle\sum_{L_z+S_z=\lambda_A} \mathsf{Y}_{1L_z}(\hat{k}) \Big\langle \frac{1}{2} \frac{1}{2} \tau \bar{\tau} \Big| 1S_z \Big\rangle \langle 11L_z S_z | 1\lambda_A \rangle \frac{u(k)}{k} \\ & = & \displaystyle\frac{1}{2} \sqrt{\frac{3}{4\pi}} \, \xi_Q^{\tau\dagger} \, \left(\vec{\sigma} \cdot \frac{\vec{k} \times \vec{E}(\lambda_A)}{k} \right) i \sigma_2 \, \xi_Q^{\bar{\tau}*} \, \frac{u(k)}{k} \, . \end{array}$$

• Light front:

$$\Psi_{\lambda\bar{\lambda}}^{(\lambda_A)}(z,\mathbf{k}) = \chi_Q^{\lambda\dagger} \mathcal{O}'_{\lambda_A} \, i\sigma_2 \, \chi_{\bar{Q}}^{\bar{\lambda}*} \, \psi(z,\mathbf{k}) \, \sqrt{2(\mathcal{M}_{Q\bar{Q}}^2 - 4m_Q^2)} \, ,$$

with:

$$\mathcal{O}'_{\lambda_A} = \sqrt{\frac{3}{2}} R^{\dagger}(z, \mathbf{k}) \left(\vec{\sigma} \cdot \frac{\vec{k} \times \vec{E}(\lambda_A)}{\sqrt{2k}} \right) R(1-z, -\mathbf{k}) \,.$$

and

Transition form factor from light front wave functions

• We use the well known perturbative LFWF of the longitudinal photon

$$\Psi^{\gamma_L}_{\sigmaar\sigma}(z,m k,Q^2) = ee_c\sqrt{z(1-z)}\,rac{2z(1-z)Q}{m k^2+\epsilon^2}\,\delta_{\sigma,-ar\sigma}\,,$$

with $\epsilon^2 = m_c^2 + z(1-z)Q^2$.

• Only the $S_z = 0$ component with antiparallel quark helicities and one unit of orbital angular momentum contributes.

$$\frac{f_{\rm LT}(Q^2)}{Q^2 + M_{\chi}^2} = -2\sqrt{2N_c} e_c^2 \int \frac{dz d^2 k}{16\pi^3} \frac{k_x + ik_y}{[k^2 + \epsilon^2]^2} \sqrt{z(1-z)} \Big\{ \Psi_{\uparrow\downarrow}^{(+1)*}(z,k) + \Psi_{\downarrow\uparrow}^{(+1)*}(z,k) \Big\}$$

• For the $Q\bar{Q}$ state,

H

$$F_{\rm TT}(Q^2,0) = -rac{Q^2}{M} f_{
m LT}(Q^2) \, .$$

• In the Melosh transform formalism for the n^3P_1 state, we have

$$\sqrt{z(1-z)} \left\{ \Psi_{\uparrow\downarrow}^{(+1)*}(z, \mathbf{k}) + \Psi_{\downarrow\uparrow}^{(+1)*}(z, \mathbf{k}) \right\} = (k_x - ik_y) \sqrt{\frac{3}{2} \frac{\pi \sqrt{M_{c\bar{c}}}}{2}} \frac{u_{\rm nP}(k)}{k^2},$$

Here, $k = \sqrt{M_{c\bar{c}}^2 - 4m_c^2}/2$, with $M_{c\bar{c}}^2 = (\mathbf{k}^2 + m_c^2)/z(1-z).$

$\gamma^*\gamma^*$ cross sections and the reduced width

photon-photon cross sections:

$$\sigma_{ij} = \frac{32\pi(2J+1)}{N_i N_j} \frac{\hat{s}}{2M\sqrt{X}} \frac{M\Gamma}{(\hat{s} - M^2)^2 + M^2\Gamma^2} \Gamma^{ij}_{\gamma^*\gamma^*}(Q_1^2, Q_2^2, \hat{s}),$$

where $\{i, j\} \in \{T, L\}$, and $N_T = 2$, $N_L = 1$ are the numbers of polarization states of photons. In terms of our helicity form factor, we obtain for the LT configuration, putting at the resonance pole $\hat{s} \rightarrow M^2$, and J = 1 for the axial-vector meson:

reduced width

$$ilde{\Gamma}(A) = \lim_{Q^2 o 0} rac{M^2}{Q^2} \Gamma^{\mathrm{LT}}_{\gamma^* \gamma^*}(Q^2, 0, M^2) = rac{\pi lpha_{\mathrm{em}}^2 M}{3} f_{\mathrm{LT}}^2(0) \, ,$$

• provides a useful measure of size of the relevant e^+e^- cross section in the $\gamma\gamma$ mode. For a $c\bar{c}$ state:

$$f_{\rm LT} = -e_f^2 M^2 \frac{\sqrt{3N_c}}{8\pi} \int_0^\infty \frac{dk \, k^2 u(k)}{(k^2 + m_c^2)^2} \frac{1}{\sqrt{M_{c\bar{c}}}} \left\{ \frac{2}{\beta^2} - \frac{1 - \beta^2}{\beta^3} \log\left(\frac{1 + \beta}{1 - \beta}\right) \right\}, \ \beta = \frac{k}{\sqrt{k^2 + m_c^2}}$$

o nonrelativistiv limit:

$$\tilde{\Gamma}(A) = \frac{2^5 \alpha_{\rm em}^2 e_c^2 N_c}{M_\chi^4} |R'(0)|^2$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 めんぐ

Figure: Form factor $f_{LT}(Q^2) = F_{LT}(Q^2, 0)/Q$ for one virtual photon.

substantial reduction of reduced width when relativistic corrections are included.

Q^2 -dependence of the $\gamma^*\gamma$ cross section

Figure: The square of the effective form factor as a function of photon virtuality within LFWF approach (on the l.h.s.) and in the nonrelativistic limit (on the r.h.s.).

$$\begin{split} \sigma_{\rm tot}^{\gamma^*\gamma}(Q^2,0) &= 16\pi^3 \alpha_{\rm em}^2 \delta(\hat{s} - M^2) \, \frac{Q^2}{Q^2 + M^2} \left(1 + \frac{Q^2}{2M^2}\right) \left(\frac{F_{\rm LT}(Q^2,0)}{Q}\right)^2 \\ &\equiv 16\pi^3 \alpha_{\rm em}^2 \delta(\hat{s} - M^2) \, F_{\rm eff}^2(Q^2) \, . \end{split}$$

Table: Reduced width

potential model	m_c (GeV)	R'(0) (GeV ^{5/2})	$ ilde{\Gamma}(\chi_{c1})_{ ext{NRQCD}}$ (keV)	$\tilde{\Gamma}(\chi_{c1})$ (keV)
power-law	1.33	0.22	0.97	0.50
Buchmüller-Tye	1.48	0.25	0.82	0.30
Cornell	1.84	0.32	0.56	0.09
harmonic oscillator	1.4	0.27	1.20	0.53
logarithmic	1.5	0.24	0.72	0.27

• Considerably larger values of $\tilde{\Gamma}(\chi_{c1})$ are quoted in the literature. For example Danilkin & Vanderhaeghen (2017) report a value of $\tilde{\Gamma}(\chi_{c1}) \approx 1.6 \,\mathrm{keV}$ from a sum rule analysis. Li et al. (2022) obtain $\tilde{\Gamma}(\chi_{c1}) \approx 3 \,\mathrm{keV}$ from a LFWF approach.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

• A measurement of the reduced width would therefore be very valuable.

$\chi_{c1}(3872)$ – the $[c\bar{c}] 2^3 P_1$ component

Figure: The dimensionless $\gamma_L^* \gamma \to \chi_{c1}(2P)$ transition form factor $f_{LT}(Q^2)$.

- We use LFWFs for n = 1 radial excitation of the *p*-wave charmonium.
- We trace the different Q^2 -dependences to differences of the z-dependence and constituent c-quark mass used in different models.

・ロト ・雪ト ・ヨト ・ヨト

= 900

error band for BLFQ reflects dependence on basis-size as proposed by its authors.

Table: The reduced width of the $\chi_{c1}(2P)$ state for several models of the charmonium wave functions with specific *c*-quark mass.

<i>c</i> c̄ potential	m_c (GeV)	$f_{\rm LT}(0)$	$\tilde{\Gamma}_{\gamma\gamma}$ (keV)
harmonic oscillator	1.4	0.041	0.36
power-law	1.334	0.033	0.24
Buchmüller-Tye	1.48	0.029	0.18
logarithmic	1.5	0.025	0.14
Cornell	1.84	0.018	0.07
BLFQ	1.6	0.044	0.42

• First evidence for the production of $\chi_{c1}(3872)$ in single-tag e^+e^- collisions was reported by Belle Phys. Rev. Lett. **126** (2021) no.12, 122001 From three measured events, they provided a range for its reduced width, 0.02 keV $< \tilde{\Gamma}_{\gamma\gamma} < 0.5$ keV. Recent update by Achasov et al. Phys. Rev. D **106** (2022) no.9, 093012

using a corrected value for the branching ratio ${\rm Br}(\chi_{c1}(3872) \to \pi^+\pi^- J/\psi)$ and reads

 $0.024 \,\mathrm{keV} < \tilde{\Gamma}_{\gamma\gamma}(\chi_{c1}(3872)) < 0.615 \,\mathrm{keV}$

• all our results, including the BLFQ approach, lie well within the experimentally allowed range. Therefore, $\gamma\gamma$ data do not exclude the $c\bar{c}$ option, although there is certainly some room for a contribution from an additional meson-meson component.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Possible molecule contribution to $\tilde{\Gamma}$?

- apparently nothing (?) is known about the molecular contribution to the reduced width.
- What about the analogous contribution to the one we adopted in the hadronic case? Say $\gamma^* \gamma \rightarrow c\bar{c} \rightarrow \bar{D}D^*$, and FSI of $D\bar{D}^*$ generates the X(3872).
- Spins of heavy quarks in $\chi_{c1}(3872)$ are entangled to be in the spin-triplet state (M. Voloshin, 2004). But near threshold the $c\bar{c}$ state produced via $\gamma\gamma$ -fusion is in the ${}^{1}S_{0}$ state. (It's different for gluons, where color octet populates ${}^{3}S_{1}$!)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- \bullet \rightarrow "handbag mechanism" suppressed in heavy quark limit.
- Purely hadronic models?

- We have derived the LFWF representation of axial quarkonia $\gamma^*\gamma^*$ transition form factors.
- These FFs contain valuable information on the structure of the meson.
- The reduced width of the ground state $\chi_{c1}(1P)$, for one longitudinal and one real photon $\tilde{\Gamma}$ is obtained in the ballpark of ~ 0.5 keV.
- In the case of $\chi_{c1}(3872)$, the values obtained for a 2^3P_1 charmonium are well within the range of the first Belle data. This suggests an important role of the $c\bar{c}$ Fock state for production in the $\gamma^*\gamma$ mode. (Of course there is still room for additional contributions.)
- Electroproduction of $\chi_{c1}(1P), \chi_{c1}(3872)$ in the Coulomb field of a heavy nucleus may give access to form factor $f_{\rm LT}(Q^2)$. This is additional information on the structure. We know how to calculate it for $c\bar{c}$ states.