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Dirac’s Forms of Relativistic Dynamics [Dirac, Rev.Mod.Phys. ’49]

Front form defines QCD on the light front (LF) x+ , t+ z = 0.
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Adapted from talk by Yang Li

Dirac’s forms of relativistic dynamics [Dirac, Rev. Mod. Phys. 21, 392  1949]
          Instant form is the well-known form of dynamics starting with x0 = t = 0

          Front form defines relativistic dynamics on the light front (LF):  x+ = x0+x3 = t+z = 0                            K
i = M 0i ,   J i = 1

2ε
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QED & QCD

QCD

Light Front (LF) Hamiltonian Defined by its
Elementary Vertices in LF Gauge



Discretized Light Cone Quantization 
[H.C. Pauli & S.J. Brodsky, PRD32 (1985)]

Basis Light Front Quantization       
              [J.P. Vary, et al., PRC81 (2010)]
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For mesons we adopt (later extended to baryons): 
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φnm   2D-HO functions as in AdS/QCD
χ l     Jacobi polynomials times xa (1− x)b

[Y. Li, et al., PLB758 (2016)]  



Baryon number                                                bi
i
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Angular momentum projection (M-scheme)    (mi +
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Global Color Singlets (QCD)
Light Front Gauge
Optional Fock-Space Truncation

BLFQ
Symmetries & Constraints

Finite basis 
  regulators
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in one calculation

Preserve transverse
   boost invariance



Light-Front Wavefunctions (LFWFs)
| h(P, j,�)i =

X

n

Z
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LFWFs are frame-independent (boost invariant) and depend only on the
relative variables: xi ⌘ p

+
i /P

+
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LFWFs provides intrinsic information of the structure of hadrons, and are
indispensable for exclusive processes in DIS [Lepage ’80]

I Overlap of LFWFs: structure functions (e.g. PDFs), form factors, ...

I Integrating out LFWFs: light-cone distributions (e.g. DAs)

“Hadron Physics without LFWFs is like Biology without DNA!”
— Stanley J. Brodsky
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~k? $ ~r?, ~�? $ ~b?,
~b? = ~r? � ~R?
[Lorcé & Pasquini ’11]

hadron tomography



X  Pert. theory at α4 

Basis Light-Front Quantization (BLFQ)
Positronium in QED at Strong Coupling (α = 0.3)

Systematic removal of regulators (b = HO momentum scale)

P. Wiecki, Y. Li, X. Zhao, P. Maris and J.P. Vary, Phys. Rev. D 91, 105009 (2015) 

X  Pert. theory at α4 

Examine this region
with greater resolution

in the next slide

X  Pert. theory at α4 

Dependence on 3 regulators After eliminating 2 regulators



Positronium in QED at Strong Coupling
Covariant Basis Light-Front Quantization (BLFQ) 
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X  Pert. theory at α4 

b = 0.1 mf

b = 0.4 mf



Positronium with one dynamical photon:
Light-front QED Hamiltonian

• QED Lagrangian

• Light-front QED Hamiltonian from standard Legendre transformation
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dition to intense laser physics, we will also apply tBLFQ
to relativistic heavy-ion physics, specifically the study of
particle production in the strong (color)-electromagnetic
fields of two colliding nuclei. Ultimately, the goal is to
use tBLFQ to address strong scattering problems with
hadrons in the initial and/or final states. As super-
computing technology continues to evolve, we envision
that tBLFQ will become a powerful tool for exploring
QCD dynamics.
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Appendix A: The light-front QED Hamiltonian

In this section we follow the derivation of the Hamil-
tonian in [18], but with an additional background field.
The Lagrangian is

L = �1

4
Fµ⌫Fµ⌫ +  ̄(i�µDµ � me) , (A1)

in which Dµ ⌘ @µ + ieCµ and Cµ = Aµ + Aµ is the sum
of the background and quantum gauge fields respectively.
Note that Fµ⌫ is calculated from Aµ alone, i.e. there is
no kinetic term for the background, which is fixed. The
equations of motion for the fields are

@µFµ⌫ = e ̄�⌫ =: ej⌫ , (A2)

which defines the current j⌫ , and
⇥
i�µDµ � me

⇤
 = 0 . (A3)

The background field appears in the equations of motion
for the fermion, but not for the gauge field. We now
analyze these equations in light-front coordinates (x± =
x0 ± x3, and x± = 2x⌥). We work in light-front gauge,
so that A+ = A+ = 0. The ⌫ = + component of (A2)
does not contain time derivatives, and can be written

1

2
A� =

@?A?

@+
� e

j+

(@+)2
. (A4)

This is a constraint equation which relates the (non-
dynamical) field A� to the transverse components A?

and the fermion current. Similarly, if we multiply (A3)
by �+ on the left, we find a constraint equation for the
fermion field. Defining first the orthogonal field compo-
nents

 � ⌘ 1
4�+�� ,  + ⌘ 1

4���+ , (A5)

the constraint equation may be written

 � =
1

2i@+

⇥
me � i�?D?

⇤
�+ + , (A6)

Hence, the field  � is non-dynamical and can be ex-
pressed in terms of the dynamical field  +. We now turn
to the construction of the Hamiltonian. The conjugate
momenta are

@L
@@+ 

= i ̄�+ ,
@L

@@+Aµ
= Fµ+ (A7)

and the Hamiltonian P� = 2P+ is then

P� =

Z
d2x?dx� Fµ+@+Aµ + i ̄�+@+ � L

=

Z
d2x?dx� Fµ+@+Aµ +

1

4
Fµ⌫Fµ⌫ + i ̄�+@+ ,

(A8)

in which the first line is the standard Legendre transfor-
mation, and in the second line we have used the equations
of motion. It is convenient to add a total derivative to
the Hamiltonian [18], the term �@µ(Fµ+A+), and again
use the equations of motion to write

P� =

Z
d2x?dx� 1

4
Fµ⌫Fµ⌫ � Fµ+Fµ+

+ i ̄�+D+ + e ̄�+A+ .
(A9)

In order to complete the transition to the Hamiltonian
picture we need to eliminate the light-front time deriva-
tives of the fields in favour of the fields themselves, and
their momenta. The gauge field terms are simplest. Let
i, j be transverse indices and define

{Ã+, Ã�, Ãj} := {0, 2
@jAj

@+
, Aj} . (A10)

The first line of (A9) then becomes

1

4
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2
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2
j+ 1

(i@+)2
j+ + ej+Ã+ ,

(A11)

using the constraint (A4). The field Ãµ is that which
survives the limit e ! 0, and is therefore referred to as a
‘free field’. Turning now to the spinor terms in (A9), we
have

i ̄�+D+ = 2i †
+D+ + , (A12)

and the spinor equations of motion (A3) then give

2iD+ + =
1

2
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1
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(A13)

The first line follows from �� + ⌘ 0, in the second line
we used (A6) and in the third line we commuted �� to
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we used (A6) and in the third line we commuted �� to
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the right. In analogy to Ã, we now introduce  ̃, defined
by

 ̃+ =  + ,  ̃� =
1

2i@+

⇥
me � i�?@?

⇤
�+ ̃+ . (A14)

Again, this is the field which survives the e ! 0 limit.
Our final task is to insert (A14) into (A13) and rewrite
this in terms of only the ‘tilde’ variables. First, the C-free
terms of of (A12) are:

 †
+[me�i�?@?]

1

i@+
[me+i�?@?] + =

1

2
¯̃ �+ m2

e + (i@?)2

i@+
 ̃ .

(A15)

Next, we have terms in (A12) which are linear in C.
These are

 †
+[e�?C?]

1

i@+
[me + i�?@?] +

+ †
+[me � i�?@?]

1
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1

2
 ̃†

+[e�?C?]�� ̃� +
1

2
 ̃†

��+[�e�?C?] ̃+

= ej̃?C? ,
(A16)

using (A14) in the second line. Note the tilde on j in
the third line. Finally, we have the terms quadratic in C,
which are

� e2 ̃+[e�?C?]
1

i@+
[e�?C?] ̃+ . (A17)

Now, we sum (A13) (A15), (A16) and (A17) to obtain
the full Hamiltonian: we drop the ‘tilde’ on all variables
from now on, so that one must remember that

A� ⌘ 2
@?A?

@+
,  � ⌘ 1

2i@+

⇥
me � i�?@?

⇤
�+ + .

(A18)
Since we are interested in the new interactions introduced
by the background field, so we will separate these out
explicitly, expanding C ! A + A. (Recall, A has a tilde
now.) Finally, the full Hamiltonian is

P� =

Z
d2x?dx� 1

2
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e + (i@?)2
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 +
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2
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2
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�⌫A⌫ .

(A19)

The first line is the QED light-front Hamiltonian, P�
QED.

The second line contains the new terms generated by the
background field. We label the terms in P�

QED as Tf , T� ,
W1. . . W3 respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W1 is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W2 is the instantaneous-photon interaction and
W3 is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †
+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W2 and W3, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P�
QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�
QED, are

listed below.
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kinetic energy terms

vertex 
interaction

instantaneous 
photon 

interaction

instantaneous 
fermion 

interaction

A+ = 0( )
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Light-cone gauge:
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Positronium with one dynamical photon:
Interaction Part Of Hamiltonian

Hint ⟩|𝑒�̅�

⟨𝑒�̅�|

⟨𝑒�̅�𝛾|

⟩|𝑒�̅�𝛾

⟩|𝐏𝐬 	= 𝑎 ⟩|𝑒�̅� + 𝑏 ⟩|𝑒�̅�𝛾 	+ c ⟩|𝛾 + d ⟩|𝑒�̅�𝑒�̅� 	+. . . .
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excluded by gauge principle
[Tang et al, 1991]

𝛼 =
𝑒!

4𝜋
=

1
137

Kaiyu Fu, et al., in preparation



Mass Renormalization 

• Mass counterterm Δ" = 𝑚#$%& − 𝑚'()* is needed for fermion self-energy 
correction

• Mass renormalization needs to be performed on single physical electron
- Prediction power on positronium mass

• Mass counterterm is determined by fitting single electron mass
- Complication: Δ" depends on UV cutoff and thus is basis dependent. 
- An extension of sector-dependent renormalization is
 needed: Δ"(𝑁"$+ , 𝐾) 

• Mass counterterm is at higher order:  

[Kaiyu Fu et al, in preparation]

11Δ" ∝ 𝛼𝑚 E, ∝ 𝛼!𝑚  

vs.

[Karmanov et al, 2008]

Here at ⍺ = 1/137 
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Basis Scale and Rotational Symmetry 

• Adjust the 2d harmonic oscillator basis scale parameter 𝑏 to 
minimize the energy difference within the triplet 1/𝑆0 

• Maintaining rotational symmetry leads to a corresponding UV cutoff

Nmax=K-1
8 20

0.2 0.25 0.3 0.35 0.4 0.45

-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

b

δE
(M
eV

)
Δ

[Kaiyu Fu et al, in preparation]



• Wave functions in |𝑒!𝑒"⟩ Fock sector, dominant and non-dominant helicity component
• Nodal structure visible in non-dominant helicity component

Wave Functions for S-Wave States

[Kaiyu Fu et al, in preparation]



PDFs of the electron and photon

[Kaiyu Fu et al, in preparation] 14

• |𝑒!𝑒"⟩ Fock sector carries 99.1% probability.
• The peak of photon PDF is at small x region.



Overview of BLFQ/tBLFQ applications to mesons and baryons

Common features
Transverse confinement from 2D HO (in common with LF Holography)
Longitudinal confinement (Y. Li, et al, PLB 2016, PRD 2017)
Basis states from exact solutions of a reference Hamiltonian
Compare results with experiment, lattice, DSE/BSE, . . . 

Distinct features
For Veff
1) perturbative one-gluon exchange (Y. Li, et al, PLB 2016, PRD 2017)
2) NJL model for light meson applications (S. Jia, et al, PRC 2019)

For Fock space truncation
1) Valence sector
2) Valence sector plus dynamical gluon (plus sea quarks, plus …)

For observables
1) Single state properties and decays
2) Transitions between states
3) Non-perturbative probes (tBLFQ)

Next Methods
BLFQ on Quantum Computers

(Work by Meijian Li, et al)

(Work by Wenyang Qian, et al)



Effective Hamiltonian in the qq sector
_

x = pq
+ / P+ ,  

!
k⊥ =

!
kq⊥ = !pq⊥ − x

!
P⊥ = −

!
kq⊥ = − !pq⊥ − (1− x)

!
P⊥( ),  !r⊥ = !rq⊥ −

!
rq⊥ .



Spectroscopy [YL, Maris & Vary, PRD 96, 016022 (2017); arXiv:1704.06968]

 (GeV) mq (GeV) rms (MeV) �JM (MeV) Nmax basis dim.

cc̄ 0.966 1.603 31 17 32 1812

bb̄ 1.389 4.902 38 8 32 1812

 determined from fits to spectrum follows the HQET trajectory h /
p
Mh, in

agreement with recent LFH result [Dosch et al, PRD95 (2017)]

28/55

[Y. Li, et al., Phys. Letts. B 758, 118 (2016); Phys. Rev. D 96, 016022 (2017)]



Lattice: Dudek ‘06, Chen ‘16, Chen ‘20, Meng ‘21, Zou ‘21; 
NRQCD: Feng ‘15 & ’17
NRQM: Babiarz ‘19 & ‘20

Γ!!, Γ"" ∝ 𝑅 0 #

ü Notoriously challenging
ü BLFQ predictions are very competetive!

ü No parameters were adjusted! 

Diphoton width Γ!! of charmonia in BLFQ

Γ#,%,&→(( Γ)→**

Comparison of theoretical prediction of masses 
and dilepton/diphoton widths combined 

Yang Li, Meijian Li and James P. Vary, PRD 105, L071901 (2022)



DSE/BSE: Chen PRD 2017

ℳ!" = 4𝜋𝛼#$𝜀!"%&𝑞'%𝑞(&𝐹)**(𝑞'(, 𝑞(()

ü Diphoton width Γ-- =
.
/
𝛼&"! 𝑀0

1 𝐹0-- 0,0
!

ü Single-tag TFF 𝐹0- 𝑄! = 𝐹0-- 𝑄!, 0 = 𝐹0--(0, 𝑄!)

𝐹0- 𝑄! = 𝑒2!2 2𝑁3:
𝑑𝑥

2 𝑥 1 − 𝑥
:
𝑑!𝑘4
2𝜋 1

	𝜓↑↓7↓↑ 𝑥, 𝑘4
𝑘4! + 𝑚2

! + 𝑥 1 − 𝑥 𝑄!

Transition form factor: 𝜂-

0 10 20 30 40 50 60
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�� (����)
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• BABAR data: described by monopole form 
with pole mass Λ# = 8.5 ± 0.6 ± 0.7	GeV#, and 
width 5.12 (53) keV

• BLFQ: using Nmax=8 wave function 
corresponding to 𝜇 ≈ 2𝑚$. Basis sensitivity 
band is taken as the difference between the 
Nmax=8,16 results.

• BLFQ/DA: prediction using the LCDA obtained 
from the LFWF

• Theoretical prediction in good agreement with 
both the width and the form factor.

𝑞8

𝑞!

Lepage ‘80, Feldman ‘97, Babiarz, ‘19

Yang Li, Meijian Li and James P. Vary, PRD 105, L071901 (2022)



Light Meson Mass Spectrum Including One Dynamical Gluon

[Lan, et al., (BLFQ Collaboration) PLB 825, 136890 (2022); arXiv 2106.04954] 

𝜋 0.492 138

𝜌 0.486 129

𝑎+(980) 0.370 0

𝑏, (1235) 0.30 0

𝑎, (1260) 0.324 11

𝜋(1300) 0.284 53

𝑎- (1320) 0.320 0

𝜋, (1400) 0.002 0

𝜌(1450) 0.312 46

DC[MeV]
Norm𝒒9𝒒

Fix the parameters by fitting six blue states
• 𝜋8(1400) : ⟩|𝑞 D𝑞𝑔 	dominates 
• 𝜋(1300): Decay Constant (DC) < 𝜋’s DC  

𝑁9:; = 14, 𝐾9:; = 15,𝑀< = 0:
𝑚. = 0.39	GeV, 𝑚/ = 0.60	GeV, 
κ = 0.65	GeV, 𝑏 = 0.29	GeV,
 α = 0.293	, 𝑚0 = 5.69	GeV

⟩|meson = 𝑎 ⟩|𝑞 D𝑞 + 𝑏 ⟩|𝑞 D𝑞𝑔 + ⋯



𝑑𝜎
𝑑𝑥=

|𝐽/𝜓 = 𝐹 S
>,@AB, CB,D

:
!"%

!"&

𝑑𝑀3 ̅3
2𝑀3 ̅3

𝑆 𝑥=! +
4𝑀3 ̅3

!

𝑆

U𝜎>@ (𝑠, 𝑚3
!, 𝜇F! , 𝜇=!)𝑓>

.±(𝑥8, 𝜇=!)𝑓@G(𝑥!, 𝜇=!)

[Chang, et al, PRD 102 (2020) 054024];
[Nason, et al, NPB 303 (1988) 607];
[Mangano, et al, NPB 405 (1993) 507]

Agree with experimental 
data (FNAL E672, E706, 
E705, CERN NA3,WA11).

[nCTEQ 2015]

⁄𝐽 𝜓 production cross section 𝜋±	𝑁 → ⁄𝐽 𝜓 	𝑋

CEM

[Lan, et al.,  PLB 825, 136890 (2022)]

[ ]



BLFQ Basis States

| ⟩𝛽9HIJK = | ⟩𝑞 D𝑞 + 𝑞D𝑞𝑔 + 𝑔𝑔 + 𝑞D𝑞	𝑞 D𝑞 + 𝑞D𝑞	𝑔𝑔 + 𝑞D𝑞	𝑞 D𝑞	𝑔 + |𝑞 D𝑞𝑞 D𝑞𝑔𝑔⟩ + ⋯

| [𝛽L:MNJK = | ⟩𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞	𝑞 D𝑞 + 𝑞𝑞𝑞	𝑔𝑔 + 𝑞𝑞𝑞	𝑞 D𝑞𝑔 + |𝑞𝑞𝑞𝑞 D𝑞𝑔𝑔⟩ + ⋯

𝛽OHPQHMRP9 = 𝑞𝑞𝑞	𝑞𝑞𝑞 + 𝑞𝑞𝑞	𝑞𝑞𝑞	𝑔 + 𝑞𝑞𝑞	𝑞𝑞𝑞	𝑞 D𝑞 + |𝑞𝑞𝑞	𝑞𝑞𝑞	𝑔𝑔⟩ + ⋯

ØDimension of basis states increases with number of Fock sectors
   => motivation for quantum computing 

ØBLFQ basis: expansion in Fock space

𝑁9:; = 10, 𝐾9:;=16 



Baryons with one dynamical gluon

𝑷. = 𝑯𝑲.𝑬. +𝑯𝒕𝒓𝒂𝒏𝒔 +𝑯𝒍𝒐𝒏𝒈𝒊 +𝑯𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕

𝑯𝒕𝒓𝒂𝒏𝒔	~	𝜿𝑻𝟒𝒓𝟐

𝑯𝒍𝒐𝒏𝒈𝒊	~ −C
𝒊𝒋

𝜿𝑳𝟒𝝏𝒙𝒊 𝒙𝒊𝒙𝒋𝝏𝒙𝒋

𝑯𝑲.𝑬. =C
𝒊

𝒑𝒊𝟐 +𝒎𝒒
𝟐

𝒑𝒊>

---Y Li, X Zhao , P Maris , J Vary, PLB 758(2016)

-- Brodsky, Teramond arXiv: 1203.4025

𝑯𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕 = 𝑯𝑽𝒆𝒓𝒕𝒆𝒙 +𝑯𝒊𝒏𝒔𝒕 = 𝒈I𝝍	𝜸𝝁𝑻𝒂	𝝍	𝑨𝝁𝒂 +
𝒈𝟐𝑪𝑭
𝟐 	𝒋>

𝟏
𝒊𝝏> 𝟐 𝒋

>

*𝑃RSTUVW = ΨX ⟩𝑞𝑞𝑞 + ΨY 𝑞𝑞𝑞𝑔



BLFQ without DGBLFQ with DG
MMHT 14 NNPDFunpol3.1

0.001 0.005 0.01 0.05 0.1 0.5 1
0.0

0.5

1.0

1.5

2.0

x

xf
(x
)

μ2=10.0 GeV2

xuv
xdv

xg/10
0. 0.2 0.4 0.6 0.8

0.2

0.4

0.6
dv /uv

Unpolarized Parton Distribution Functions

The data are extracted from MARATHON data

Including the One Dynamical Gluon Fock Sector, the gluon distribution is closer to the global fit.

𝜇S! = 0.19 ± 0.02	GeV!
𝜇S! = 0.24 ± 0.01	GeV!

[EPJC 77 (2017) 663]S. Xu, CM, X. Zhao, Y. Li, J. P. Vary, 2209.08584 [hep-ph].



BLFQ without DG

BLFQ with DG

COMPASS u

COMPASS d

0.001 0.01 0.1 0.5 1
-0.2

0.0

0.2

0.4

x

xΔ
q(
x)

μ2=3.0 GeV2

Δu

Δd

Nucleon Spin with BLFQ

JAM

NNPDFpol1.1

BLFQ with DG

0.001 0.0050.01 0.05 0.1 0.5 1
-0.5

0.0

0.5

1.0

x

xΔ
g(
x)

μ2=1.0 GeV2

0. 0.2 0.4 0.6 0.8
-0.1

0.

0.1

0.2

Ø Spin decomposition in BLFQ

1
2 =

1
2ΔΣ + Δ𝐺 + 𝐿E + 𝐿F

xΔ
Σ

xΔ
𝐺

Ø Obtain observables from wave function

𝑂 ≡ 𝛽′, Λ′ g𝑂 𝛽, Λ
Nucleon

spin

Quark Helicity
∼ 72%

Gluon Helicity
∼ 36%

Orbital Angular
Momentum
∼ 2%

S. Xu, CM, X. Zhao, Y. Li, J. P. Vary, 2209.08584 [hep-ph].



BLFQ with DG

COMPASS all pT(2002-06)

COMPASS high pT(2002-04)

COMPASS open charm (2002-07,NLO)

HERMES high pT
SMC high pT

0.01 0.05 0.10 0.50 1
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

x
Δg

/g

Helicity Parton Distribution Functions

N. Sato et al. [JAM], PRD93 (2016); E. R. Nocera et al. [NNPDF], NPB 887 (2014). 

S. Xu, C. Mondal, X. Zhao, Y. Li, J. P. Vary, 2209.08584 [hep-ph].

LFH I & II

LSS NLO

Chiral Soliton Model

Statistical Model

E99-117/EG1

E06-014/EG1

EG1b

HERMES

BLFQ with DG

0.01 0.05 0.1 0.5
-1.0

-0.5

0.0

0.5

1.0

x

Δu/u

Δd/d

Δ𝑔/𝑔

The sea quarks' contributions come from the DGLAP evolution



3-Dimension Structure of Nucleon
Ø Obtain observables from wave function

𝑂 ≡ 𝛽 g𝑂 𝛽

[arXiv:2209.08584 [hep-ph]]

Fock 
sector

Leading Fock 
sector

𝑞𝑞𝑞 ∼ 44%

Next leading 
Fock sector
𝑞𝑞𝑞𝑔 ∼ 56%

| ⟩𝛽KPTUHJK = | ⟩𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔

[In preparation, Bolang Lin, Siqi Xu, C. Mondal et.al ]



Orbital angular momentum distributions

ℓV = 0.0327 ± 0.0013 ℓD = −0.0065 ± 0.0005ℓW = −0.0114 ± 0.0004Canonical: 

At the LC gauge : 1
2ΔΣ = 0.359 ± 0.002 Δ𝐺 = 0.131 ± 0.003

u quark

d quark

gluon

0.0 0.2 0.4 0.6 0.8
-0.01

0.00

0.01

0.02

0.03

x

xL
(x
)

[In preparation, Siqi Xu, C. Mondal et.al ]



Light-Front QCD Hamiltonian

e𝑃GHIJKL = Ψ' ⟩𝑞𝑞𝑞 +Ψ( 𝑞𝑞𝑞𝑔 +ΨM' 𝑞𝑞𝑞	𝑢k𝑢 +ΨM( 𝑞𝑞𝑞	𝑑�̅� + ΨMM 𝑞𝑞𝑞	𝑠�̅�

𝑯𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕 = 𝒈I𝝍	𝜸𝝁𝑻𝒂	𝝍	𝑨𝝁𝒂 +
𝒈𝟐𝑪𝑭
𝟐

	𝒋!
𝟏

𝒊𝝏! 𝟐 𝒋
! +

𝒈𝟐𝑪𝑭
𝟐

	 I𝝍𝜸𝝁𝑨𝝁
𝜸!

𝒊𝝏!
𝑨𝝂𝜸𝝂𝝍

𝑯𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕 = 𝒈l𝝍	𝜸𝝁𝑻𝒂	𝝍	𝑨𝝁𝒂 +
𝒈𝟐𝑪𝑭
𝟐

	𝒋b
𝟏

𝒊𝝏b 𝟐 𝒋
b

Fock 
sectors

Leading Fock 
sector

𝑞𝑞𝑞 ∼ 46.5%

Next leading 
Fock sector
𝑞𝑞𝑞𝑔
∼ 48.1%

Next next leading
Fock sectors

𝑞𝑞𝑞	𝑢W𝑢 ∼ 2.6%
𝑞𝑞𝑞	𝑑�̅� ∼ 2.4%
𝑞𝑞𝑞	𝑠𝑠 ∼ 0.4%

Preliminary results
Siqi Xu, et al, in prep



Parton Distribution Function
ØParton distribution functions 

with five Fock sectors

• One diagonalization, got the distribution 

of valence quark, sea quark and gluon

• PDF ratio d/u= 0.04	at 𝑥 → 1

Preliminary results

𝑑/𝑢

All results at the initial scale



Now return to applications to baryons 
solved in the qqq + qqqg sectors



• Within the Basis Light-front Quantization (BLFQ) we expand proton to | ⟩𝑞𝑞𝑞 +

| ⟩𝑞𝑞𝑞𝑔  Fock sector, obtain the corresponding LFWFs and calculate T-even TMDs of gluon and 

quark

Gluon T-even TMD

Transverse-momentum dependent  d is t r ibut ion

Quark T-even TMD

Zhi Hu, et al., in preparation



• Define 𝑝! "
#!
$ = ∫ 𝑑%𝑝! 𝑝! "×𝑓&

$  then we know that 
'"

#

$!

%

'" &
$!
%  would be the average transverse 

momentum of flavor 𝑞

• Average transverse momentum of 𝑑  quark is slightly larger than that of 𝑢 , the same as our 

| ⟩𝑞𝑞𝑞  Fock sector conclusion.

• With | ⟩𝑞𝑞𝑞𝑔  Fock sector we now also know that transverse momentum of gluon is larger than 

that of quark

Average t ransverse  momentum of  quark  and g luon

0.0 0.2 0.4 0.6 0.8
0.00

0.05

0.10

0.15

• After integrating over 
𝑥, we further obtain
𝑔: 	0.156 GeV !

𝑢: 	0.082 GeV !

𝑑: 	0.083 GeV !

Zhi Hu, et al., in preparation

Note Craig Robert’s talk at
MESON2023: gluons carry 
mass in the hadrons and
mass is more concentrated
than charge.



New issues compared with mesons and baryons
Cluster decomposition principle for interactions
Identical particles issue
More than one color singlet

Hamiltonian
Transverse confining potential like in AdS/QCD
Longitudinal confining potential (G lazek et al. PLB773, 172-178
(2017), di↵erent than BLFQ0)
One-gluon-exchange spin-dependent potential (Wiecki et al.)

Problem with negative M
2 solved by ad hoc modification of the

Hamiltonian (which breaks cluster decomposition principle)

Kamil Serafin, et al., Phys Rev. D 105, 094028 (2022) 

All-charm tetraquark using BLFQ
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1

 

Nmax = 12

Kamil Serafin, et al., Phys Rev. D 105, 094028 (2022) 



Forward quark jet-nucleus scattering in a light-front 
Hamiltonian approach 

We consider scattering of a 
high-energy quark moving in 
the positive z direction, on a 
high-energy nucleus moving in 
the negative z direction.
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| ⟩𝑞𝑔

| ⟩𝑞  

| ⟩𝑞𝑔

Time evolution of a quark state in the | ⟩𝑞 + | ⟩𝑞𝑔  
Fock space observed from the transverse 
momentum space 

𝑥(

Time-dependent Basis Light-Front 
Quantization (tBLFQ)
v First-principles:
In the light-front Hamiltonian formalism, the 
state obeys the time-evolution equation, 
and the Hamiltonian is derived from the QCD 
Lagrangian 

1
2𝑃

((𝑥))| ⟩𝜓 𝑥)	 = 𝑖
𝜕
𝜕𝑥) |

⟩𝜓 𝑥)	

v Nonperturbative treatment:              
The time evolution operator is divided into 
many small timesteps, each timestep is 
evaluated numerically and intermediate 
states are accessible,

⟩|𝜓 𝑥)	 = 𝒯)	exp −
i
2?*

+'

𝑑𝑧)𝑃( 𝑧) 	| ⟩𝜓 0	

= lim
"→-

D
./&

"

𝒯)	exp −
i
2?+()!'

+(
'

𝑑𝑧)𝑃((𝑧)) | ⟩𝜓 0	

v Basis representation:
Optimal basis has the same symmetries of 
the system, and it is the key to numerical 
efficiency

�

�

�- �+

�������
μ

|ψ��+〉
�+=�

�+=Δ�+

M. Li, T. Lappi and X. Zhao, Phys. Rev. D 104, 056104 (2021)



Quantum Simulation of QFT in the Front Form
2002.04016, 2105.10941, 2011.13443, 2009.07885

Wenyang Qian, et al 



Light front approach to hadrons 
on quantum computers

- Quantum computers: New tool to simulate many-body quantum system. 
(quantum mechanical nature and high scalability)

- In the Noisy Intermediate-Scale Quantum (NISQ) era, the Variational 
Quantum Eigensolver (VQE) and Subspace-search VQE (SSVQE) 
approaches are promising tools to solve nuclear physics problems.

- Advantages of light front Hamiltonian formalism are directly applicable
- We first formulate the problem on the light front and then map the 

Hamiltonian to qubits (quantum bits)

① State/States evolution 
using unitary ansatz

② Measurement obtained 
from count histogram

④ Optimizer updates the 
parameters

for next iteration, such as SPSA

③ Compute the loss function, such 
as Hamiltonian expectation value for 
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Formulating the problem on qubits
- We adopt the Hamiltonian used in a previous work:

- Basis representation (BLFQ) is key to represent the Hamiltonian on qubits.
- Small-size Hamiltonians (4-by-4 and 16-by-16) are used.
- Direct encoding and compact encoding are compared.
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Summary and Outlook

Basis Light Front Quantization approach to mesons and baryons
    yields competitive descriptions and predictions

u Positronium test applications found successful
u Bound states and transitions of hadrons are described
u Time-dependent scattering applications are advancing
u Plan: continue to expand the Fock spaces (e.g. more gluons)
u Plan: continue to develop renormalization & counterterms
u Efficient utilization of supercomputing resources
u Well-positioned to exploit advances in quantum computing
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