Exotic meson spectroscopy from lattice QCD

"17th International Workshop on Meson Physics" - Krakow, Poland

Marc Wagner

Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@th.physik.uni-frankfurt.de

http://th.physik.uni-frankfurt.de/~mwagner/

June 22, 2023

Introductory remarks

- In this talk only heavy exotic mesons:
 - tetraquarks $\overline{b}\overline{b}qq$,
 - tetraquarks $\bar{b}b\bar{q}q$,
 - hybrid mesons $\bar{b}b$ + gluons

```
(light quarks q \in \{u, d, s\}). (possibly more about light exotic mesons in Gernot Eichmann's talk at 10:30)
```

- Lattice QCD = numerical QCD.
 - Lattice QCD is not a model, there are no approximations.
 - Results are in principle full and rigorous QCD results.
 - Lattice QCD simulations can be seen as computer experiments (based on the theory QCD).
 - However, the investigation of exotic mesons in lattice QCD is techically very difficult.
 - \rightarrow Even though we use lattice QCD, there are quite often assumtions and simplifying approximations (as you will see during the talk) ...

Two types of approaches

- Two types of approaches, when studying **heavy** exotic mesons with lattice QCD:
 - Born-Oppenheimer approximation (a 2-step procedure):
 - (1) Compute the potential V(r) of the two heavy quarks (approximated as static quarks) in the presence of two light quarks and/or gluons using lattice QCD.
 - \rightarrow full QCD results
 - (2) Use standard techniques from quantum mechanics and V(r) to study the dynamics of two heavy quarks (Schrödinger equation, scattering theory, etc.).
 - ightarrow an approximation
 - \rightarrow The main focus of this talk.
 - Full lattice QCD computations of eigenvalues of the QCD Hamiltonian:
 - * Masses of stable hadrons correspond to energy eigenvalues at infinite volume (comparatively easy).
 - * Masses and decay widths of resonances can be calculated from the volume dependence of the energy eigenvalues (rather difficult).
 - → Only a few short remarks at the end, if time is left. (possibly more about this approach in Daniel Mohler's talk at 13:00)

Part 1: Born-Oppenheimer approximation

Basic idea: lattice QCD + BO

- Start with $\overline{bb}qq$.
- $\overline{bb}ud$ with $I(J^P)=0(1^+)$ is the bottom counterpart of the experimentally observed T_{cc} . [R. Aaij et al. [LHCb], Nature Phys. 18, 751-754 (2022) [arXiv:2109.01038]].
- Study such $\overline{bb}qq$ tetraquarks in two steps:
 - (1) Compute potentials of the two static quarks \overline{bb} in the presence of two lighter quarks qq ($q \in \{u, d, s\}$) using lattice QCD.
 - (2) Check, whether these potentials are sufficiently attractive to host bound states or resonances (→ tetraquarks) by using techniques from quantum mechanics and scattering theory.
 - $(1) + (2) \rightarrow$ Born-Oppenheimer approximation.

$\bar{b}\bar{b}qq$ / BB potentials

• To determine $\bar{b}\bar{b}$ potentials $V_{qq,j_z,\mathcal{P},\mathcal{P}_x}(r)$, compute temporal correlation functions

$$\langle \Omega | \mathcal{O}_{BB,\Gamma}^{\dagger}(t) \mathcal{O}_{BB,\Gamma}(0) | \Omega \rangle \propto_{t \to \infty} e^{-V_{qq,jz,\mathcal{P},\mathcal{P}_x}(r)t}$$

of operators

$$\mathcal{O}_{BB,\Gamma} = 2N_{BB}(\mathcal{C}\Gamma)_{AB}(\mathcal{C}\tilde{\Gamma})_{CD} \Big(\bar{Q}_C^a(-\mathbf{r}/2)q_A^a(-\mathbf{r}/2)\Big) \Big(\bar{Q}_D^b(+\mathbf{r}/2)q_B^b(+\mathbf{r}/2)\Big).$$

- Many different channels: attractive as well as repulsive, different asymptotic values ...
- The most attractive potential of a $B^{(*)}B^{(*)}$ meson pair has $(I, |j_z|, P, P_x) = (0, 0, +, -)$:

$$-\psi^{(f)}\psi^{(f')} = ud - du, \Gamma \in \{(1+\gamma_0)\gamma_5, (1-\gamma_0)\gamma_5\}.$$

$$-\ ar{Q}ar{Q}=ar{b}ar{b},\ ilde{\Gamma}\in\{(1+\gamma_0)\gamma_5\,,\,(1+\gamma_0)\gamma_j\}$$
 (irrelevant).

• Parameterize lattice results by

$$V_{qq,j_z,\mathcal{P},\mathcal{P}_x}(r) = -\frac{\alpha}{r} \exp\left(-\left(\frac{r}{d}\right)^p\right) + V_0$$

(1-gluon exchange at small r; color screening at large r).

[P. Bicudo, K. Cichy, A. Peters, M.W., Phys. Rev. D 93, 034501 (2016) [arXiv:1510.03441]]

[L. Müller, unpublished ongoing work]

Stable $\bar{b}\bar{b}qq$ tetraquarks

• Solve the Schrödinger equation for the relative coordinate of the heavy quarks $\bar{b}\bar{b}$ using the previously computed $\bar{b}\bar{b}qq\ /\ BB$ potentials,

$$\left(\frac{1}{m_b}\left(-\frac{d^2}{dr^2} + \frac{L(L+1)}{r^2}\right) + V_{qq,j_z,\mathcal{P},\mathcal{P}_x}(r) - 2m_B\right)R(r) = ER(r).$$

- ullet Possibly existing bound states, i.e. E<0, indicate QCD-stable $b\bar{b}qq$ tetraquarks.
- There is a bound state for orbital angular momentum L=0 of $\bar{b}\bar{b}$:
 - Binding energy $E = -90^{+43}_{-36}$ MeV with respect to the BB^* threshold.
 - Quantum numbers: $I(J^P) = 0(1^+)$.

[P. Bicudo, M.W., Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274]]

Further $\bar{b}\bar{b}qq$ results (1)

- \bullet Are there further QCD-stable $\bar{b}\bar{b}qq$ tetraquarks with other $I(J^P)$ and light flavor quantum numbers?
 - \rightarrow No, not for qq=ud (both I=0,1), not for qq=ss. [P. Bicudo, K. Cichy, A. Peters, B. Wagenbach, M.W., Phys. Rev. D **92**, 014507 (2015) [arXiv:1505.00613]]
 - $ightarrow b \overline{b} b u s$ was not investigated.
 - Strong evidence from full QCD computations that a QCD-stable $\bar{b}\bar{b}us$ tetraquark exists (see part 2 of this talk).
- Effect of heavy quark spins:
 - Expected to be $\mathcal{O}(m_{B^*}-m_B)=\mathcal{O}(45\,\text{MeV})$.
 - Previously ignored (potentials of static quarks are independent of the heavy spins).
 - In [P. Bicudo, J. Scheunert, M.W., Phys. Rev. D **95**, 034502 (2017) [arXiv:1612.02758]] included in a crude phenomenological way via a BB^* and a B^*B^* coupled channel Schrödinger equation with the experimental mass difference $m_{B^*} m_B$ as input.
 - \rightarrow Binding energy reduced from around 90 MeV to 59 MeV.
 - \rightarrow Physical reason: the previously discussed attractive potential does not only correspond to a lighter BB^* pair, but has also a heavier B^*B^* contribution.

Further $\bar{b}\bar{b}qq$ results (2)

- Are there $\bar{b}\bar{b}qq$ tetraquark resonances?
 - In
 - [P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, M.W., Phys. Rev. D **96**, 054510 (2017) [arXiv:1704.02383]] resonances studied via standard scattering theory from quantum mechanics textbooks.

- \rightarrow Heavy quark spins ignored.
- \rightarrow Indication for $\bar{b}\bar{b}ud$ tetraquark resonance with $I(J^P)=0(1^-)$ found, $E=17^{+4}_{-4}\,{\rm MeV}$ above the BB threshold, decay width $\Gamma=112^{+90}_{-103}\,{\rm MeV}$.
- In
 - [J. Hoffmann, A. Zimermmane-Santos and M.W., PoS **LATTICE2022**, 262 (2023) [arXiv:2211.15765]]

heavy quark spins included.

- $ightarrow ar{b}ar{b}ud$ resonance not anymore existent.
- \rightarrow Physical reason: the relevant attractive potential does not only correspond to a lighter BB pair, but has also a heavier B^*B^* contribution.

Further $\bar{b}\bar{b}qq$ results (3)

- Structure of the QCD-stable $\bar{b}\bar{b}ud$ tetraquark with $I(J^P)=0(1^+)$: meson-meson (BB) versus diquark-antidiquark (Dd).
 - Use not just one but two operators,

$$\mathcal{O}_{BB,\Gamma} = 2N_{BB}(\mathcal{C}\Gamma)_{AB}(\mathcal{C}\tilde{\Gamma})_{CD} \Big(\bar{Q}_{C}^{a}(-\mathbf{r}/2)\psi_{A}^{(f)a}(-\mathbf{r}/2) \Big) \Big(\bar{Q}_{D}^{b}(+\mathbf{r}/2)\psi_{B}^{(f')b}(+\mathbf{r}/2) \Big)
\mathcal{O}_{Dd,\Gamma} = -N_{Dd}\epsilon^{abc} \Big(\psi_{A}^{(f)b}(\mathbf{z})(\mathcal{C}\Gamma)_{AB}\psi_{B}^{(f')c}(\mathbf{z}) \Big)
\epsilon^{ade} \Big(\bar{Q}_{C}^{f}(-\mathbf{r}/2)U^{fd}(-\mathbf{r}/2;\mathbf{z})(\mathcal{C}\tilde{\Gamma})_{CD}\bar{Q}_{D}^{g}(+\mathbf{r}/2)U^{ge}(+\mathbf{r}/2;\mathbf{z}) \Big),$$

compare the contribution of each operator to the $\bar{b}\bar{b}$ potential $V_{qq,j_z,\mathcal{P},\mathcal{P}_x}(r)$. [P. Bicudo, A. Peters, S. Velten, M.W., Phys. Rev. D 103, 114506 (2021) [arXiv:2101.00723]]

- $\rightarrow r \lesssim 0.2$ fm: Clear diquark-antidiquark dominance.
- $\rightarrow 0.5\,\mathrm{fm} \,{\lesssim}\, r$: Essentially a meson-meson system.
- \rightarrow Integrate over t to estimate the composition of the tetraquark: $\%BB \approx 60\%$, $\%Dd \approx 40\%$.

Bottomonium, I=0: difference to bbqq

- Now bottomonium with I=0, i.e. $\bar{b}b$ and/or $\bar{b}b\bar{q}q$ (with $\bar{q}q=(\bar{u}u+\bar{d}d)/\sqrt{2},\bar{s}s$).
- Technically more complicated than $\bar{b}\bar{b}qq$, because there are two channels:
 - Quarkonium channel, $\bar{Q}Q$ (with $Q \equiv b$).
 - Heavy-light meson-meson channel, $\bar{M}M$ (with $M=\bar{Q}q$), "string breaking".

Bottomonium, I = 0: ...

• Lattice computation of potentials for both channels $(\bar{Q}Q$ and $\bar{M}M)$ needed, additionally also a mixing potential:

- Pioneering work:
 - [G. S. Bali et~al. [SESAM Collaboration], Phys. Rev. D 71, 114513 (2005) [hep-lat/0505012]] Rather heavy u/d quark masses ($m_{\pi} \approx 650 \, \text{MeV}$), only 2 flavors, not 2+1.
- More recent work:
 - [J. Bulava, B. Hörz, F. Knechtli, V. Koch, G. Moir, C. Morningstar and M. Peardon, Phys. Lett. B 793, 493-498 (2019) [arXiv:1902.04006]]Unfortunately, mixing potential not computed.
- Several assumptions needed to adapt the "Bali results" to 2+1 flavors and physical quark masses.
- → Potential for a coupled channel Schrödiger equation (see next slide):

$$V(\mathbf{r}) = \begin{pmatrix} V_{\bar{Q}Q}(r) & V_{\mathrm{mix}}(r)(1 \otimes \mathbf{e}_r) & (1/\sqrt{2})V_{\mathrm{mix}}(r)(1 \otimes \mathbf{e}_r) \\ V_{\mathrm{mix}}(r)(1 \otimes \mathbf{e}_r) & V_{\bar{M}M}(r) & 0 \\ (1/\sqrt{2})V_{\mathrm{mix}}(r)(1 \otimes \mathbf{e}_r) & 0 & V_{\bar{M}M}(r) \end{pmatrix}.$$

Bottomonium, I=0: SE

- Schrödinger equation non-trivial:
 - 3 coupled channels, $\bar{b}b$, BB (3 components), B_sB_s (3 components).
 - Static potentials used as input have other symmetries and quantum numbers than bottomonium states (Λ_n^{ϵ} versus J^{PC}).

$$\left(-\frac{1}{2} \mu^{-1} \Big(\partial_r^2 + \frac{2}{r} \partial_r - \frac{\mathbf{L}^2}{r^2} \Big) + V(\mathbf{r}) + \left(\begin{array}{ccc} E_{\rm threshold} & 0 & 0 \\ 0 & 2 m_M & 0 \\ 0 & 0 & 2 m_{M_s} \end{array} \right) - E \right) \psi(\mathbf{r}) & = & 0.$$

- Project to definite total angular momentum,
 - * 7 coupled PDEs \to 3 coupled ODEs for $\tilde{J}=0$,
 - * 7 coupled PDEs o 5 coupled ODEs for $\tilde{J} \geq 1$

 (\tilde{J}) : total angular momentum excluding the heavy quark spins).

- Add scattering boundary conditions.
- Determine scattering amplitudes and T matrices from the Schrödinger equation, find poles of $T_{\tilde{I}}$ in the complex energy plane to identify bound states and resonances.
- The components of the resulting wave functions provide the compositions of the states, i.e. the quarkonium and meson-meson percentages $\%\bar{Q}Q$ and $\%\bar{M}M$.

theory				experiment				
 $ ilde{J}^{PC}$	n	$m[\mathrm{GeV}]$	$\Gamma[{ m MeV}]$	name	$m[{ m GeV}]$	$\Gamma[{ m MeV}]$	$I^G(J^{PC})$	
0++	1	9.618^{+10}_{-15}	-:	$\eta_b(1S)$	9.399(2)	10(5)	0+(0+-)	
		0,00000		$\Upsilon_b(1S)$	9.460(0)	≈ 0	0-(1)	
	2	10.114^{+7}_{-11}		$\eta_b(2S)_{\text{BELLE}}$	9.999(6)	=	$0^+(0^{+-})$	
		1111		$\Upsilon(2S)$	10.023(0)	≈ 0	0-(1)	
	3	10.442_{-9}^{+7}		$\Upsilon(3S)$	10.355(1)	≈ 0	0-(1)	
	4	10.629^{+1}_{-1}	$49.3^{+5.4}_{-3.9}$	$\Upsilon(4S)$	10.579(1)	21(3)	0-(1)	
	5	10.773^{+1}_{-2}	$15.9^{+2.9}_{-4.4}$	$\Upsilon(10750)_{\text{BELLE II}}$	10.753(7)	36(22)	0-(1)	
	6	10.938^{+2}_{-2}	$61.8^{+7.6}_{-8.0}$	$\Upsilon(10860)$	10.890(3)	51(7)	0-(1)	
	7	11.041^{+5}_{-7}	$45.5^{+13.5}_{-8.2}$	$\Upsilon(11020)$	10.993(1)	49(15)	0-(1)	
1	1	9.930^{+43}_{-52}	-	$\chi_{b0}(1P)$	9.859(1)	2	0+(0++)	
				$h_b(1P)$	9.890(1)	=	??(1+-)	
				$\chi_{b1}(1P)$	9.893(1)	=	0+(1++)	
		111 2500		$\chi_{b2}(1P)$	9.912(1)		$0^+(2^{++})$	
	2	10.315^{+29}_{-40}	a :	$\chi_{b0}(2P)$	10.233(1)	-	$0^+(0^{++})$	
				$\chi_{b1}(2P)$	10.255(1)	2	$0^+(1^{++})$	
				$h_b(2P)_{\text{BELLE}}$	10.260(2)	=	??(1+-)	
				$\chi_{b2}(2P)$	10.267(1)	-	$0^+(2^{++})$	
	3 = = =	10.594^{+32}_{-28}	L	$\chi_{b1}(3P)$	10.512(2)		0+(0++)	
	4	10.865^{+37}_{-21}	$67.5^{+5.1}_{-4.9}$					
	5	10.932^{+33}_{-54}	$101.8^{+7.3}_{-5.1}$					
	6	11.144^{+52}_{-75}	$25.0^{+1.1}_{-1.3}$					
2++	1	10.181^{+35}_{-46}	2.	$\Upsilon(1D)$	10.164(2)	2	0-(2)	
	2	10.486^{+32}_{-36}	-					
	3	$10.799^{+}_{-}{}^{2}_{2}$	$13.0^{+2.1}_{-2.0}$					
	4	11.038^{+30}_{-44}	$40.8^{+2.0}_{-2.8}$					
3	1	10.390+28					()	
		10.639_{-25}^{+31}	$2.4_{-0.9}^{+1.5}$					
 	3	10.944^{+20}_{-29}	$46.8^{-4.6}_{+6.2}$					
	4	11.174^{+51}_{-69}	$1.9^{+2.1}_{-1.4}$					
		-09	-1.4					

Bottomonium, I=0: results

- Results for masses of bound states and resonances consistent with experimentally observed states within expected errors.
- Errors might be large:
 - Lattice QCD results for the potentials computed with unphysically heavy u/d quarks.
 - Heavy quark spin effects and corrections due to the finite b quark mass not included.
- ullet Several bound states in the sectors $\widetilde{J}=0,1,2$ with clear experimental counterparts.
- Two resonance candidates for $\Upsilon(10753)$ recently found by Belle:
 - S wave state, $\tilde{J}=0$, n=5 (% $\bar{Q}Q\approx 24$, % $\bar{M}M\approx 76$).
 - D wave state, $\tilde{J}=2$, n=3 ($\%\bar{Q}Q\approx21$, $\%\bar{M}M\approx79$).
- $\Upsilon(10860)$ confirmed as an S wave state, $\tilde{J}=0$, n=6 ($\%\bar{Q}Q\approx35$, $\%\bar{M}M\approx65$).
 - [P. Bicudo, M. Cardoso, N. Cardoso, M.W., Phys. Rev. D 101, 034503 (2020) [arXiv:1910.04827]]
 - [P. Bicudo, N. Cardoso, L. Müller, M.W., Phys. Rev. D 103, 074507 (2021) [arXiv:2008.05605]]
 - [P. Bicudo, N. Cardoso, L. Müller, M.W., Phys. Rev. D 107, 094515 (2023) [arXiv:2205.11475]]

Bottomonium, I=0: $1/m_Q$ corrections

- Potentials of static quarks are independent of the heavy spins.
 - \rightarrow Systematic errors are possibly large, $\mathcal{O}(m_{B^*}-m_B)=\mathcal{O}(45\,\text{MeV})$.
- Such spin effects and further corrections due to the finite b quark mass can be expressed order by order in $1/m_b$.

```
[E. Eichten and F. Feinberg, Phys. Rev. D 23, 2724 (1981)]
[N. Brambilla, A. Pineda, J. Soto and A. Vairo, Phys. Rev. D 63, 014023 (2001) [arXiv:hep-ph/0002250]]
```

- The corresponding correlation functions are Wilson loops with field strength insertions.
- Computations in pure SU(3) lattice gauge theory (no light quarks) up to order $1/m_Q^2$ in [Y. Koma and M. Koma, Nucl. Phys. B **769**, 79-107 (2007) [arXiv:hep-lat/0609078]]
- $1/m_Q$ and $1/m_Q^2$ corrections used to predict low lying (stable) bottomonium states with 1st order stationary perturbation theory.
 - [Y. Koma and M. Koma, PoS LATTICE2012, 140 (2012) [arXiv:1211.6795 [hep-lat]]
 - ightarrow Improvements, but still no satisfactory agreement with experimental results.
- Onging efforts
 - to compute these $1/m_Q$ and $1/m_Q^2$ corrections more precisely using gradient flow,
 - to replace perturbation theory by a non-perturbative coupled channel SE.

Bottomonium, I = 1: potentials

- Now bottomonium with I=1, $\bar{b}b\bar{q}q$.
- Bottomonium with I=1 includes the experimentally observed Z_b tetraquarks.
- Technically even more complicated than bottomonium with I=0, because the relevant $\bar{B}^{(*)}B^{(*)}$ channel does not correspond to the ground state, but to an excited state.
 - Ordinary bottomonium $\Upsilon \equiv \bar{b}b$ and a pion (possibly with non-vanishing momentum) have the same quantum numbers, but lower energies.
 - In lattice QCD you can compute the energy of an excited state, but only if you also compute all energy levels below.
- The relevant low-lying potentials were recently computed for the first time.
 - [S. Prelovsek, H. Bahtiyar, J. Petkovic, Phys. Lett. B **805**, 135467 (2020) [arXiv:1912.02656]]
- The relevant $\bar{B}^{(*)}B^{(*)}$ potential is represented by the red points.
- For small separations it corresponds to the 2nd excited state ($\Upsilon + \pi$ at rest [blue] and with 1 quantum of momentum [black] are below).

Bottomonium, I = 1: BO results

- Single-channel Schrödinger equation with the computed $\bar{B}^{(*)}B^{(*)}$ potential:
 - \to There seems to be a bound state close to the $\bar{B}^{(*)}B^{(*)}$ threshold, binding energy $E=-48^{+41}_{-108}$ MeV.
 - \rightarrow Probably related to $Z_b(10610)$ and $Z_b(10650)$.
 - \rightarrow A very interesting and impressive result.

[S. Prelovsek, H. Bahtiyar, J. Petkovic, Phys. Lett. B 805, 135467 (2020) [arXiv:1912.02656]]

- However, possibly large systematic errors:
 - Heavy spin effects and corrections due to the finite b quark mass neglected.
 - No coupling of the $\bar{B}^{(*)}B^{(*)}$ channel to the other channels, in particular $\Upsilon + \pi$.
- 3 related four-quark sectors with quantum numbers differing in parity and charge conjugation do not show any sign of a bound state.

[M. Sadl, S. Prelovsek, Phys. Rev. D **104**, 114503 (2021) [arXiv:2109.08560]]

Heavy hybrid mesons: potentials (1)

- Now heavy hybrid mesons, i.e. $\bar{b}b + {\sf gluons}$.
- (Hybrid) static potentials can be characterized by the following quantum numbers:
 - Absolute total angular momentum with respect to the QQ separation axis (z axis): $\Lambda=0,1,2,\ldots\equiv\Sigma,\Pi,\Delta,\ldots$
 - Parity combined with charge conjugation: $\eta = +, = g, u$.
 - Relection along an axis perpendicular to the $\bar{Q}Q$ separation axis (x axis): $\epsilon = +, -$.
- \bullet The ordinary static potential has quantum numbers $\Lambda^{\epsilon}_{\eta} = \Sigma^{+}_{g}.$
- Particularly interesting: the two lowest hybrid static potentials with $\Lambda_{\eta}^{\epsilon}=\Pi_{u},\Sigma_{u}^{-}.$
- References:
 - [K. J. Juge, J. Kuti, C. J. Morningstar, Nucl. Phys. Proc. Suppl. 63, 326 (1998) [hep-lat/9709131]
 - [C. Michael, Nucl. Phys. A 655, 12 (1999) [hep-ph/9810415]
 - [G. S. Bali et al. [SESAM and $T\chi$ L Collaborations], Phys. Rev. D **62**, 054503 (2000) [hep-lat/0003012]
 - [K. J. Juge, J. Kuti, C. Morningstar, Phys. Rev. Lett. 90, 161601 (2003) [hep-lat/0207004]
 - [C. Michael, Int. Rev. Nucl. Phys. 9, 103 (2004) [hep-lat/0302001]
 - [G. S. Bali, A. Pineda, Phys. Rev. D 69, 094001 (2004) [hep-ph/0310130]
 - [P. Bicudo, N. Cardoso, M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815 [hep-lat]]]
 - [S. Capitani, O. Philipsen, C. Reisinger, C. Riehl. M.W., Phys. Rev. D 99, 034502 (2019) [arXiv:1811.11046 [hep-lat]]]

Heavy hybrid mesons: potentials (2)

• [C. Schlosser, M.W., Phys. Rev. D **105**, 054503 (2022) [arXiv:2111.00741]]

Heavy hybrid mesons: SE

• Solve Schrödinger equations for the relative coordinate of $\bar{b}b$ using hybrid static potentials,

$$\left(-\frac{1}{2\mu}\frac{d^2}{dr^2} + \frac{L(L+1) - 2\Lambda^2 + J_{\Lambda_{\eta}^{\epsilon}}(J_{\Lambda_{\eta}^{\epsilon}} + 1)}{2\mu r^2} + V_{\Lambda_{\eta}^{\epsilon}}(r)\right)u_{\Lambda_{\eta}^{\epsilon};L,n}(r) = E_{\Lambda_{\eta}^{\epsilon};L,n}u_{\Lambda_{\eta}^{\epsilon};L,n}(r).$$

Energy eigenvalues $E_{\Lambda_n^{\epsilon};L,n}$ correspond to masses of $\bar{b}b$ hybrid mesons.

[E. Braaten, C. Langmack, D. H. Smith, Phys. Rev. D 90, 014044 (2014) [arXiv:1402.0438]]

[M. Berwein, N. Brambilla, J. Tarrus Castella, A. Vairo, Phys. Rev. D 92, 114019 (2015)
[arXiv:1510.04299]

[R. Oncala, J. Soto, Phys. Rev. D 96, 014004 (2017) [arXiv:1702.03900]]

- Important recent and ongoing work to include heavy spin and $1/m_b$ corrections.
 - [N. Brambilla, G. Krein, J. Tarrus Castella, A. Vairo, Phys. Rev. D **97**, 016016 (2018) [arXiv:1707.09647]]
 - [N. Brambilla, W. K. Lai, J. Segovia, J. Tarrus Castella, A. Vairo, Phys. Rev. D **99**, 014017 (2019) [arXiv:1805.07713]]

Hybrid flux tubes (1)

We are interested in

$$\Delta F^2_{\mu\nu,\Lambda^{\epsilon}_{\eta}}(r;\mathbf{x}) = \langle 0_{\Lambda^{\epsilon}_{\eta}}(r)|F^2_{\mu\nu}(\mathbf{x})|0_{\Lambda^{\epsilon}_{\eta}}(r)\rangle - \langle \Omega|F^2_{\mu\nu}|\Omega\rangle.$$

- $-F_{\mu\nu}^2(\mathbf{x})$, $F_{\mu\nu}^2$: squared chromoelectric/chromomagnetic field strength.
- $-\mid 0_{\Lambda_n^\epsilon}(r) \rangle$: "hybrid static potential (ground) state" (r denotes the $\bar{Q}Q$ separation).
- $|\Omega\rangle$: vacuum state.
- The sum over the six independent $\Delta F_{\mu\nu,\Lambda_{\eta}^{\epsilon}}^{2}(r;\mathbf{x})$ is proportional to the chromoelectric and -magnetic energy density of hybrid flux tubes.

Hybrid flux tubes (2)

- $\Delta F^2_{\mu\nu,\Lambda^{\epsilon}_{\eta}}(r;\mathbf{x})$, SU(2), mediator plane (x-y plane with Q, \bar{Q} at $(0,0,\pm r/2)$), $r\approx 0.8$ fm. [L. Müller, O. Philipsen, C. Reisinger, M.W., Phys. Rev. D **100**, 054503 (2019) [arXiv:1907.014820]]]
- For results for $\Lambda_{\eta}^{\epsilon} = \Sigma_{q}^{+}, \Sigma_{u}^{+}, \Pi_{u}$ see also

Hybrid flux tubes (3)

- $\Delta F^2_{\mu\nu,\Lambda^\epsilon_\eta}(r;\mathbf{x})$, SU(2), separation plane (x-z plane with Q, \bar{Q} at $(0,0,\pm r/2)$), $r\approx 0.8$ fm. [L. Müller, O. Philipsen, C. Reisinger, M.W., Phys. Rev. D **100**, 054503 (2019) [arXiv:1907.014820]]]
- For results for $\Lambda_{\eta}^{\epsilon} = \Sigma_g^+, \Sigma_u^+, \Pi_u$ see also [P. Bicudo, N. Cardoso and M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815]]

 $\frac{\Delta E_x^2 \left| \Delta E_y^2 \right| \Delta E_z^2}{\Delta B_x^2 \left| \Delta B_y^2 \right| \Delta B_z^2}$

Part 2: Full lattice QCD computations of eigenvalues of the QCD Hamiltonian

Full lattice QCD computations

- Do not treat the heavy b or c quarks as static.
- Do not separate the computations for heavy and for light quarks, i.e. no potentials.
- Compute eigenvalues of the QCD Hamiltonian at finite spatial volume.
- For QCD-stable states that might already be sufficient.
- For resonances:
 - Relate finite volume energy levels to infinite volume scattering phases (or equivalently scattering amplitudes).
 - Fit an ansatz for the scattering amplitude to the few data points from the previous step.
 - Find poles in the complex energy plane.

$\overline{b}\overline{b}ud$, $I(J^P)=0(1^+)$ and $\overline{b}\overline{b}us$, $J^P=1^+$

- QCD-stable $\bar{b}\bar{b}ud$ tetraquark, $I(J^P)=0(1^+)$, $\approx 130\,\mathrm{MeV}$ below the BB^* threshold.
- QCD-stable $\bar{b}\bar{b}us$ tetraquark, $J^P=1^+$, $\approx 90\,{\rm MeV}$ below the BB_s^* threshold.
- Lattice QCD results from independent groups consistent within statistical errors.
 - [A. Francis, R. J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. Lett. **118**, 142001 (2017) [arXiv:1607.05214]] (bbud, bbus)
 - [P. Junnarkar, N. Mathur, M. Padmanath, Phys. Rev. D **99**, 034507 (2019) [arXiv:1810.12285]] $(\bar{b}\bar{b}ud, \bar{b}\bar{b}us)$
 - [L. Leskovec, S. Meinel, M. Pflaumer, M.W., Phys. Rev. D **100**, 014503 (2019) [arXiv:1904.04197]] $(\bar{b}\bar{b}ud)$
 - [P. Mohanta, S. Basak, Phys. Rev. D **102**, 094516 (2020) [arXiv:2008.11146]] $(\bar{b}\bar{b}ud)$
 - [S. Meinel, M. Pflaumer, M.W., Phys. Rev. D **106**, 034507 (2022) [arXiv:2205.13982]] ($\bar{b}\bar{b}us$)
 - [R. J. Hudspith, D. Mohler, Phys. Rev. D 107, 114510 (2023) [arXiv:2303.17295]] ($\overline{b}\overline{b}ud$, $\overline{b}\overline{b}us$)
 - [T. Aoki, S. Aoki, T. Inoue, [arXiv:2306.03565]] $(\overline{b}\overline{b}ud)$
- Strong discrepancies between non-lattice QCD results.

Conclusions

- Significant progress and interesting lattice QCD results in the past ≈ 10 years on heavy exotic mesons ... but still a lot to do and several problems to solve.
- This talk: focus on heavy exotics with two bottom (anti)quarks in the Born-Oppenheimer approximation.
 - Lattice QCD used to compute bb and $\bar{b}b$ potentials in QCD.
 - Majority of presented results obtained with static b quarks.
 - \rightarrow Crude, errors of order $\mathcal{O}(m_{B^*}-m_B)=\mathcal{O}(45\,\text{MeV})$ expected.
 - The computation of potentials provides interesting insights, e.g. composition of exotic mesons or hybrid flux tubes.
 - For solid quantitative results heavy spin and finite b quark mass corrections needed (ongoing work, challenge for the near future).
- ullet Full lattice QCD computations, i.e. not Born-Oppenheimer: mostly studies of ar Q ar Q qq.
- At the moment quantitatively reliable results only for two systems, the QCD-stable tetraquarks $\bar{b}\bar{b}ud$ with $I(J^P)=0(1^+)$ and $\bar{b}\bar{b}us$ with $J^P=1^+$.