# Compositeness of exotic hadrons with decay and coupled-channel effects 

arXiv:2303.07038 [hep-ph]

Tomona Kinugawa Tetsuo Hyodo

Department of Physics, Tokyo Metropolitan University Jun 22nd, MESON 2023

## Near-threshold exotic hadrons

$$
X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi
$$


S. K. Choi et al. (Belle), Phys. Rev. Lett. 91, 262001 (2003).
internal structure?
exotic hadron
$\neq q q q$ or $q \bar{q}$

$$
T_{c c} \rightarrow D^{0} D^{0} \pi^{+}(c c \bar{u} \bar{d})
$$



LHCb Collaboration, Nature Phys. 18 no.7, 751-754 (2022); LHCb Collaboration, Nat. Commun. 133351 (2022).
multiquarks hadronic molecules

hadronic molecules

# Compositeness 

T. Hyodo, D. Jido, and A. Hosaka, Phys. Rev. C 85, 015201 (2012); F. Aceti and E. Oset, Phys. Rev. D 86, 014012 (2012).
hadron wavefunction
$|\Psi\rangle=\sqrt{\underline{X}} \mid$ hadronic molecule $\rangle+\sqrt{1-X} \mid$ others $\rangle$ compositeness
$* 0 \leq X \leq 1 \longrightarrow X>0.5 \Leftrightarrow$ composite dominant $X<0.5 \Leftrightarrow$ elementary dominant

- quantitative analysis of internal structure deuteron is not an elementary particle weinberg, S. Phys. Rev. $137,67-678$ (1965).
$f_{0}(980), a_{0}(980) \begin{aligned} & \text { Y. Kamiya and T. Hyodo, PTEP 2017, Phys. Rev. C 93, } 035203 \text { (2016); } \\ & \text { T. Sekihara, S. Kumano, Phys. Rev. D 92, } 034010 \text { (2015) etc. }\end{aligned}$
М(1405) $\begin{aligned} & \text { T. Sekihara, T. Hyodo, Phys. Rev. C 87, } 045202 \text { (2013) ; } \\ & \text { Z.H. Guo, J.A. Oller, Phys. Rev. D 93, } 096001 \text { (2016) etc. }\end{aligned}$
nuclei \& atomic systems т. Kinugawa, т. Hyodo, Phys. Rev. С 106,015205 (2022) etc.


## Near-threshold states



LHCb Collaboration, Nat. Commun 133351 (2022).


## Near-threshold states



LHCb Collaboration, Nat. Commun 133351 (2022).


- compositeness $X=1$ in $B \rightarrow 0$ limit (universality)
T. Hyodo, Phys. Rev. C 90, 055208 (2014) . near threshold states $(B \neq 0)$ is composite dominant?
- However, elementary dominant states is realized With fine tuning $\begin{aligned} & \text { T. Hyodo, Phys. Rev. C 90, } 055208 \text { (2014) ; } \\ & \text { C. Hanhart, J. R. Pelaez, and G. Rios, Phys. Lett. B 739, } 375 \text { (2014). }\end{aligned}$
$\longrightarrow$ How finely tuning parameter?
E. Braaten, M. Kusunoki, and D. Zhang, Annals Phys. 323, 1770 (2008).

O single-channel resonance model

$$
\mathscr{H}_{\text {free }}=\frac{1}{2 m_{1}} \nabla \psi_{1}^{\dagger} \cdot \nabla \psi_{1}+\frac{1}{2 m_{2}} \nabla \psi_{2}^{\dagger} \cdot \nabla \psi_{2}+\frac{1}{2 m_{\phi}} \nabla \phi^{\dagger} \cdot \nabla \phi+\nu_{0} \phi^{\dagger} \phi,
$$

$$
1 .
$$

$$
\mathscr{H}_{\mathrm{int}}=g_{0}\left(\phi^{\dagger} \psi_{1} \psi_{2}+\psi_{1}^{\dagger} \psi_{2}^{\dagger} \phi\right)
$$

$$
2 .
$$



1. single-channel scattering

O scattering amplitude

$$
\begin{aligned}
V & =\frac{g_{0}^{2}}{E-\nu_{0}}, \quad G
\end{aligned}=-\frac{\mu}{\pi^{2}}\left[\Lambda+i k \arctan \left(\frac{\Lambda}{-i k}\right)\right] \cdot \Lambda: \text { cutoff } \quad \text { ( } f(k)=-\frac{\mu}{2 \pi}\left[\frac{\frac{k^{2}}{2 \mu}-\nu_{0}}{g_{0}^{2}}+\frac{\mu}{\pi^{2}}\left[\Lambda+i k \arctan \left(\frac{\Lambda}{-i k}\right)\right]\right]^{-1} .
$$

## Model scales and parameters

- typical energy scale : $E_{\mathrm{typ}}=\Lambda^{2} /(2 \mu)$
- three model parameters $g_{0}, \nu_{0}, \Lambda$

1. calculation with given $B$
coupling const. $g_{0}: g_{0}^{2}\left(B, \nu_{0}, \Lambda\right)=\frac{\pi^{2}}{\mu}\left(B+\nu_{0}\right)[\Lambda-\kappa \arctan (\Lambda / \kappa)]^{-1}$
$\because$ bound state condition $f^{-1}=0$ $\kappa=\sqrt{2 \mu B}$.
2. use dimensionless quantities with $\Lambda$
$\longrightarrow$ results do not depend on cutoff $\Lambda$
3. energy of bare quark state $\nu_{0}$
varied in the region : $-B / E_{\text {typ }} \leq \nu_{0} / E_{\text {typ }} \leq 1$
$\because$ to have $g_{0}^{2} \geq 0 \&$ applicable limit of EFT

## Calculation

O compositeness $X$


$$
\begin{aligned}
\longrightarrow X & =\frac{G^{\prime}(-B)}{G^{\prime}(-B)-\left[V^{-1}(-B)\right]^{\prime}}, \quad \alpha^{\prime}(E)=d \alpha / d E \\
& =\left[1+\frac{\pi^{2} \kappa}{g_{0}^{2} \mu^{2}}\left(\arctan (\Lambda / \kappa)-\frac{\Lambda / \kappa}{1+(\Lambda / \kappa)^{2}}\right)^{-1}\right]^{-1} .
\end{aligned}
$$

- $\nu_{0}$ region : $-B / E_{\text {typ }} \leq \nu_{0} / E_{\text {typ }} \leq 1$
compositeness $X$ as a function of $\nu_{0}$

O $X$ as a function of $\nu_{0} / E_{\mathrm{typ}}$ of bound state $B=E_{\mathrm{typ}}$


- typical energy scale : $B=E_{\text {typ }}=\Lambda^{2} /(2 \mu)$
- $X>0.5$ only for $25 \%$ of $\nu_{0} \quad \because$ bare state origin

O $X$ as a function of $\nu_{0} / E_{\mathrm{typ}}$ of bound state $B=0.01 E_{\mathrm{typ}}$


- weakly-bound state : $B=0.01 E_{\text {typ }}$
- $X>0.5$ for $88 \%$ of $\nu_{0} \longrightarrow$ realization of universality !


## Application to $T_{c c}$ and $X(3872)$

O exotic hadron - decay and coupled channel
$X(3872)$


## large

$\Gamma$ and $\Delta \omega$

LHCb Collaboration, Nat. Commun 133351 (2022).

## Effect of decay \& coupled channel

$|\Psi\rangle=\sqrt{X_{1}} \mid$ threshold ch $\rangle+\sqrt{X_{2}} \mid$ coupled ch $\rangle+\sqrt{1-\left(X_{1}+X_{2}\right)} \mid$ others $\rangle$

- threshold energy difference $\Delta \omega$
- ch. 1 couples to ch. 2 through $\phi$ with same coupling const.

- decay width $E=-B-i \Gamma / 2$
- effectively introduced : coupling const. $g_{0} \in \mathbb{C}$

O compositeness т. Sekihara, T. Arai, J. Yamagata-Sekihara and S. Yasui, PRC 93, 035204 (2016).

$$
\tilde{X}_{j}=\frac{\left|X_{j}\right|}{\sum_{j}\left|X_{j}\right|+|Z|}, \quad(j=1,2) \begin{aligned}
& \tilde{X}_{1}: \text { threshold ch. compositeness } \\
& \tilde{X}_{2}: \text { coupled ch. compositeness }
\end{aligned}
$$

## Application to $T_{c c} \quad \Lambda=140 \mathrm{MeV}(\pi$ meson)



- $\tilde{X}_{2}$ is not negligible
$\because$ coupled ch. contribution (small $\Delta \omega$ )
- difference of $\tilde{X}_{1}+\tilde{X}_{2}(\Gamma=0)$ and $\tilde{X}_{1}+\tilde{X}_{2}$ is too small
$\longrightarrow$ We can neglect decay contribution


## Application to $X(3872){ }_{\Lambda=140 \mathrm{MeV}(\pi \text { meson })} 14$



- difference of $\tilde{X}_{1}+\tilde{X}_{2}(\Gamma=0)$ and $\tilde{X}_{1}+\tilde{X}_{2}$ is large
$\because$ large decay width contribution
- $\tilde{X}_{2}$ is much smaller than $\tilde{X}_{1}$
$\longrightarrow$ coupled ch. effect is small
- internal structure of exotic hadrons 4 EFT \& compositeness
- shallow bound state
$\longrightarrow$ composite dominant even from bare state fine tuning is necessary to realize elementary dominant state
- decay and coupled channel effects are introduced
$\longrightarrow$ both decay and coupled ch. effects suppress compositeness
- $T_{c c}$ and $X(3872)$ with decay and coupled ch. effects
$T_{c c}$ : important coupled ch. effect with negligible decay effect
$X(3872)$ : important decay effect with negligible coupled ch. effect


## Compositeness of $T_{c c}$ by other work

paper by L. R. Dai, J. Son and E. Oset
L. R. Dai, J. Son and E. Oset, arXiv: 2306.01607 [hep-ph].

- relativistic model


FIG. 1: $D D^{*}$ amplitude based on the genuine resonance $R$.

- Both molecular and non-molecular states are realized by tuning of parameters
- However, case with small compositeness is excluded by experimental data ( $a_{0}$ and $r_{e}$ )


## History of compositeness

- Weinberg's work (1960s) Weinberg, S. Phys. Rev. 137, 672-678 (1965) etc. deuteron is not an elementary particle - weak-binding relation
- application to exotic hadrons (2000s-)
"compositeness"
generalization to unstable states
with spectral function ${ }^{\text {V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova, A.E. }}$
Kudryavtsev, Phys. Lett. B 586, 53-61 (2004) etc.
with effective range expansion t. Hyodo, Phys. Rev. Lett. 111, 132002 (2013) etc.
with effective field theory y. Kamiya and T. Hyodo, PTEP 2017, 023D02 (2017) etc. application to ...
$f_{0}(980), a_{0}(980) \begin{aligned} & \text { Y. Kamiya and T. Hyodo, PTEP 2017, Phys. Rev. C 93, } 035203 \text { (2016); } \\ & \text { T. Sekihara, S. Kumano, Phys. Rev. D 92, } 034010 \text { (2015) etc. }\end{aligned}$
(1405) $\begin{aligned} & \text { T. Sekihara, T. Hyodo, Phys. Rev. C 87, } 045202 \text { (2013) ; } \\ & \text { Z.H. Guo, J.A. Oller, Phys. Rev. D 93, } 096001 \text { (2016) etc. }\end{aligned}$
nuclei \& atomic systems т. Kinugawa, T. Hyodo, Phys. Rev. C 106,015205 (2022) etc.


## Compositeness

 F. Aceti and E. Oset, Phys. Rev. D 86, 014012 (2012).

$$
T=\frac{1}{V^{-1}-G} \quad \begin{aligned}
& V: \text { effective interaction } \\
& G: \text { loop function }
\end{aligned}
$$

residue of scattering amplitude $g$

$$
\begin{aligned}
X & =-\left.g^{2} G^{\prime}(E)\right|_{E=-B} \alpha^{\prime}(E)=d \alpha / d E \\
& =\left.\frac{G^{\prime}(E)}{G^{\prime}(E)-\left[V^{-1}(E)\right]^{\prime}}\right|_{E=-B} \text { Y. Kamiya and T. Hydo, PTEP 2017, 023D02 (2017). }
\end{aligned}
$$

$g^{2}:$ model independent $\longleftarrow T_{\text {on }}(-B)$ (observable)
$G(E)$ : model dependent $\leftarrow$ cutoff dependent

## Weak-binding relation

$X=\frac{a_{0}}{2 R-a_{0}}+\mathcal{O}\left(\frac{R_{\mathrm{typ}}}{R}\right) \begin{aligned} & a_{0}: \text { scattering length } \\ & R_{\mathrm{typ}}: \text { typical length scale in system }\end{aligned}$ $R=1 / \sqrt{2 \mu B}$

- for weakly bound states, $R \gg R_{\text {typ }}$ compositeness observables $\left(a_{0}, B\right)$

- our work : range correction $\longleftarrow$ uncertainty estimation compositeness of deuteron : $0.74 \leq X \leq 1$


## Low-energy universality

scattering length $a_{0}(\rightarrow \infty)$
$\gg$ typical length scale of system $R_{\text {typ }}$

$\longrightarrow$ length scales are written only by $\left|a_{0}\right|$

- for bound states ?

$$
R=1 / \sqrt{2 \mu B}: a_{0}=R \rightarrow \infty \longrightarrow B \rightarrow 0
$$

$\longrightarrow$ universality holds for weakly-bound states!

- compositeness $X=1$ in $B \rightarrow 0$ limit $_{\text {t. Hyde, Phys. Rev. C } 90,055208}(2014)$.
$\longrightarrow$ near threshold states $(B \sim 0)=$ composite dominant?
e.g. ${ }^{8} \mathrm{Be},{ }^{12} \mathrm{C}$ Hoyle state



## universality

$T_{c c}$ and $X(3872)$ are shallow-bound states
$\longrightarrow$ low-energy universality is important!

1. naive expectation : near-threshold states are composite dominant
2. However, elementary dominant states is realized with fine tuning
T. Hyodo, Phys. Rev. C 90, 055208 (2014) ;
C. Hanhart, J. R. Pelaez, and G. Rios, Phys. Lett. B 739, 375 (2014).

How finely tuning parameter?
In this work, we study fine tuning quantitatively!

## Effect of decay

O introducing decay effect

- formally : introducing decay channel in lower energy region than binding energy
$\longrightarrow$ eigenenergy becomes complex
- effectively : coupling const. $g_{0} \in \mathbb{C}$ this work

$$
\begin{aligned}
& \mathscr{H}_{\mathrm{int}}=g_{0}\left(\phi^{\dagger} \psi_{1} \phi_{2}+\phi_{1}^{\dagger} \psi_{2}^{\dagger} \phi\right) \\
& E=-B \longrightarrow E=-B-i \Gamma / 2
\end{aligned}
$$

compositeness

$$
\begin{aligned}
& X \in \mathbb{R} \longrightarrow X \in \mathbb{C}
\end{aligned}
$$

## Effect of decay

$$
E=-0.01 E_{\mathrm{typ}}-i 0.1 E_{\mathrm{typ}}
$$

$$
E=-0.01 E_{\mathrm{typ}}-i E_{\mathrm{typ}}
$$



- $\tilde{X}$ is suppressed by decay effect
$\because$ threshold ch. component $(\tilde{X})$ decreases with inclusion of decay ch. component $(1-\tilde{X})$


## Effect of decay

$E=-0.01 E_{\mathrm{typ}}-i 0.1 E_{\mathrm{typ}}$


$$
E=-E_{\mathrm{typ}}-i 0.1 E_{\mathrm{typ}}
$$

compositeness is more suppressed when $B$ is small

- suppression of $\tilde{X}$ is determined by ratio of $B$ to $\Gamma$


## Effect of decay



- $X \neq 0$ with $\Gamma \neq 0$
$\because g_{0} \neq 0$ at $\nu_{0}=-B$
c.f. $g_{0}=0$ at $\nu_{0}=-B$ with $\Gamma=0$

$$
\begin{gathered}
g_{0}^{2}\left(-\nu_{0}+i \frac{\Gamma}{2} ; \nu_{0}, \Lambda\right)=\frac{\pi^{2}}{\mu}\left(-i \frac{\Gamma}{2}\right)\left[\Lambda-\kappa \arctan \left(\frac{\Lambda}{\kappa}\right)\right]^{-1} \neq 0 \\
X=\left[1+\frac{\pi^{2} \kappa}{g_{0}^{2} \mu^{2}}\left(\arctan (\Lambda / \kappa)-\frac{\Lambda / \kappa}{1+(\Lambda / \kappa)^{2}}\right)^{-1}\right]^{-1}
\end{gathered}
$$

Effect of coupled channel
O introducing coupled channel $\Psi_{1} \Psi_{2}$

$$
\mathscr{H}_{\mathrm{int}}=g_{0}\left(\phi^{\dagger} \psi_{1} \Psi_{2}+\psi_{1}{ }^{\dagger} \psi_{2}^{\dagger} \phi+\phi^{\dagger} \Psi_{1} \Psi_{2}+\Psi_{1}^{\dagger} \Psi_{2}^{\dagger} \phi\right) .
$$

- threshold energy difference $\Delta \omega=\omega_{1}+\omega_{2}$
- ch. 1 couples to ch. 2 through $\phi$ with same coupling const.

- low-energy universality with coupled-channel effect

$$
\begin{aligned}
& X_{1} \sim 1 \text { (threshold channel) } \\
& X_{2} \sim 0 \text { and } Z \sim 0 \text { (other channel) }
\end{aligned}
$$

## Compositeness for two-channel case

$$
\begin{aligned}
& V(k)=\left(\begin{array}{cc}
v(k) & v(k) \\
v(k) & v(k)
\end{array}\right), v(k)=\frac{g_{0}^{2}}{\frac{k^{2}}{2 \mu_{1}}-\nu_{0}} \\
& G(k)=\left(\begin{array}{cc}
G_{1}(k) & 0 \\
0 & G_{2}(k)
\end{array}\right), \\
& G_{1}(k)=-\frac{\mu_{1}}{\pi^{2}}\left[\Lambda+i k \arctan \left(-\frac{\Lambda}{i k}\right)\right] \\
& G_{2}\left(k^{\prime}\right)=-\frac{\mu_{2}}{\pi^{2}}\left[\Lambda+i k^{\prime} \arctan \left(-\frac{\Lambda}{i k^{\prime}}\right)\right] \\
& k=\sqrt{2 \mu_{1} E}, \quad k^{\prime}(k)=\sqrt{2 \mu_{2}(E-\Delta \omega)}=\sqrt{\frac{\mu_{2}}{\mu_{1}} k^{2}-2 \mu_{2} \Delta \omega} .
\end{aligned}
$$

$$
X_{1}=\frac{G_{1}^{\prime}}{\left(G_{1}^{\prime}+G_{2}^{\prime}\right)-\left[v^{-1}\right]^{\prime}},
$$

$$
X_{2}=\frac{G_{2}^{\prime}}{\left(G_{1}^{\prime}+G_{2}^{\prime}\right)-\left[v^{-1}\right]^{\prime}} .
$$

## Effect of coupled channel

$$
(B, \Delta \omega)=\left(0.01 E_{\mathrm{typ}}, 0.01 E_{\mathrm{typ}}\right) \quad(B, \Delta \omega)=\left(0.01 E_{\mathrm{typ}}, E_{\mathrm{typ}}\right)
$$



- $X_{1}$ is suppressed by channel coupling
$\because$ threshold ch. component $\left(X_{1}\right)$ decreases with inclusion of coupled ch. component $\left(X_{2}\right)$
$-Z=1-\left(X_{1}+X_{2}\right)$ is stable


## Effect of coupled channel


this calculation corresponds to $\Delta \omega \rightarrow 0$ case
back up??

## Application to $T_{c c}$ (single ch. model)

30

O single-channel


- $X>0.5$ for $78 \%$ of $\nu_{0}=$ composite dominant
- fine tuning is necessary to realize $X<0.5$


## Application to $T_{c c}$ and $X(3872)$

- $\Lambda=140 \mathrm{MeV}$ ( $\pi$ meson)

- $T_{c c}: \tilde{X}_{1}>0.5$ for $45 \%$ of $\nu_{0}$ region
- $X(3872): \tilde{X}_{1}>0.5$ for $59 \%$ of $\nu_{0}$ region
- coupled ch. effect is more important for $T_{c c}$ than $X(3872)$
- decay effect is more important for $X(3872)$ than $T_{c c}$


## Application to $T_{c c}$ and $X(3872)$

32
$-\Lambda=770 \mathrm{MeV}$ ( $\rho$ meson)


- $T_{c c}: \tilde{X}_{1}>0.5$ for $85 \%$ of $\nu_{0}$ region
- $X(3872): \tilde{X}_{1}>0.5$ for $87 \%$ of $\nu_{0}$ region
- typical energy scale $E_{\text {typ }}$ is larger
$\rightarrow$ states becomes close to universality limit $X \rightarrow 1$ decay effect : suppressed coupled ch. effect : enhanced


## validity of weak-biding relation

single-channel scattering model

comparison of central value of weak-binding relation with model
(a) typical scale binding energy : weak-binding relation $\times$
(b) weak-binding energy: weak-binding relation $\bigcirc$ even for elementary dominant state with small $\nu_{0}$

