

PRECISION MEASUREMENTS WITH KAON DECAYS AT CERN

RENATO FIORENZA (on behalf of the NA62 collaboration)

renato.fiorenza@cern.ch

MESON2023 27/06/2023

Scuola Superiore Meridionale

KAON EXPERIMENTS AT CERN

NA31: K_S / K_L (1984-1990) First evidence of direct CPV in kaons

NA48, NA48/I: K_S / K_L (1997-2002) Re(ϵ'/ϵ), Rare K_S and hyperon decays

NA48/2: K⁺ / K⁻ (2003-2004) Direct CPV, rare K[±] decays

NA62: K⁺ / K⁻ (2007-2008) R_K = Γ(Kev) / Γ(Kμv)

NA62: K⁺ (2016-2018) Physics Run I

NA62: K⁺ (2021-now) Physics Run2

THE NA62 EXPERIMENT

 ~300 participants from ~30 institutions 			
 High-precision kaon experiment 			
 Technique: 			
 Fixed target 			
 Decay-in-flight 			
Broad physics program:			
• Measurement of BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$)			
 Precision measurements 			
Tests of LFV / LNV			
 Exotic searches (DP, DS, ALP, HNL) 			

3/22

JINST 12 (2017) P05025

JINST 12 (2017) P05025

JINST 12 (2017) P05025

|INST 12 (2017) P05025

OUTLINE

NA62 main goal

• $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

NA62 latest precision measurements

- $K^+ \rightarrow \pi^0 e^+ \nu \gamma (K_{e3\gamma})$
- $K^+ \rightarrow \pi^+ \mu^+ \mu^-$
- $K^+ \rightarrow \pi^+ \gamma \gamma$

NA48/2 preliminary result

• $K^{\pm} \to \pi^0 \pi^0 \mu^{\pm} \nu (K_{\mu 4}^{00})$

NA62 dataset

Run1 (this talk)

- 2016: 30 days, 2 × 10¹¹ useful K decays
- 2017: 161 days, 2 × 10¹² useful K decays
- 2018: 217 days, 4 × 10¹² useful K decays

Run2 (analysis in progress)

- 2021:85 days
- 2022: 215 days
- 2023 LS3: ongoing

 $\pi^+ \nu \overline{\nu}$

Re

- FCNC s \rightarrow d, high CKM suppression
- Theoretically clean, dominated by short distance $\begin{bmatrix} T_{1-0} \\ 0 \end{bmatrix}$
- Hadronic form factor extracted from K_{l3}
- Uncertainty largely from CKM parameters

 $|\mathsf{BR}(\mathsf{K}^+ \rightarrow \pi^+ \vee \overline{\nu})_{\mathsf{SM}} = (8.4 \pm 1.0) \times 10^{-11}$

Im

- $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ and $K_1 \rightarrow \pi^0 \nu \overline{\nu}$
- Very sensitive to new physics
- Kaons can constrain the UT independently from B physics Acta Phys.Polon.B 53 6, AI (2021)

ANALYSIS

Performances

- Kinematic suppression O(10⁴)
- Muon suppression O(10⁷)
- π⁰ suppression O(10⁷)
- Timing between sub-detectors O(100 ps)

Selection

- K⁺, π⁺ track reconstruction
- Track matching, vertex reconstruction
- π^+ identification, μ^+ rejection
- Multi-track rejection, photon veto
- Kinematics (m_{miss}^2, p_{π})

<u>Analysis</u>

- Momentum range: $15 < p_{\pi} < 45$ GeV/c
- Signal regions blinded during the analysis
- Data-driven background estimate
- 7 categories depending on hardware and momentum

$K^{+} \to \pi^{+} \nu \overline{\nu}$

RESULTS

- Single Event Sensitivity: $(0.839 \pm 0.053_{syst}) \times 10^{-11}$
- Expected SM signal events: |0.0| ± 0.42_{syst} ± 1.19_{ext}
- Expected background events: 7.03^{+1.05}_{-0.82}
- Observed events: 20
- Significance: 3.4σ

OUTLINE

NA62 main goal

• $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

NA62 latest precision measurements

- $K^+ \rightarrow \pi^0 e^+ \nu \gamma \ (K_{e3\gamma})$
- $K^+ \rightarrow \pi^+ \mu^+ \mu^-$
- $K^+ \rightarrow \pi^+ \gamma \gamma$

NA48/2 preliminary result

• $K^{\pm} \to \pi^0 \pi^0 \mu^{\pm} \nu \ (K_{\mu 4}^{\ \ 00})$

NA62 dataset

Runl (this talk)

- 2016: 30 days, 2 × 10¹¹ useful K decays
- 2017: 161 days, 2 × 10¹² useful K decays
- 2018: 217 days, 4 × 10¹² useful K decays

Run2 (analysis in progress)

- 2021:85 days
- 2022: 215 days
- 2023 LS3: ongoing

THEORY

 $\rightarrow \pi^0 e^+ v \gamma$

SELECTION

Normalization

- One downstream track with e⁺ PID
- Vertex with a K⁺ upstream track
- 2γ in LKr with m($\gamma\gamma$) compatible with π^0
- Veto on additional photons

 $K^+ \rightarrow \pi^0 e^+ \nu \gamma$

• Cut on $m_{miss}^2(K_{e3}) = (P_K - P_{\pi 0} - P_e)^2$

Signal

- One downstream track with e⁺ PID
- Vertex with a K⁺ upstream track
- 2γ in LKr with m($\gamma\gamma$) compatible with π^0 + radiative γ
- Veto on additional photons
- Cut on $m_{miss}^{2}(K_{e3\gamma}) = (P_{K} P_{\pi 0} P_{e} P_{\gamma})^{2}$ and $m_{miss}^{2}(K_{e3})$

 $K^+ \rightarrow \pi^0 e^+ \nu \gamma$

ANALYSIS

	Normalization	S_1	S_2	S_3
Selected candidates	6.6420×10^{7}	1.2966×10^5	0.5359×10^5	0.3909×10^{5}
Acceptance	$(3.842 \pm 0.002)\%$	$(0.444 \pm 0.001)\%$	$(0.514 \pm 0.002)\%$	$(0.432 \pm 0.002)\%$
Accidental		$(4.9\pm 0.2\pm 1.3)\times 10^2$	$(2.3 \pm 0.2 \pm 0.3) \times 10^2$	$(1.1 \pm 0.1 \pm 0.5) \times 10^2$
$K^+ \to \pi^0 \pi^0 e^+ \nu$		$(1.1\pm1.1)\times10^2$	$(1.1 \pm 1.1) \times 10^2$	$(0.1 \pm 0.1) \times 10^2$
$K^+ \to \pi^+ \pi^0 \pi^0$	_	< 20	< 20	< 20
$K^+ \to \pi^+ \pi^0$	$(1.0 \pm 1.0) \times 10^4$	—		
Total background	$(1.0 \pm 1.0) \times 10^4$	$(6.0 \pm 1.8) \times 10^2$	$(3.4 \pm 1.2) \times 10^2$	$(1.2 \pm 0.6) \times 10^2$
Fractional background	1.6×10^{-4}	0.46×10^{-2}	0.64×10^{-2}	0.29×10^{-2}

$$R_{j} = \frac{\mathcal{B}(K_{e3}\gamma^{j})}{\mathcal{B}(K_{e3})} = \frac{N_{Ke3}^{\text{obs}} - N_{Ke3}^{\text{bkg}}}{N_{Ke3}^{\text{obs}} - N_{Ke3}^{\text{bkg}}} \cdot \frac{A_{Ke3}}{A_{Ke3}\gamma^{j}} \cdot \frac{\epsilon_{Ke3}^{\text{trig}}}{\epsilon_{Ke3\gamma^{j}}} - \frac{\epsilon_{Ke3}^{\text{trig}}}{\epsilon_{Ke3\gamma^{j}}}$$

 Bkg from accidental activity in LKr: data-driven estimation with timing sidebands

- Bkg from e^+ mis-ID / undetected γ : estimated from MC
- Systematics: LKr response correction, bkg estimation, veto of additional radiative γ, theory, MC sample size

$$A_{\xi}^{\text{NA62}} = A_{\xi}^{\text{Data}} - A_{\xi}^{\text{MC}}$$

- A_{ξ}^{MC} : contribution due to detector + selection
- Systematics: MC sample size

RESULTS

$$K^+ \rightarrow \pi^0 e^+ \nu \gamma$$

	Eur. Phys. J. C 50 (2007) 557 Eur. Phys. J. C 48 (2006) 427	Phys.Atom. Nucl. 70 (2007) 702	Eur. Phys. J. C 81.2 (2021) 161 JETP Lett. 116 (2022) 608	arXiv:2304.12271, submitted to JHEP
	ChPT O(p ⁶)	ISTRA+	ΟΚΑ	NA62
$R_1 \times 10^2$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	1.990 ± 0.017 ± 0.021	1.715 ± 0.005 ± 0.010
$R_2 \times 10^2$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	0.587 ± 0.010 ± 0.015	0.609 ± 0.003 ± 0.006
$R_3 \times 10^2$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	0.532 ± 0.010 ± 0.012	0.533 ± 0.003 ± 0.004
$A_{\xi}(S_{I}) \times I0^{3}$			-0.1 ± 3.9 ± 1.7	-1.2 ± 2.8 ± 1.9
$A_{\xi}(S_2) \times 10^3$	-0.059		7.0 ± 8.1 ± 1.5	$-3.4 \pm 4.3 \pm 3.0$
$A_{\xi}(S_3) \times 10^3$		0.015 ± 0.021	-4.4 ± 7.9 ± 1.9	-9.1 ± 5.1 ± 3.5

Decay rates

- Factor > 2 more precise than previous measurements
- Relative uncertainty < 1%
- 5% smaller than ChPT prediction O(3σ)

T-asymmetry

- Compatible with no asymmetry
- Improved precision
- Uncertainty still O(10²) larger than predictions

OUTLINE

NA62 main goal

• $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

NA62 latest precision measurements

- $K^+ \rightarrow \pi^0 e^+ \nu \gamma (K_{e3\gamma})$
- $K^+ \rightarrow \pi^+ \mu^+ \mu^-$
- $K^+ \rightarrow \pi^+ \gamma \gamma$

NA48/2 preliminary result

• $K^{\pm} \to \pi^0 \pi^0 \mu^{\pm} \nu \ (K_{\mu 4}^{\ \ 00})$

NA62 dataset

Runl (this talk)

- 2016: 30 days, 2 × 10¹¹ useful K decays
- 2017: 161 days, 2 × 10¹² useful K decays
- 2018: 217 days, 4 × 10¹² useful K decays

Run2 (analysis in progress)

- 2021:85 days
- 2022: 215 days
- 2023 LS3: ongoing

THEORY

- FCNC, long distance dominated, mediated by $K^+ \rightarrow \pi^+ \gamma^*$ JHEP 02 (2019) 049
- Test of LFU by comparing $K^+ \rightarrow \pi^+ e^+ e^-$

 $\rightarrow \pi^{+}\mu^{+}\mu^{-}$

- One-photon-inclusive differential decay width: $\frac{\mathrm{d}\Gamma(z)}{\mathrm{d}z} = g(z) \cdot |W(z)|^2 + \frac{\mathrm{d}\Gamma_{4\text{-body}}(z)}{\mathrm{d}z}$ where $z = m(\mu^+\mu^-)^2/m_K^2$
- Form factor parametrized by ChPT at O(p⁶) JHEP 08 (1998) 004 $W(z) = G_F m_K^2 (a_+ + b_+ z) + W^{\pi\pi}(z)$
- Measurements:
 - *a*₊ , *b*₊
 - Model-independent BR
 - Forward-backward asymmetry

 $\pi(k)$

 $\pi(p)$

K(k)

 $\pi(p)$

K(k)

K(k)

 $\widetilde{K}(p)$

 $\pi(p)$

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$

SELECTION

Normalization Signal **Normalization**: $K^+ \rightarrow \pi^+ \pi^+ \pi^ K^+ \rightarrow \pi^+ \gamma \mu^+ \mu^-$ Events / (MeV/c²) Data Events / (MeV/c² Data 10⁹ 10⁶ Abundant (BR $\sim 5.6\%$) $K^+ \rightarrow \pi^+ \mu^+ \mu^ \rightarrow e^+ \nu_0 \mu^+ \mu^ K^+ \rightarrow \mu^+ \nu_{\mu} \mu^+ \mu^-$ 10⁸ 10^t Kinematically similar $K^+ \rightarrow \pi^+ \pi^- \mu^+ \nu_{\mu}$ $\mathrm{K}^+ \rightarrow \pi^+ \mathrm{e}^+ \mathrm{e}^ K^+ \rightarrow \pi^+ \pi^+ \pi^ K^+ \rightarrow \pi^+ \mu^+ \mu^-$ 10 10^{7} Cancellation of systematics $\pi^{+} \pi^{-} \mu^{+} \nu_{\mu}$ 10^{6} 10⁶ $K^+ \rightarrow \pi^+ \pi_D^0$ 10⁵ 10^{5} $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ 10⁴ 10⁴ 3-track vertex topology 10³ 10³ Event in time with KTAG 10 10² 10 π^+ calorimetric PID μ calorimetric PID 10 10 $m(\pi\mu\mu)$, $m(3\pi)$ requirements 10^{-1} 10^{-1} Data / MC Data / MC Effective kaon decays: $(3.48 \pm 0.09_{syst} \pm 0.02_{ext}) \times 10^{12}$ Selected events: 27679 0.8 0.8 Expected background events: 7.8 ± 5.6 0.6 0.6 460 480 500 520 540 560 580 600 620 380 400 420 440 460 480 500 520 m(3π) [MeV/c²] $m(\pi\mu\mu)$ [MeV/c²]

MESON2023

Selection

$$K^+ \to \pi^+ \mu^+ \mu^-$$

FORM FACTOR AND BRANCHING RATIO

Background

Total systematic uncertainty

 $K_{3\pi}$ branching fraction

Parameters α_+ and β_+

 $K_{\pi\mu\mu}$ radiative corrections

Total external uncertainty

50 equipopulated bins of z:

$$\left(\frac{\mathrm{d}\Gamma(z)}{\mathrm{d}z}\right)_{i} = \frac{N_{\pi\mu\mu,i}}{A_{\pi\mu\mu,i}} \cdot \frac{1}{\Delta z_{i}} \cdot \frac{1}{N_{K}} \cdot \frac{\hbar}{\tau_{K}}$$

 $\chi^2(a_+,b_+)$ fit

- Theoretically preferred negative solution
- Additional χ² minimum: positive solution

Model-independent BR from integration of $d\Gamma/dz$

 $a_{+} = -0.575 \pm 0.013$, $b_{+} = -0.722 \pm 0.043$

 χ^2 / ndf = 45.1 / 48, $\rho(a_+,b_+) = -0.972$

$BR(K^+ \to \pi^+ \mu^+ \mu^-) = (9.15 \pm 0.08) \times 10^{-8}$

MESON2023

JHEP II (2022) 011

0.001

0.003

0.001

0.003

0.001

0.003

0.001

0.013

0.003

0.009

0.006

0.011

0.03

0.04

0.01

0.04

 $\underline{\mathbf{K}^{+} \to \pi^{+} \mu^{+} \mu^{-}}$

MESON2023

COMPARISON WITH PREVIOUS RESULTS

- Much improved precision
- Sample size ~9x larger than NA48/2
- No evidence for LFU violation

27/06/2023

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$

FORWARD-BACKWARD ASYMMETRY

angle between K⁺ and
$$\mu^-$$
 in $\mu\mu$ rest frame

$$\int A_{\text{FB}} = \frac{\mathcal{N}(\cos\theta_{K\mu} > 0) - \mathcal{N}(\cos\theta_{K\mu} < 0)}{\mathcal{N}(\cos\theta_{K\mu} > 0) + \mathcal{N}(\cos\theta_{K\mu} < 0)}$$

$$A_{FB} = (0.0 \pm 0.7_{stat} \pm 0.2_{syst} \pm 0.2_{ext}) \times 10^{-2} @ 68\% CL$$
$$|A_{FB}| < 0.9 \times 10^{-2} @ 90\% CL$$

JHEP 11 (2022) 011, JHEP 06 (2023) 040

OUTLINE

NA62 main goal

• $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

NA62 latest precision measurements

- $K^+ \rightarrow \pi^0 e^+ \nu \gamma \ (K_{e3\gamma})$
- $K^+ \rightarrow \pi^+ \mu^+ \mu^-$
- $K^+ \rightarrow \pi^+ \gamma \gamma$

NA48/2 preliminary result

• $K^{\pm} \to \pi^0 \pi^0 \mu^{\pm} \nu \ (K_{\mu 4}^{\ \ 00})$

NA62 dataset

Runl (this talk)

- 2016: 30 days, 2 × 10¹¹ useful K decays
- 2017: 161 days, 2 × 10¹² useful K decays
- 2018: 217 days, 4 × 10¹² useful K decays

Run2 (analysis in progress)

- 2021:85 days
- 2022: 215 days
- 2023 LS3: ongoing

$K^+ \rightarrow \pi^+ \gamma \gamma$

THEORY

Phys. Lett. B 386 (1996) 403

- Kinematic variables

$$z = \frac{(q_1 + q_2)^2}{m_K^2} = \left(\frac{m_{\gamma\gamma}}{m_K}\right)^2, \quad y = \frac{p(q_1 - q_2)}{m_K^2}$$

p: K⁺ 4-momentum $q_{1,2}$: γ 4-momenta m_{K} : K⁺ mass $m_{\gamma\gamma}$: di-photon invariant mass

Decay width parametrized by a real parameter ĉ

$$\frac{\partial \Gamma}{\partial y \partial z}(\hat{c}, y, z) = \frac{m_K}{2^9 \pi^3} \left[z^2 \left(\left| A(\hat{c}, z, y^2) + B(z) \right|^2 + \left| C(z) \right|^2 \right) + \left(y^2 - \frac{1}{4} \lambda(1, r_\pi^2, z) \right)^2 B(z) \right|^2 \right]$$
nonzero at O(p⁶)

- Goals:
 - Measure ĉ₆
 - Extrapolate model-dependent BR

17/22

$K^+ \to \pi^+ \gamma \gamma$

ANALYSIS

Selection

- K⁺, π⁺ matching tracks + 2 clusters in LKr
- $z = (P_K P_\pi)^2 / M_K^2$
- 4039 events observed
- 393 ± 20 background events expected

Background

- Cluster merging: $K^+ \rightarrow \pi^+ \pi^0 \gamma$, $K^+ \rightarrow \pi^+ \pi^0 \pi^0$
- Missing tracks: $K^+ \rightarrow \pi^+ \pi^+ \pi^-$
- Estimated with MC, validated with control regions

Fit procedure

- MC reweighted for different values of ĉ
- Scan of ĉ to find maximum likelihood
- External parameters fixed: Rev. Mod. Phys. 84 399 (2012), Science 368 (2020) 6490, Nucl.Phys. B648 (2003) 317 (to be updated to use arXiv:2209.02143)

$K^+ \rightarrow \pi^+ \gamma \gamma$

RESULTS

 $\hat{c}_6 = 1.713 \pm 0.075_{stat} \pm 0.037_{syst}$

 $BR(K^{+} \to \pi^{+} \gamma \gamma) = (9.73 \pm 0.17_{stat} \pm 0.08_{syst}) \times 10^{-7}$

OUTLINE

NA62 main goal

• $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

NA62 latest precision measurements

- $K^+ \rightarrow \pi^0 e^+ v \gamma (K_{e3\gamma})$
- $K^+ \rightarrow \pi^+ \mu^+ \mu^-$
- $K^+ \rightarrow \pi^+ \gamma \gamma$

NA48/2 preliminary result

• $K^{\pm} \to \pi^0 \pi^0 \mu^{\pm} \nu (K_{\mu 4}^{00})$

NA62 dataset

Runl (this talk)

- 2016: 30 days, 2 × 10¹¹ useful K decays
- 2017: 161 days, 2 × 10¹² useful K decays
- 2018: 217 days, 4 × 10¹² useful K decays

Run2 (analysis in progress)

- 2021:85 days
- 2022: 215 days
- 2023 LS3: ongoing

THE NA48/2 DETECTOR

Theory and status

K _{I4} mode	BR [10 ⁻⁵]	Ncand	
K_{e4}^{\pm}	4.26 ± 0.04	1108941	NA48/2 (2012)
K_{e4}^{00}	2.55 ± 0.04	65210	NA48/2 (2014)
$K_{\mu 4}^{\pm}$	1.4 ± 0.9	7	Bisi et al. (1967)
$K_{\mu4}^{00}$	-	0	

- First observation of muon mode with $\pi^0 \pi^0$
- Test of ChPT
- $K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$ as normalization channel
- $K^{\pm} \rightarrow \pi^0 \pi^0 (\pi^{\pm} \rightarrow \mu^{\pm} \nu)$ largest background
- $S_{\ell} = M^2(\mu^{\pm}\nu) > 0.03 \text{ GeV}^2 / c^4$

 $\begin{array}{l} \mathsf{BR}(\mathsf{K}^{\pm} \to \pi^{0} \pi^{0} \mu^{\pm} \nu, \mathsf{S}_{\ell} > 0.03 \ \mathsf{GeV^{2}}) = (0.65 \pm 0.03) \times 10^{-6} \\ \mathsf{BR}(\mathsf{K}^{\pm} \to \pi^{0} \pi^{0} \mu^{\pm} \nu) = (3.4 \pm 0.2) \times 10^{-6} \end{array}$

SUMMARY

- $K^+ \rightarrow \pi^+ \nu \overline{\nu}$
- $K^+ \rightarrow \pi^0 e^+ \nu \gamma$
- $K^+ \rightarrow \pi^+ \mu^+ \mu^-$
- $K^+ \rightarrow \pi^+ \gamma \gamma$
- $K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu$
- NA62 Run I NA62 Run I NA48/2

NA62 Run I

NA62 Run I

- JHEP 06 (2021) 093
- arXiv:2304.12271, submitted to JHEP
- JHEP 11 (2022) 011
- preliminary, final results in progress
- preliminary, final results in progress

NA62 will take data until LS3stay tuned!

22/22

SUMMARY

- $K^+ \rightarrow \pi^+ \nu \overline{\nu}$
- $K^+ \rightarrow \pi^0 e^+ \nu \gamma$
- $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ • $K^+ \rightarrow \pi^+ \gamma \gamma$
 - µ[−] NA62 Run I NA62 Run I

NA62 Run I

NA62 Run I

NA48/2

• $K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu$

- JHEP 06 (2021) 093
- arXiv:2304.12271, submitted to JHEP
- JHEP II (2022) 011
- preliminary, final results in progress
- preliminary, final results in progress

NA62 will take data until LS3stay tuned!

RECENT THEORETICAL PROGRESS ON $K \rightarrow \pi \nu \overline{\nu}$

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = (8.60 \pm 0.42) \times 10^{-11}$$
$$BR(K_{L} \to \pi^{0} \nu \overline{\nu}) = (2.94 \pm 0.15) \times 10^{-11}$$

Acta Phys. Polon. B 53.6 (2021) AI

 $BR(K^+ \to \pi^+ \nu \overline{\nu}) = (7.73 \pm 0.61) \times 10^{-11}$

$$BR(K_1 \rightarrow \pi^0 \nu \overline{\nu}) = (2.59 \pm 0.29) \times 10^{-11}$$

PoS BEAUTY2020 (2021) 056

SINGLE EVENT SENSITIVITY

$$N_{\pi\nu\nu}^{exp} = N_{\pi\pi} \varepsilon_{trig}^{PNN} \varepsilon_{RV} \frac{A_{\pi\nu\nu}}{A_{\pi\pi}} \frac{BR(\pi\nu\nu)}{BR(\pi\pi)}$$
SES = $\frac{BR(\pi\nu\nu)}{N_{\pi\nu\nu}^{exp}}$

	Subset S1*	Subset S2 $*$
$N_{\pi\pi} \times 10^{-7}$	3.14	11.6
$A_{\pi\pi} \times 10^2$	7.62 ± 0.77	11.77 ± 1.18
$A_{\pi\nu\bar{\nu}} \times 10^2$	3.95 ± 0.40	6.37 ± 0.64
$\epsilon_{ m trig}^{ m PNN}$	0.89 ± 0.05	0.89 ± 0.05
$\epsilon_{ m RV}$	0.66 ± 0.01	0.66 ± 0.01
$SES \times 10^{10}$	0.54 ± 0.04	0.14 ± 0.01
$N_{\pi uar{ u}}^{\exp}$	$1.56 \pm 0.10 \pm 0.19_{\rm ext}$	$6.02 \pm 0.39 \pm 0.72_{\rm ext}$

* different hardware configurations

- $K^+ \rightarrow \pi^+ \pi^0$ normalization channel
- Cancellation of systematic effects
- Random Veto: efficiency loss due to beam activity

BACKGROUND FROM K⁺ DECAYS

Number of events in
$$\pi^{+} \pi^{0}$$

region after $\pi \nu \nu$ selection $\bigwedge^{exp}(SR) = N(\pi^{+}\pi^{0}) f_{kin}(SR)$ $\bigvee^{K^{+}} \rightarrow \pi^{+} \pi^{0}$ events
in signal regionFraction of $\pi^{+} \pi^{0}$ in signal region,
measured on control data

- $K^+ \to \mu^+ \nu_{\mu}$ and $K^+ \to \pi^+ \pi^- \pi^-$ backgrounds: similar procedure
- $K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$ evaluated with MC simulations
- Validation with control regions

UPSTREAM BACKGROUND

- Pions produced upstream of the fiducial volume
 - Early kaon decays
 - Interaction of beam particles with beam spectrometer material
- Fake association of detected pions to accidental particles
- New collimator installed in June 2018
- Geometrical cuts & BDT cut on backtracked pion position
- Kaon-pion association effective
- Data-driven background estimation

EXPECTED BACKGROUND SUMMARY

Background	Subset S1	Subset S2
$\pi^+\pi^0$	0.23 ± 0.02	0.52 ± 0.05
$\mu^+ u$	0.19 ± 0.06	0.45 ± 0.06
$\pi^+\pi^-e^+\nu$	0.10 ± 0.03	0.41 ± 0.10
$\pi^+\pi^+\pi^-$	0.05 ± 0.02	0.17 ± 0.08
$\pi^+\gamma\gamma$	< 0.01	< 0.01
$\pi^0 l^+ \nu$	< 0.001	< 0.001
Upstream	$0.54\substack{+0.39 \\ -0.21}$	$2.76\substack{+0.90 \\ -0.70}$
Total	$1.11\substack{+0.40\\-0.22}$	$4.31_{-0.72}^{+0.91}$

 π^+ momentum [GeV/c]

$K^{+} \to \pi^{+} X$

- Peak search in m²_{miss} distribution
- Width from resolution
- Main background: SM $K^+ \rightarrow \pi^+ \nu \overline{\nu}$
- Acceptance from MC simulation

- Limits with finite lifetime: assume decay to visible particles in geometric acceptance
- Interpretation in dark scalar model with mixing with Higgs (sin² θ)

FUTURE

Goal: reach O(10%) precision by LS3

- Improvements in LKr reconstruction
- Optimizations in the analysis: random veto stable, background rejection, acceptance increased

Beyond LS3

HIKE: High Intensity Kaon Experiments

Main background source of Ke3 γ selection: *accidentals*

Accidental event: $K^+ \rightarrow \pi^0 e^+ \nu$ decay (or K2 π with π^+ mis-ID) + additional LKr cluster that mimics the radiative photon

- Dedicated cut in signal selection using $m_{miss}^2(Ke3)$ observable
- Background in signal region estimated with data from the out-of-time side-bands

Francesco Brizioli

$K^+ ightarrow \pi^0 e^+ u \gamma$ at NA62

NA48/2 DETECTOR

KABES

- σ(X,Y) ~ 800 μm
- $\sigma(p_K) / p_K \sim 1\%$
- σ(T) ~ 600 ps
- Magnetic spectrometer (DCHI-DCH4)
 - $\sigma(X,Y) \sim 90 \ \mu m \ per \ chamber$
 - $\sigma(p_{DCH}) / p_{DCH} = (1.02 \oplus 0.044 \text{ GeV}^{-1} \times p_{DCH})\%$
- Scintillator HODoscope
 - σ(T) ~ I 50 ps
- Liquid Krypton EM calorimeter (LKr)
 - $\sigma_x = \sigma_y = (0.42 \text{ GeV}^{\frac{1}{2}} / \sqrt{E_{\gamma} \oplus 0.06}) \text{ cm}$
 - $\sigma(E_{\gamma}) / E_{\gamma} = (3.2 \text{ GeV}^{\frac{1}{2}} / \sqrt{E_{\gamma} \oplus 9.0 \text{ GeV}} / E_{\gamma} \oplus 0.42)\%$

NA62 DETECTOR

SPECTROMETERS

NA62 DETECTOR

PARTICLE IDENTIFICATION

NA62 DETECTOR

PHOTON VETO

