Exotic meson spectroscopy from lattice QCD

"17th International Workshop on Meson Physics" - Krakow, Poland
Marc Wagner
Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@th.physik.uni-frankfurt.de http://th.physik.uni-frankfurt.de/~mwagner/

June 22, 2023

Introductory remarks

- In this talk only heavy exotic mesons:
- tetraquarks $\bar{b} \bar{b} q q$,
- tetraquarks $\bar{b} b \bar{q} q$,
- hybrid mesons $\bar{b} b+$ gluons
(light quarks $q \in\{u, d, s\}$).
(possibly more about light exotic mesons in Gernot Eichmann's talk at 10:30)
- Lattice QCD $=$ numerical QCD.
- Lattice QCD is not a model, there are no approximations.
- Results are in principle full and rigorous QCD results.
- Lattice QCD simulations can be seen as computer experiments (based on the theory QCD).
- However, the investigation of exotic mesons in lattice QCD is techically very difficult. \rightarrow Even though we use lattice QCD, there are quite often assumtions and simplifying approximations (as you will see during the talk) ..

Two types of approaches

- Two types of approaches, when studying heavy exotic mesons with lattice QCD:
- Born-Oppenheimer approximation (a 2-step procedure):
(1) Compute the potential $V(r)$ of the two heavy quarks (approximated as static quarks) in the presence of two light quarks and/or gluons using lattice QCD. \rightarrow full QCD results
(2) Use standard techniques from quantum mechanics and $V(r)$ to study the dynamics of two heavy quarks (Schrödinger equation, scattering theory, etc.).
\rightarrow an approximation
\rightarrow The main focus of this talk.
- Full lattice QCD computations of eigenvalues of the QCD Hamiltonian:
* Masses of stable hadrons correspond to energy eigenvalues at infinite volume (comparatively easy).
* Masses and decay widths of resonances can be calculated from the volume dependence of the energy eigenvalues (rather difficult).
\rightarrow Only a few short remarks at the end, if time is left. (possibly more about this approach in Daniel Mohler's talk at 13:00)

Part 1:
 Born-Oppenheimer approximation

Basic idea: lattice QCD + BO

- Start with $\bar{b} \bar{b} q q$.
- $\bar{b} \bar{b} u d$ with $I\left(J^{P}\right)=0\left(1^{+}\right)$is the bottom counterpart of the experimentally observed $T_{c c}$. [R. Aaij et al. [LHCb], Nature Phys. 18, 751-754 (2022) [arXiv:2109.01038]].
- Study such $\bar{b} \bar{b} q q$ tetraquarks in two steps:
(1) Compute potentials of the two static quarks $\bar{b} \bar{b}$ in the presence of two lighter quarks $q q$ ($q \in\{u, d, s\}$) using lattice QCD.
(2) Check, whether these potentials are sufficiently attractive to host bound states or resonances (\rightarrow tetraquarks) by using techniques from quantum mechanics and scattering theory.
$(1)+(2) \rightarrow$ Born-Oppenheimer approximation.

\rightarrow existence of a tetraquark \ldots or not

$\bar{b} \bar{b} q q / B B$ potentials

- To determine $\bar{b} \bar{b}$ potentials $V_{q q, j z, \mathcal{P}, \mathcal{P}_{x}}(r)$, compute temporal correlation functions
$\langle\Omega| \mathcal{O}_{B B, \Gamma}^{\dagger}(t) \mathcal{O}_{B B, \Gamma}(0)|\Omega\rangle \propto_{t \rightarrow \infty} e^{-V_{q q, j z, \mathcal{P}, \mathcal{P}_{x}}(r) t}$
of operators
$\mathcal{O}_{B B, \Gamma}=2 N_{B B}(\mathcal{C} \Gamma)_{A B}(\mathcal{C} \tilde{\Gamma})_{C D}\left(\bar{Q}_{C}^{a}(-\mathbf{r} / 2) q_{A}^{a}(-\mathbf{r} / 2)\right)\left(\bar{Q}_{D}^{b}(+\mathbf{r} / 2) q_{B}^{b}(+\mathbf{r} / 2)\right)$.
- Many different channels: attractive as well as repulsive, different asymptotic values ...
- The most attractive potential of a $B^{(*)} B^{(*)}$ meson pair has $\left(I,\left|j_{z}\right|, P, P_{x}\right)=(0,0,+,-)$:
$-\psi^{(f)} \psi^{\left(f^{\prime}\right)}=u d-d u, \Gamma \in\left\{\left(1+\gamma_{0}\right) \gamma_{5},\left(1-\gamma_{0}\right) \gamma_{5}\right\}$.
- $\bar{Q} \bar{Q}=\bar{b} \bar{b}, \tilde{\Gamma} \in\left\{\left(1+\gamma_{0}\right) \gamma_{5},\left(1+\gamma_{0}\right) \gamma_{j}\right\}$ (irrelevant).
- Parameterize lattice results by

$$
V_{q q, j z, \mathcal{P}, \mathcal{P}_{x}}(r)=-\frac{\alpha}{r} \exp \left(-\left(\frac{r}{d}\right)^{p}\right)+V_{0}
$$

(1-gluon exchange at small r; color screening at large r).
[P. Bicudo, K. Cichy, A. Peters, M.W., Phys. Rev. D 93, 034501 (2016) [arXiv:1510.03441]]
[L. Müller, unpublished ongoing work]

Stable $\bar{b} \bar{b} q q$ tetraquarks

- Solve the Schrödinger equation for the relative coordinate of the heavy quarks $\bar{b} \bar{b}$ using the previously computed $\bar{b} \bar{b} q q / B B$ potentials,

$$
\left(\frac{1}{m_{b}}\left(-\frac{d^{2}}{d r^{2}}+\frac{L(L+1)}{r^{2}}\right)+V_{q q, j_{z}, \mathcal{P}, \mathcal{P}_{x}}(r)-2 m_{B}\right) R(r)=E R(r)
$$

- Possibly existing bound states, i.e. $E<0$, indicate QCD-stable $\bar{b} \bar{b} q q$ tetraquarks.
- There is a bound state for orbital angular momentum $L=0$ of $\bar{b} \bar{b}$:
- Binding energy $E=-90_{-36}^{+43} \mathrm{MeV}$ with respect to the $B B^{*}$ threshold.
- Quantum numbers: $I\left(J^{P}\right)=0\left(1^{+}\right)$.
[P. Bicudo, M.W., Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274]]

Further $\bar{b} \bar{b} q q$ results (1)

- Are there further QCD-stable $\bar{b} \bar{b} q q$ tetraquarks with other $I\left(J^{P}\right)$ and light flavor quantum numbers?
\rightarrow No, not for $q q=u d$ (both $I=0,1$), not for $q q=s s$.
[P. Bicudo, K. Cichy, A. Peters, B. Wagenbach, M.W., Phys. Rev. D 92, 014507 (2015) [arXiv:1505.00613]]
$\rightarrow \bar{b} \bar{b} u s$ was not investigated.
- Strong evidence from full QCD computations that a QCD-stable $\bar{b} \bar{b} u s$ tetraquark exists (see part 2 of this talk).
- Effect of heavy quark spins:
- Expected to be $\mathcal{O}\left(m_{B^{*}}-m_{B}\right)=\mathcal{O}(45 \mathrm{MeV})$.
- Previously ignored (potentials of static quarks are independent of the heavy spins).
- In [P. Bicudo, J. Scheunert, M.W., Phys. Rev. D 95, 034502 (2017) [arXiv:1612.02758]] included in a crude phenomenological way via a $B B^{*}$ and a $B^{*} B^{*}$ coupled channel Schrödinger equation with the experimental mass difference $m_{B^{*}}-m_{B}$ as input.
\rightarrow Binding energy reduced from around 90 MeV to 59 MeV .
\rightarrow Physical reason: the previously discussed attractive potential does not only correspond to a lighter $B B^{*}$ pair, but has also a heavier $B^{*} B^{*}$ contribution.

Further $\bar{b} \bar{b} q q$ results (2)

- Are there $\bar{b} \bar{b} q q$ tetraquark resonances?
- In
[P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, M.W., Phys. Rev. D 96, 054510 (2017) [arXiv:1704.02383]] resonances studied via standard scattering theory from quantum mechanics textbooks.
\rightarrow Heavy quark spins ignored.

\rightarrow Indication for $\bar{b} \bar{b} u d$ tetraquark resonance with $I\left(J^{P}\right)=0\left(1^{-}\right)$found, $E=17_{-4}^{+4} \mathrm{MeV}$ above the $B B$ threshold, decay width $\Gamma=112_{-103}^{+90} \mathrm{MeV}$.
- In
[J. Hoffmann, A. Zimermmane-Santos and M.W., PoS LATTICE2022, 262 (2023) [arXiv:2211.15765]]
heavy quark spins included.
$\rightarrow \bar{b} \bar{b} u d$ resonance not anymore existent.
\rightarrow Physical reason: the relevant attractive potential does not only correspond to a lighter $B B$ pair, but has also a heavier $B^{*} B^{*}$ contribution.

Further $\bar{b} \bar{b} q q$ results (3)

- Structure of the QCD-stable $\bar{b} \bar{b} u d$ tetraquark with $I\left(J^{P}\right)=0\left(1^{+}\right)$: meson-meson $(B B)$ versus diquark-antidiquark $(D d)$.
- Use not just one but two operators,

$$
\begin{aligned}
\mathcal{O}_{B B, \Gamma} & =2 N_{B B}(\mathcal{C} \Gamma)_{A B}(\mathcal{C} \tilde{\Gamma})_{C D}\left(\bar{Q}_{C}^{a}(-\mathbf{r} / 2) \psi_{A}^{(f) a}(-\mathbf{r} / 2)\right)\left(\bar{Q}_{D}^{b}(+\mathbf{r} / 2) \psi_{B}^{\left(f^{\prime}\right) b}(+\mathbf{r} / 2)\right) \\
\mathcal{O}_{D d, \Gamma}= & -N_{D d} \epsilon^{a b c}\left(\psi_{A}^{(f) b}(\mathbf{z})(\mathcal{C} \Gamma)_{A B} \psi_{B}^{\left(f^{\prime}\right) c}(\mathbf{z})\right) \\
& \epsilon^{\text {ade }}\left(\bar{Q}_{C}^{f}(-\mathbf{r} / 2) U^{f d}(-\mathbf{r} / 2 ; \mathbf{z})(\mathcal{C} \tilde{\Gamma})_{C D} \bar{Q}_{D}^{g}(+\mathbf{r} / 2) U^{g e}(+\mathbf{r} / 2 ; \mathbf{z})\right),
\end{aligned}
$$

compare the contribution of each operator to the $\bar{b} \bar{b}$ potential $V_{q q, j_{z}, \mathcal{P}, \mathcal{P}_{x}}(r)$.
[P. Bicudo, A. Peters, S. Velten, M.W., Phys. Rev. D 103, 114506 (2021) [arXiv:2101.00723]]
$\rightarrow r \lesssim 0.2 \mathrm{fm}$: Clear diquark-antidiquark dominance.
$\rightarrow 0.5 \mathrm{fm} \lesssim r$: Essentially a meson-meson system.
\rightarrow Integrate over t to estimate the composition of the tetraquark: $\% B B \approx 60 \%, \% D d \approx 40 \%$.

Bottomonium, $I=0$: difference to $\bar{b} \bar{b} q q$

- Now bottomonium with $I=0$, i.e. $\bar{b} b$ and/or $\bar{b} b \bar{q} q$ (with $\bar{q} q=(\bar{u} u+\bar{d} d) / \sqrt{2}, \bar{s} s)$.
- Technically more complicated than $\bar{b} \bar{b} q q$, because there are two channels:
- Quarkonium channel, $\bar{Q} Q$ (with $Q \equiv b$).
- Heavy-light meson-meson channel, $\bar{M} M$ (with $M=\bar{Q} q$), "string breaking".

Marc Wagner, "Exotic meson spectroscopy from lattice QCD", June 19, 2023

Bottomonium, $I=0$:

- Lattice computation of potentials for both channels ($\bar{Q} Q$ and $\bar{M} M$) needed, additionally also a mixing potential:

- Pioneering work:
[G. S. Bali et al. [SESAM Collaboration], Phys. Rev. D 71, 114513 (2005) [hep-lat/0505012]] Rather heavy u / d quark masses $\left(m_{\pi} \approx 650 \mathrm{MeV}\right)$, only 2 flavors, not $2+1$.
- More recent work:
[J. Bulava, B. Hörz, F. Knechtli, V. Koch, G. Moir, C. Morningstar and M. Peardon, Phys. Lett. B 793, 493-498 (2019) [arXiv:1902.04006]]
Unfortunately, mixing potential not computed.
- Several assumptions needed to adapt the "Bali results" to $2+1$ flavors and physical quark masses.
\rightarrow Potential for a coupled channel Schrödiger equation (see next slide):

$$
V(\mathbf{r})=\left(\begin{array}{ccc}
V_{\bar{Q} Q}(r) & V_{\text {mix }}(r)\left(1 \otimes \mathbf{e}_{r}\right) & (1 / \sqrt{2}) V_{\text {mix }}(r)\left(1 \otimes \mathbf{e}_{r}\right) \\
V_{\text {mix }}(r)\left(1 \otimes \mathbf{e}_{r}\right) & V_{\bar{M} M}(r) & 0 \\
(1 / \sqrt{2}) V_{\text {mix }}(r)\left(1 \otimes \mathbf{e}_{r}\right) & 0 & V_{\bar{M} M}(r)
\end{array}\right) .
$$

Bottomonium, $I=0$: SE

- Schrödinger equation non-trivial:
- 3 coupled channels, $\bar{b} b, B B$ (3 components), $B_{s} B_{s}$ (3 components).
- Static potentials used as input have other symmetries and quantum numbers than bottomonium states ($\Lambda_{\eta}^{\epsilon}$ versus $J^{P C}$).

$$
\left(-\frac{1}{2} \mu^{-1}\left(\partial_{r}^{2}+\frac{2}{r} \partial_{r}-\frac{\mathbf{L}^{2}}{r^{2}}\right)+V(\mathbf{r})+\left(\begin{array}{ccc}
E_{\text {threshold }} & 0 & 0 \\
0 & 2 m_{M} & 0 \\
0 & 0 & 2 m_{M_{s}}
\end{array}\right)-E\right) \psi(\mathbf{r})=0
$$

- Project to definite total angular momentum,
* 7 coupled PDEs $\rightarrow 3$ coupled ODEs for $\tilde{J}=0$,
* 7 coupled PDEs $\rightarrow 5$ coupled ODEs for $\tilde{J} \geq 1$
(\tilde{J} : total angular momentum excluding the heavy quark spins).
- Add scattering boundary conditions.
- Determine scattering amplitudes and T matrices from the Schrödinger equation, find poles of $\mathrm{T}_{\tilde{J}}$ in the complex energy plane to identify bound states and resonances.
- The components of the resulting wave functions provide the compositions of the states, i.e. the quarkonium and meson-meson percentages $\% \bar{Q} Q$ and $\% \bar{M} M$.
theory
experiment
\square

Bottomonium, $I=0$: results

- Results for masses of bound states and resonances consistent with experimentally observed states within expected errors.
- Errors might be large:
- Lattice QCD results for the potentials computed with unphysically heavy u / d quarks.
- Heavy quark spin effects and corrections due to the finite b quark mass not included.
- Several bound states in the sectors $\tilde{J}=0,1,2$ with clear experimental counterparts.
- Two resonance candidates for $\Upsilon(10753)$ recently found by Belle:
$-S$ wave state, $\tilde{J}=0, n=5(\% \bar{Q} Q \approx 24, \% \bar{M} M \approx 76)$.
- D wave state, $\tilde{J}=2, n=3(\% \bar{Q} Q \approx 21, \% \bar{M} M \approx 79)$.
- $\Upsilon(10860)$ confirmed as an S wave state, $\tilde{J}=0, n=6(\% \bar{Q} Q \approx 35, \% \bar{M} M \approx 65)$.
[P. Bicudo, M. Cardoso, N. Cardoso, M.W., Phys. Rev. D 101, 034503 (2020) [arXiv:1910.04827]]
[P. Bicudo, N. Cardoso, L. Müller, M.W., Phys. Rev. D 103, 074507 (2021) [arXiv:2008.05605]]
[P. Bicudo, N. Cardoso, L. Müller, M.W., Phys. Rev. D 107, 094515 (2023) [arXiv:2205.11475]]

Bottomonium, $I=0: 1 / m_{Q}$ corrections

- Potentials of static quarks are independent of the heavy spins.
\rightarrow Systematic errors are possibly large, $\mathcal{O}\left(m_{B^{*}}-m_{B}\right)=\mathcal{O}(45 \mathrm{MeV})$.
- Such spin effects and further corrections due to the finite b quark mass can be expressed order by order in $1 / m_{b}$.
[E. Eichten and F. Feinberg, Phys. Rev. D 23, 2724 (1981)]
[N. Brambilla, A. Pineda, J. Soto and A. Vairo, Phys. Rev. D 63, 014023 (2001) [arXiv:hep-ph/0002250]]
- The corresponding correlation functions are Wilson loops with field strength insertions.
- Computations in pure $\operatorname{SU}(3)$ lattice gauge theory (no light quarks) up to order $1 / m_{Q}^{2}$ in [Y. Koma and M. Koma, Nucl. Phys. B 769, 79-107 (2007) [arXiv:hep-lat/0609078]]
- $1 / m_{Q}$ and $1 / m_{Q}^{2}$ corrections used to predict low lying (stable) bottomonium states with 1st order stationary perturbation theory.
[Y. Koma and M. Koma, PoS LATTICE2012, 140 (2012) [arXiv:1211.6795 [hep-lat]]
\rightarrow Improvements, but still no satisfactory agreement with experimental results.
- Onging efforts
- to compute these $1 / m_{Q}$ and $1 / m_{Q}^{2}$ corrections more precisely using gradient flow,
- to replace perturbation theory by a non-perturbative coupled channel SE.

Bottomonium, $I=1$: potentials

- Now bottomonium with $I=1, \bar{b} b \bar{q} q$.
- Bottomonium with $I=1$ includes the experimentally observed Z_{b} tetraquarks.
- Technically even more complicated than bottomonium with $I=0$, because the relevant $\bar{B}^{(*)} B^{(*)}$ channel does not correspond to the ground state, but to an excited state.
- Ordinary bottomonium $\Upsilon \equiv \bar{b} b$ and a pion (possibly with non-vanishing momentum) have the same quantum numbers, but lower energies.
- In lattice QCD you can compute the energy of an excited state, but only if you also compute all energy levels below.
- The relevant low-lying potentials were recently computed for the first time.
[S. Prelovsek, H. Bahtiyar, J. Petkovic, Phys. Lett. B 805, 135467 (2020) [arXiv:1912.02656]]
- The relevant $\bar{B}^{(*)} B^{(*)}$ potential is represented by the red points.
- For small separations it corresponds to the 2 nd excited state ($\Upsilon+\pi$ at rest [blue] and with 1 quantum of momentum [black] are below).

Bottomonium, $I=1$: BO results

- Single-channel Schrödinger equation with the computed $\bar{B}^{(*)} B^{(*)}$ potential:
\rightarrow There seems to be a bound state close to the $\bar{B}^{(*)} B^{(*)}$ threshold, binding energy $E=-48_{-108}^{+41} \mathrm{MeV}$.
\rightarrow Probably related to $Z_{b}(10610)$ and $Z_{b}(10650)$.
\rightarrow A very interesting and impressive result.
[S. Prelovsek, H. Bahtiyar, J. Petkovic, Phys. Lett. B 805, 135467 (2020) [arXiv:1912.02656]]
- However, possibly large systematic errors:
- Heavy spin effects and corrections due to the finite b quark mass neglected.
- No coupling of the $\bar{B}^{(*)} B^{(*)}$ channel to the other channels, in particular $\Upsilon+\pi$.
- 3 related four-quark sectors with quantum numbers differing in parity and charge conjugation do not show any sign of a bound state.
[M. Sadl, S. Prelovsek, Phys. Rev. D 104, 114503 (2021) [arXiv:2109.08560]]

Heavy hybrid mesons: potentials (1)

- Now heavy hybrid mesons, i.e. $\bar{b} b+$ gluons.
- (Hybrid) static potentials can be characterized by the following quantum numbers:
- Absolute total angular momentum with respect to the $\bar{Q} Q$ separation axis (z axis): $\Lambda=0,1,2, \ldots \equiv \Sigma, \Pi, \Delta, \ldots$
- Parity combined with charge conjugation: $\eta=+,-=g, u$.
- Relection along an axis perpendicular to the $\bar{Q} Q$ separation axis (x axis): $\epsilon=+,-$.
- The ordinary static potential has quantum numbers $\Lambda_{\eta}^{\epsilon}=\Sigma_{g}^{+}$.
- Particularly interesting: the two lowest hybrid static potentials with $\Lambda_{\eta}^{\epsilon}=\Pi_{u}, \Sigma_{u}^{-}$.
- References:
[K. J. Juge, J. Kuti, C. J. Morningstar, Nucl. Phys. Proc. Suppl. 63, 326 (1998) [hep-lat/9709131]
[C. Michael, Nucl. Phys. A 655, 12 (1999) [hep-ph/9810415]
[G. S. Bali et al. [SESAM and T χ L Collaborations], Phys. Rev. D 62, 054503 (2000) [hep-lat/0003012]
[K. J. Juge, J. Kuti, C. Morningstar, Phys. Rev. Lett. 90, 161601 (2003) [hep-lat/0207004]
[C. Michael, Int. Rev. Nucl. Phys. 9, 103 (2004) [hep-lat/0302001]
[G. S. Bali, A. Pineda, Phys. Rev. D 69, 094001 (2004) [hep-ph/0310130]
[P. Bicudo, N. Cardoso, M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815 [hep-lat]]]
[S. Capitani, O. Philipsen, C. Reisinger, C. Riehl. M.W., Phys. Rev. D 99, 034502 (2019) [arXiv:1811.11046 [hep-lat]]]

Heavy hybrid mesons: potentials (2)

- [C. Schlosser, M.W., Phys. Rev. D 105, 054503 (2022) [arXiv:2111.00741]]

Heavy hybrid mesons: SE

- Solve Schrödinger equations for the relative coordinate of $\bar{b} b$ using hybrid static potentials,

$$
\left(-\frac{1}{2 \mu} \frac{d^{2}}{d r^{2}}+\frac{L(L+1)-2 \Lambda^{2}+J_{\Lambda_{\eta}^{\epsilon}}\left(J_{\Lambda_{\eta}^{\epsilon}}+1\right)}{2 \mu r^{2}}+V_{\Lambda_{\eta}^{\epsilon}}(r)\right) u_{\Lambda_{\eta}^{\epsilon} ; L, n}(r)=E_{\Lambda_{\eta}^{\epsilon} ; L, n} u_{\Lambda_{\eta}^{\epsilon} ; L, n}(r)
$$

Energy eigenvalues $E_{\Lambda_{\eta}^{\epsilon} ; L, n}$ correspond to masses of $\bar{b} b$ hybrid mesons.
[E. Braaten, C. Langmack, D. H. Smith, Phys. Rev. D 90, 014044 (2014) [arXiv:1402.0438]]
[M. Berwein, N. Brambilla, J. Tarrus Castella, A. Vairo, Phys. Rev. D 92, 114019 (2015) [arXiv:1510.04299]]
[R. Oncala, J. Soto, Phys. Rev. D 96, 014004 (2017) [arXiv:1702.03900]]

- Important recent and ongoing work to include heavy spin and $1 / m_{b}$ corrections.
[N. Brambilla, G. Krein, J. Tarrus Castella, A. Vairo, Phys. Rev. D 97, 016016 (2018) [arXiv:1707.09647]]
[N. Brambilla, W. K. Lai, J. Segovia, J. Tarrus Castella, A. Vairo, Phys. Rev. D 99, 014017 (2019) [arXiv:1805.07713]]

Hybrid flux tubes (1)

- We are interested in

$$
\Delta F_{\mu \nu, \Lambda_{\eta}^{\epsilon}}^{2}(r ; \mathbf{x})=\left\langle 0_{\Lambda_{\eta}^{\epsilon}}(r)\right| F_{\mu \nu}^{2}(\mathbf{x})\left|0_{\Lambda_{\eta}^{\epsilon}}(r)\right\rangle-\langle\Omega| F_{\mu \nu}^{2}|\Omega\rangle
$$

- $F_{\mu \nu}^{2}(\mathbf{x}), F_{\mu \nu}^{2}$: squared chromoelectric/chromomagnetic field strength.
$-\left|0_{\Lambda_{\eta}^{\epsilon}}(r)\right\rangle$: "hybrid static potential (ground) state" (r denotes the $\bar{Q} Q$ separation).
$-|\Omega\rangle$: vacuum state.
- The sum over the six independent $\Delta F_{\mu \nu, \Lambda_{\eta}^{\epsilon}}^{2}(r ; \mathbf{x})$ is proportional to the chromoelectric and -magnetic energy density of hybrid flux tubes.

Hybrid flux tubes (2)

- $\Delta F_{\mu \nu, \Lambda_{\eta}^{\epsilon}}^{2}(r ; \mathbf{x}), \mathrm{SU}(2)$, mediator plane $(x-y$ plane with Q, \bar{Q} at $(0,0, \pm r / 2)), r \approx 0.8 \mathrm{fm}$. [L. Müller, O. Philipsen, C. Reisinger, M.W., Phys. Rev. D 100, 054503 (2019) [arXiv:1907.014820]]]
- For results for $\Lambda_{\eta}^{\epsilon}=\Sigma_{g}^{+}, \Sigma_{u}^{+}, \Pi_{u}$ see also [P. Bicudo, N. Cardoso and M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815]]

$$
\begin{array}{c|c|c}
\Delta E_{x}^{2} & \Delta E_{y}^{2} & \Delta E_{z}^{2} \\
\hline \Delta B_{x}^{2} & \Delta B_{y}^{2} & \Delta B_{z}^{2}
\end{array}
$$

Hybrid flux tubes (3)

- $\Delta F_{\mu \nu, \Lambda_{\eta}^{\epsilon}}^{2}(r ; \mathbf{x}), \mathrm{SU}(2)$, separation plane $(x-z$ plane with Q, \bar{Q} at $(0,0, \pm r / 2)), r \approx 0.8 \mathrm{fm}$. [L. Müller, O. Philipsen, C. Reisinger, M.W., Phys. Rev. D 100, 054503 (2019) [arXiv:1907.014820]]]
- For results for $\Lambda_{\eta}^{\epsilon}=\Sigma_{g}^{+}, \Sigma_{u}^{+}, \Pi_{u}$ see also [P. Bicudo, N. Cardoso and M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815]]

Part 2:
 Full lattice QCD computations of eigenvalues of the QCD Hamiltonian

Full lattice QCD computations

- Do not treat the heavy b or c quarks as static.
- Do not separate the computations for heavy and for light quarks, i.e. no potentials.
- Compute eigenvalues of the QCD Hamiltonian at finite spatial volume.
- For QCD-stable states that might already be sufficient.
- For resonances:
- Relate finite volume energy levels to infinite volume scattering phases (or equivalently scattering amplitudes).
- Fit an ansatz for the scattering amplitude to the few data points from the previous step.
- Find poles in the complex energy plane.

$\bar{b} \bar{b} u d, I\left(J^{P}\right)=0\left(1^{+}\right)$and $\bar{b} \bar{b} u s, J^{P}=1^{+}$

- QCD-stable $\bar{b} \bar{b} u d$ tetraquark, $I\left(J^{P}\right)=0\left(1^{+}\right), \approx 130 \mathrm{MeV}$ below the $B B^{*}$ threshold.
- QCD-stable $\bar{b} \bar{b} u s$ tetraquark, $J^{P}=1^{+}, \approx 90 \mathrm{MeV}$ below the $B B_{s}^{*}$ threshold.
- Lattice QCD results from independent groups consistent within statistical errors.
[A. Francis, R. J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. Lett. 118, 142001 (2017) [arXiv:1607.05214]] ($\bar{b} \bar{b} u d, \bar{b} \bar{b} u s)$
[P. Junnarkar, N. Mathur, M. Padmanath, Phys. Rev. D 99, 034507 (2019) [arXiv:1810.12285]] ($\bar{b} \bar{b} u d$, $\bar{b} \bar{b} u s)$
[L. Leskovec, S. Meinel, M. Pflaumer, M.W., Phys. Rev. D 100, 014503 (2019) [arXiv:1904.04197]] ($\bar{b} \bar{b} u d)$
[P. Mohanta, S. Basak, Phys. Rev. D 102, 094516 (2020) [arXiv:2008.11146]] ($\bar{b} \bar{b} u d$)
[S. Meinel, M. Pflaumer, M.W., Phys. Rev. D 106, 034507 (2022) [arXiv:2205.13982]] (b̄̄̄us)
[R. J. Hudspith, D. Mohler, Phys. Rev. D 107, 114510 (2023) [arXiv:2303.17295]] ($\bar{b} \bar{b} u d, \bar{b} \bar{b} u s$)
[T. Aoki, S. Aoki, T. Inoue, [arXiv:2306.03565]] ($\bar{b} u d$)
- Strong discrepancies between non-lattice QCD results.

Conclusions

- Significant progress and interesting lattice QCD results in the past ≈ 10 years on heavy exotic mesons ... but still a lot to do and several problems to solve.
- This talk: focus on heavy exotics with two bottom (anti)quarks in the Born-Oppenheimer approximation.
- Lattice QCD used to compute $b b$ and $\bar{b} b$ potentials in QCD.
- Majority of presented results obtained with static b quarks.
\rightarrow Crude, errors of order $\mathcal{O}\left(m_{B^{*}}-m_{B}\right)=\mathcal{O}(45 \mathrm{MeV})$ expected.
- The computation of potentials provides interesting insights, e.g. composition of exotic mesons or hybrid flux tubes.
- For solid quantitative results heavy spin and finite b quark mass corrections needed (ongoing work, challenge for the near future).
- Full lattice QCD computations, i.e. not Born-Oppenheimer: mostly studies of $\bar{Q} \bar{Q} q q$.
- At the moment quantitatively reliable results only for two systems, the QCD-stable tetraquarks $\bar{b} \bar{b} u d$ with $I\left(J^{P}\right)=0\left(1^{+}\right)$and $\bar{b} \bar{b}$ us with $J^{P}=1^{+}$.

