Derivative expansions of hadronic potentials coupled to quarks for X(3872)

 Ibuki Terashima (Tokyo Metropolitan University)

 Tetsuo Hyodo (Tokyo Metropolitan University)

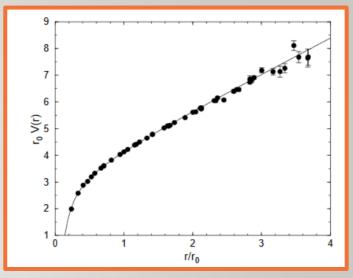
 東京都立大学

This talk is based on Ref. [I. Terashima and T. Hyodo, arXiv:2305.10689 [hep-ph]]. (Under peer review by Physical Review C)

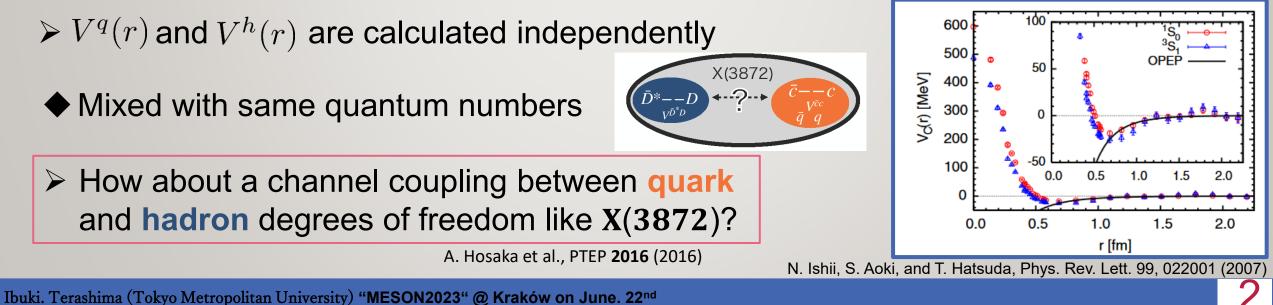
Introduction

Inter-quark and inter-hadron potentials

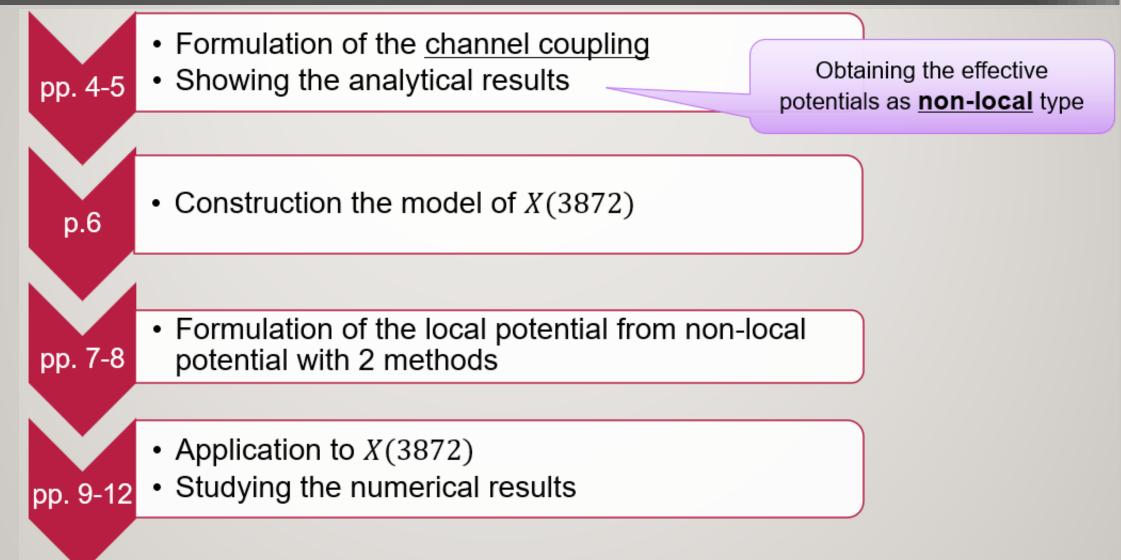
$$V^{q}(r) = -\frac{A}{r} + \sigma r + V_{0} \xrightarrow[r \to \infty]{} \infty$$
 : Confinement potentia
 $V^{h}(r) = g \frac{exp[-\mu r]}{r} + \cdots \xrightarrow[r \to \infty]{} 0$: Scattering potential



CP-PACS, A. Ali Khan, et al., Phys. Rev. D 65, 054505 (2002)



Flow of this talk



Channel coupling

- ✓ Formulation according to Feshbach method [H. Feshbach, Ann. Phys. 5, 357 (1958); ibid., 19, 287 (1962)]
- Hamiltonian H with channel between quark potential V^q and hadron V^h

$$H = \begin{pmatrix} T^q & 0\\ 0 & T^h + \Delta \end{pmatrix} + \begin{pmatrix} V^q & V^t\\ V^t & V^h \end{pmatrix}$$

 T^{q}, T^{h} :Kinetic energy Δ :Threshold energy V^{t} :Transition potential

• Schrödinger equation with wave functions of quark and hadron channels $|q\rangle$, $|h\rangle$

$$H\begin{pmatrix}|q\rangle\\|h\rangle\end{pmatrix} = E\begin{pmatrix}|q\rangle\\|h\rangle\end{pmatrix}$$

> Two set of equations with quark and hadron channels are obtained

Effective potential

• Eliminate quark channel to obtain an effective hamiltonian of hadron channel $H^h_{\text{eff}}(E)$

with,
$$H^{h}_{\text{eff}}(E) |h\rangle = E |h\rangle$$
, $V^{h}_{\text{eff}}(E)$ \checkmark No approximation
 $H^{h}_{\text{eff}}(E) = T^{h} + \Delta^{h} + V^{h} + V^{t}G^{q}(E)V^{t}$ \checkmark No approximation
 $G_{q}(E) = (E - (T^{q} + V^{q}))^{-1}$

Quark channel contribution by coupled channels

Coordinate representation with initial relative coordinate r and final r'

$$\langle \boldsymbol{r}'_{h} \mid V_{\text{eff}}^{h}(E) \mid \boldsymbol{r}_{h} \rangle = \langle \boldsymbol{r}'_{h} \mid V^{h} \mid \boldsymbol{r}_{h} \rangle + \sum_{n} \frac{\langle \boldsymbol{r}'_{h} \mid V^{t} \mid \phi_{n} \rangle \langle \phi_{n} \mid V^{t} \mid \boldsymbol{r}_{h} \rangle}{E - E_{n}}$$

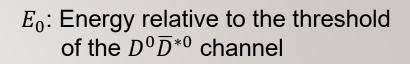
> Quark channel contribution. Sum of discrete eigenstates E_n

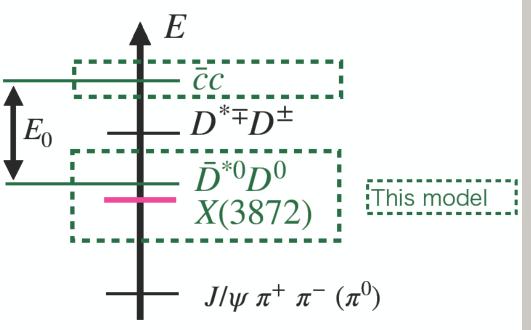
Energy dependent potential (denominator depends on *E*)
Non-local potential (numerator depends on *r*, *r*' independently)

✓ Focus only on the 2nd term which represents the contribution of channel coupling

X(3872)

- Construct the model of X(3872) \diamond Quark channel : $\bar{c}c \ \diamond$ Hadron channel : $D^0 \bar{D}^{*0}$ $\langle \phi_0 \mid V^t \mid \mathbf{r}_h \rangle = g_0 V(\mathbf{r}) = g_0 \frac{e^{-\mu r}}{r} g_0$: coupling constant μ : cut-off • Effective hadron potential with only $\chi_{C1}(2P)$ contribution (the strongest effect on $D^0 \bar{D}^{*0}$) $V_{\text{eff}}^h(\mathbf{r}, \mathbf{r'}, E) = \frac{g_0^2}{E - E_0} \frac{e^{-\mu r'}}{r'} \frac{e^{-\mu r}}{r}$
- Cut-off μ is taken to be mass of π > Lightest exchanging meson
- Energy of $c\bar{c}: E_0 = m_{c\bar{c}} (m_{D^0} + m_{\overline{D}^{*0}})$
- Coupling constant g₀ is determined to reproduce mass of X(3872)





 $m_{c\bar{c}}$ [S. Godfrey and N. Isgur, Phys. Rev. D, 32, 189 (1985)] others [PDG Live]

h

Local approximations

Approximation of non-local potential to local one by two different methods

[S.Aoki and K.Yazaki, PTEP 2022, no.3, 033B04 (2022)]

1 Formal derivative expansion

• Express non-local potential in terms of derivatives of delta function by Taylor expansion at r = r' directly

2 Derivative expansion by HAL QCD method

- Construct the potential from wave function $\psi_{k_0}(r)$ obtained from Schrödinger equation with non-local potentials at momentum k_0
- Solve for potentials inversely to construct the local potentials

Local approximation for X(3872)

✓ Converted local potentials from non-local potential $V_{\text{eff}}^{D^*D}(\boldsymbol{r}, \boldsymbol{r'}, E)$ in <u>leading order</u>

1 Formal derivative expansion $V^{\text{formal}}(r, E) = \frac{4\pi g_0^2}{\mu^2 (E - E_0)} \frac{e^{-\mu r}}{r} + \mathcal{O}(\nabla)$ > $\psi_{k_0}(r)$ and phase shift δ can be solved analytically $V^{\text{HAL}}(r; k_0) = \frac{k_0^2}{2m} + \frac{-k_0^2 \sin [k_0 r + \delta(k_0)] - \mu^2 \sin \delta(k_0) e^{-\mu r}}{2m \{ \sin [k_0 r + \delta(k_0)] - \sin \delta(k_0) e^{-\mu r} \}}$

> at $E = k_0^2/(2m)$, we can obtain the exact phase shift

Note,
$$V^{\text{HAL}}(r; k_0 = 0) = \frac{a_0 \mu^2 e^{-\mu r}}{2m \left(r - a_0 + a_0 e^{-\mu r}\right)} + \mathcal{O}(\nabla^2)$$
 a_0 : scattering length

Ibuki. Terashima (Tokyo Metropolitan University) "MESON2023" @ Kraków on June. 22nd

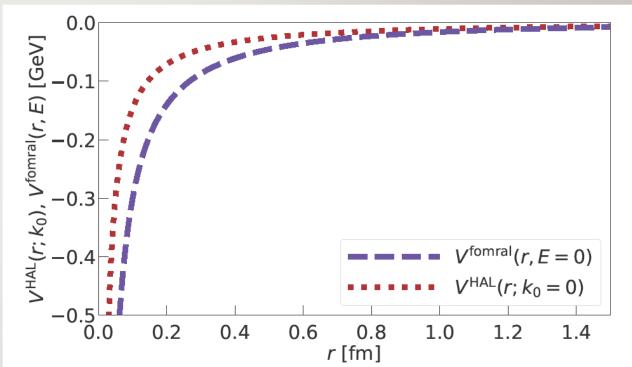
Result : comparison of V^{HAL} and V^{formal}

Compare approximated potentials for X(3872)

• V^{HAL} and V^{formal} from the same non-local potential

 Both potentials are short-range attraction
 Strengths of potential are

Strengths of potential are quantitatively different



How about physical observables from these potentials?

Ibuki. Terashima (Tokyo Metropolitan University) "MESON2023" @ Kraków on June. 22nd

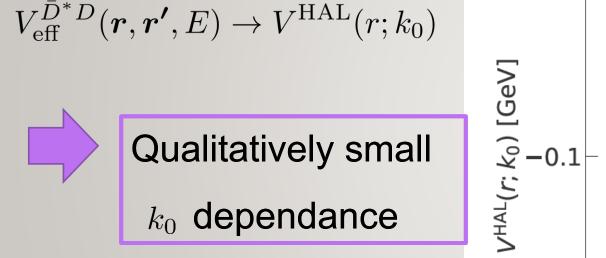
Result : Phase sift $\delta(k)$

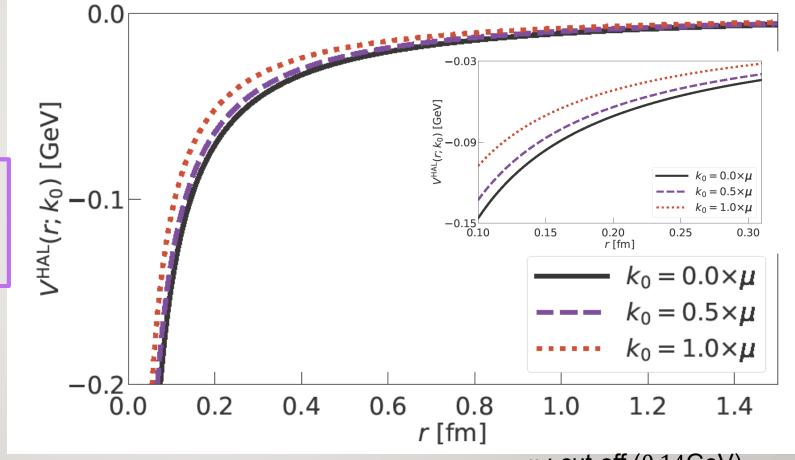
• Compare phase shifts $\delta(k)$

3.0 $\mu = 0.14 \text{ GeV}$ ompare phase $V^{\text{formal}}(r, E)$ and $V^{\text{HAL}}(r; k_0 = 0)$ with exact $\delta(k)$ from non-local potential $v^{2.0}_{1.5}$ • Compare phase shifts $\delta(k)$ from exact formal $HAL(k_0=0)$ • $\delta(k)$ from HAL QCD method reproduces exact $\delta(k)$, 0.5 especially for small k0.0 0.0 0.2 0.6 1.0 1.2 0.4 0.8 k/μ [dimensionless]

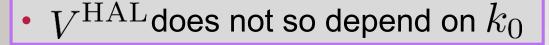
Result : k_0 dependence of V^{HAL} for X(3872)

 Local potentials by HAL QCD method





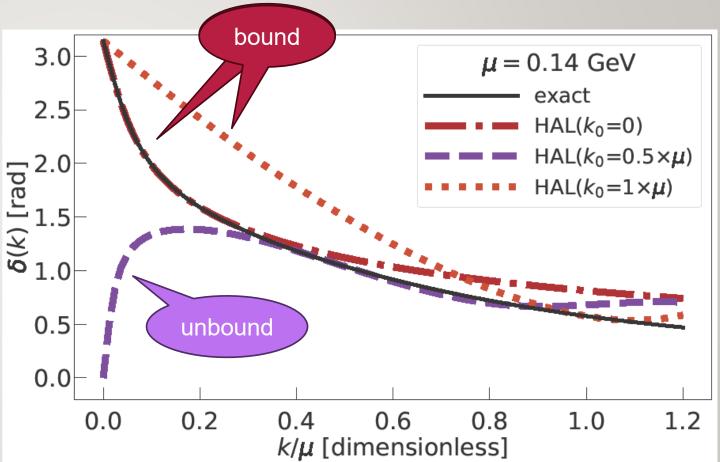
Result : k_0 dependence of $\delta(k)$



- Phase shift $\pmb{\delta}(\pmb{k})$ from $V^{\mathrm{HAL}}(r;k_0)$ qualitatively depends on k_0 strongly

Reason:

Binding energy of X(3872)
is quite small (about 40 keV)
so that the phase shift is
sensitive to make X(3872) from
bound to unbound



Summary

- Channel coupling between quark and hadron d.o.f
- Channel coupling between $c\bar{c}$ and $D\bar{D}^*$ in X(3872)
- Convert non-local to local by 2 methods
 (i) formal derivative expansion, (ii)HAL QCD method

Result : channel coupling

Energy dependentNon-local potential

```
    V^{\text{formal}} and V^{\text{HAL}} are quantitatively different
```

```
\succ V^{\text{HAL}}(r; k_0) reproduces the exact \delta(k) better than V^{\text{formal}}
```

 $\checkmark V^{\text{HAL}}(r; k_0)$ has quite small k_0 dependence

 $\geq \delta(k)$ from $V^{\text{HAL}}(r; k_0)$ is qualitatively depends on k_0 strongly

Future outlook

- Append more realistic hadron-hadron interaction
- Investigate the influence of the hadron d.o.f on the quark-antiquark effective potentials

TABLE I. The scattering lengths from the local potentials by the formal derivative expansion (formal) and by the HAL QCD method with $k_0 = 0$ (HAL QCD), in comparison with the exact scattering length from the original nonlocal potential.

	formal	HAL QCD	exact
scattering length [fm]	6.55	24.48	24.48

k_0 dependence of a_0

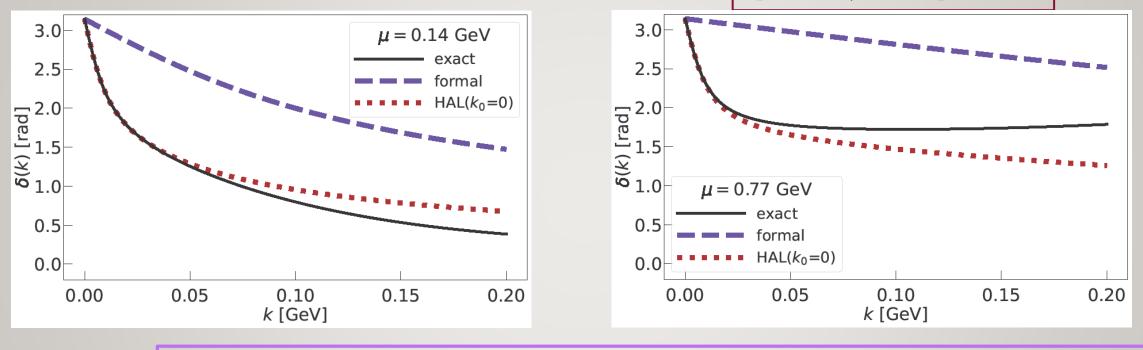
TABLE II. The k_0 dependence of the scattering length a_0 from the potential by the HAL QCD method, with $\mu = m_{\pi} = 0.14$ GeV and $\mu = m_{\rho} = 0.77$ GeV.

k_0/μ [dimensionless]	$a_0(\mu = m_\pi)$ [fm]	$a_0(\mu = m_\rho)$ [fm]
0	24.48	22.36
0.1	24.14	8.32
0.2	21.38	2.84
0.3	22.68	1.34
0.4	17.17	0.79
0.5	-63.97	0.71
0.6	9.33	0.01
0.7	5.88	0.23
0.8	-0.78	0.60
0.9	-1.27	-0.13
1	5.21	-0.20

Ibuki. Terashima (Tokyo Metropolitan University) "MESON2023" @ Kraków on June. 22nd

Result : μ dependance of δ

• Change μ but fix the binding energy of X(3872) and $k_{\text{pot}} = \sqrt{2mE_{\text{pot}}} = 0$



At any μ, V^{HAL} reproduces exact δ(k) in low energy
 V^{HAL}(r, E_{pot} = 0) reproduce exact scattering length a₀ in any μ

Result : effective potential

- Coordinate representation with initial relative coordinate $m{r}$ and final $m{r}'$

$$\langle \boldsymbol{r}'_{h} \mid V_{\text{eff}}^{h}(E) \mid \boldsymbol{r}_{h} \rangle = \langle \boldsymbol{r}'_{h} \mid V^{h} \mid \boldsymbol{r}_{h} \rangle + \sum_{n} \frac{\langle \boldsymbol{r}'_{h} \mid V^{t} \mid \phi_{n} \rangle \langle \phi_{n} \mid V^{t} \mid \boldsymbol{r}_{h} \rangle}{E - E_{n}}$$

> Quark channel contribution. Sum of discrete eigenstates E_n

$$\langle \boldsymbol{r}_{q}' \mid V_{\text{eff}}^{q}(E) \mid \boldsymbol{r}_{q} \rangle = \langle \boldsymbol{r}_{q}' \mid V^{q} \mid \boldsymbol{r}_{q} \rangle + \int d\boldsymbol{p} \frac{\langle \boldsymbol{r}_{q}' \mid V^{t} \mid \boldsymbol{p}_{\text{full}} \rangle \langle \boldsymbol{p}_{\text{full}} \mid V^{t} \mid \boldsymbol{r}_{q} \rangle}{E - E_{\boldsymbol{p}} + i0^{+}}$$

 \succ Hadron channel contribution. Integral of continuous eigenstates E_p

Energy dependent potential (denominator depends on *E*)
Non-local potential (numerator depends on *r*, *r*' independently)

I. Terashima and T. Hyodo, EPJ Web Conf. 271, 10004 (2022)

✓ Focus only on the 2nd term which represents the contribution of channel coupling

HAL QCD method in detail

Schrödinger equation with Yukawa-Separable non-local potential

Energy dependent

$$-\frac{1}{2m}\nabla^{2}\psi_{k_{\text{pot}}}(\boldsymbol{r}) + \int d^{3}\boldsymbol{r'}V_{\text{eff}}^{\bar{D}^{*}D}(\boldsymbol{r},\boldsymbol{r'},E)\psi_{k_{\text{pot}}}(\boldsymbol{r'}) = E_{\text{pot}}\psi_{k_{\text{pot}}}(\boldsymbol{r})$$

$$V_{\text{eff}}^{\bar{D}^{*}D}(\boldsymbol{r},\boldsymbol{r'},E) = \frac{g_{0}^{2}}{E-E_{0}}\frac{e^{-\mu r}}{r}\frac{e^{-\mu r'}}{r'}$$

• $\psi_{k_{\text{pot}}}(\mathbf{r})$ が、localポテンシャルを用いたSchrödinger方程式に従うと仮定

$$-\frac{1}{2m}\nabla^2\psi_{k_{\text{pot}}}(\boldsymbol{r}) + V_{E_{\text{pot}}}^{\text{HAL}}(r,)\psi_{k\text{pot}}(\boldsymbol{r}) = E_{\text{pot}}\psi_{k\text{pot}}(\boldsymbol{r})$$
未知数は $V_0^{\text{pot}}(r, E_{\text{pot}})$

• localポテンシャルについて逆解き $E = E_{\text{pot}}$ でlocal Schrödingerを解くと $\psi = \psi_{k_{\text{pot}}}$ を厳密に得るので、non-local V位相差を再現

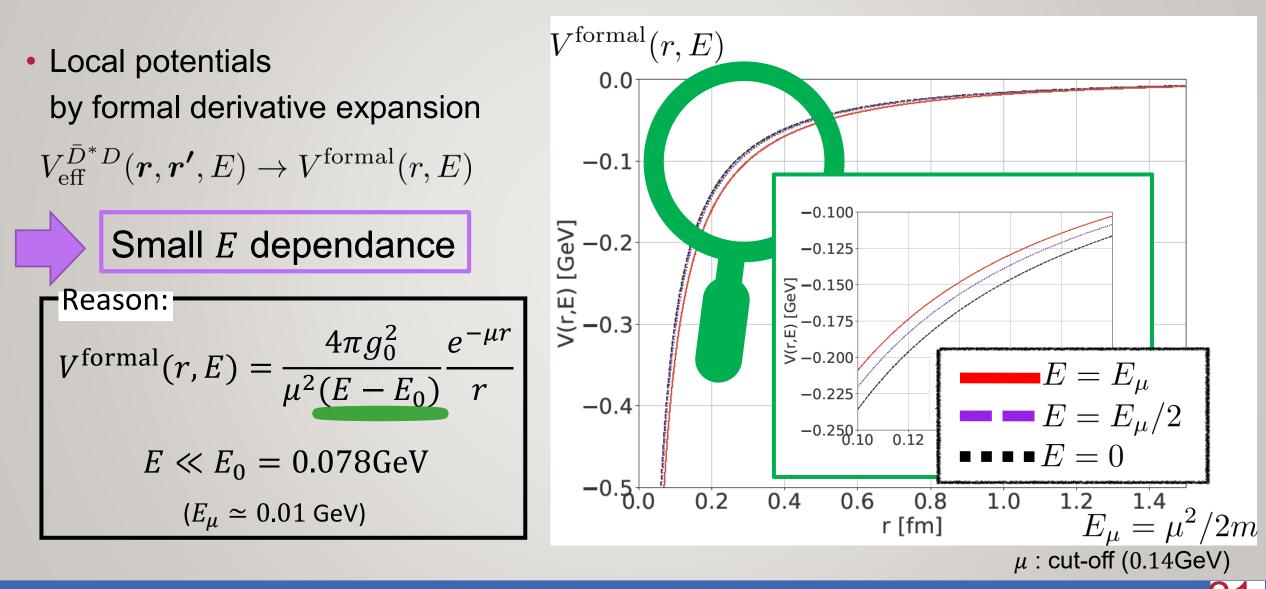
表 6.1 パラメーターの値

物理量	値	出典		
$m_{c\bar{c}}$	$3.950~{\rm GeV}$	クォーク模型の値 [24]	Xc	₁ (2P)
m_{D^0}	$1.86484~{\rm GeV}$	PDG [60]		
$m_{D^{0*}}$	$2.00685~{\rm GeV}$	PDG [60]		
μ	$0.14 {\rm GeV}$	PDG [60]	_	
$\hbar c$	0.1973269804 ${\rm GeV}\cdot{\rm fm}$	PDG [60]		
$m_{X(3872)}$	$3.87165~{\rm GeV}$	PDG [60]		

表 6.2 数値計算で得られたパラメーター

物理量	値	計算式
E_0	$0.07831 {\rm GeV}$	$m_{c\bar{c}} - m_{D^0} - m_{\bar{D}^{*0}}$
m	$0.9666 {\rm GeV}$	$\frac{m_{D^0} + m_{\bar{D}^{*0}}}{m_{D^0} m_{\bar{D}^{*0}}}$
g_0^2	$1.999\times 10^{-5}~{\rm GeV^3}$	$\frac{m_{c\bar{c}} - m_{X(3872)}}{I}$
a_0	124.1 fm	$\frac{8\pi m g_0^2/E_0}{\mu (4\pi m g_0^2/E_0 + \mu^3)}$

Result : *E* dependance of V^{formal} for X(3872)



Ibuki. Terashima (Tokyo Metropolitan University) "MESON2023" @ Kraków on June. 22nd