Vector and Axial-Vector Mesons in Nuclear Matter

Ralf-Arno Tripolt^{1,2}

in collaboration with

Tetyana Galatyuk^{2,3,4}, Lorenz von Smekal^{1,2}, Jochen Wambach³, Maximilian Wiest^{3,4}

¹JLU Giessen, ²HFHF, ³TU Darmstadt, ⁴GSI

MESON 2023

Kraków, Poland, June 22-27, 2023

Kraków

2

Outline

I) Introduction and motivation

heavy-ion collisions, QCD phase diagram, dileptons

II) Theoretical setup

- ► Functional Renormalization Group
- parity-doublet model
- spectral functions with the aFRG method

III) Results on spectral functions and dileptons

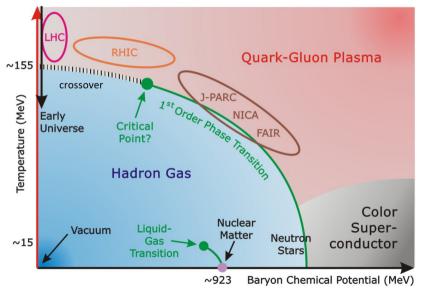
- \blacktriangleright in-medium ρ and a_1 spectral functions
- thermal dilepton rates and spectra

IV) Summary and outlook

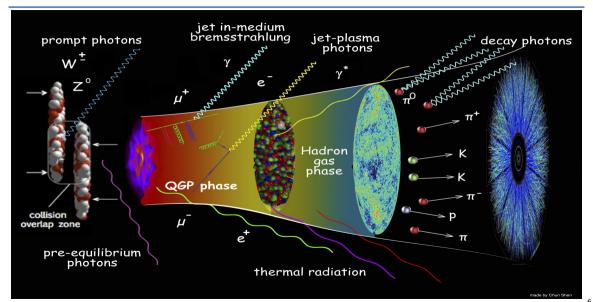
Part I

Introduction and motivation

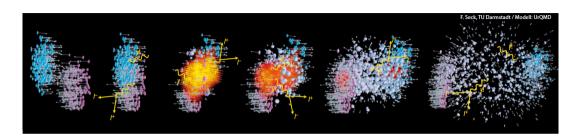
QCD phase diagram



Dileptons in heavy-ion collisions



Why dileptons?



- ▶ Electromagnetic (EM) probes, i.e. photons and dileptons, don't interact 'strongly' with medium
- ▶ they have a long mean free path and can carry information from production site to detectors
- ▶ they are produced at all stages of the collision
- ightarrow dileptons are uniquely well-suited to study hot and dense matter in heavy-ion collisions!

7

Dileptons in heavy-ion collisions

'Primordial' $q\bar{q}$ annihilation (Drell-Yan):

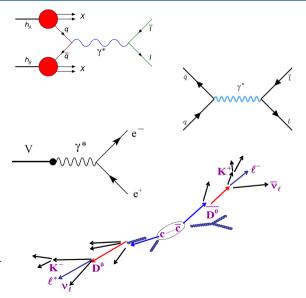
 $ightharpoonup NN
ightharpoonup e^+e^-X$

Thermal radiation from QGP and hadrons:

- $ightharpoonup q\bar{q}
 ightharpoonup e^+e^-, \dots$
- $\pi^+\pi^- \to e^+e^-, ...$
- \blacktriangleright short-lived states: ρ , a_1 , Δ , N^* , ...
- ▶ multi-meson reactions (' 4π '): $\pi\rho$, $\pi\omega$, $\rho\rho$, πa_1 , ...

Decays of long-lived mesons and baryons:

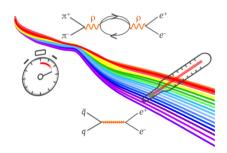
 $\blacktriangleright \ \pi^0, \ \eta, \ \phi, \ J/\Psi, \ \Psi', \ {\rm correlated} \ D\bar{D} \ {\rm pairs}, \ \dots$



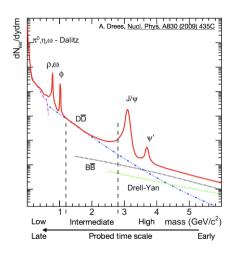
What can we learn from dileptons?

Dileptons contain information on:

▶ temperature, fireball lifetime, in-medium spectral functions, chiral symmetry, changes in degrees of freedom, transport coefficients (electrical conductivity), ...



[T. Galatyuk, H. v. Hees, R. Rapp, J. Wambach, Physik Journal 17, Nr. 10 (2018)]



Dilepton production rates

Thermal field theory: Electromagnetic correlation function

$$\Pi^{\mu\nu}_{\rm EM}(M,p;\mu_B,T) = -{\rm i} \int d^4x \ e^{ip\cdot x} \ \Theta(x_0) \ \langle\!\langle [j^\mu_{\rm EM}(x),j^\nu_{\rm EM}(0)] \rangle\!\rangle$$

determines both photon and dilepton rates:

- $\qquad \qquad \text{photons:} \quad p_0 \frac{dN_{\gamma}}{d^4x d^3p} = -\frac{\alpha_{\rm EM}}{\pi^2} \ f^B(p_0;T) \ \frac{1}{2} \ g_{\mu\nu} \ \operatorname{Im} \Pi^{\mu\nu}_{\rm EM}(M=0,p;\mu_B,T),$
- $\qquad \text{dileptons:} \qquad \frac{dN_{ll}}{d^4x d^4p} = -\frac{\alpha_{\rm EM}^2}{\pi^3 M^2} \ L(M) \ f^B(p_0;T) \ \frac{1}{3} \ g_{\mu\nu} \ \operatorname{Im} \Pi^{\mu\nu}_{\rm EM}(M,p;\mu_B,T),$

EM spectral function in the vacuum

In the vacuum, ${\rm Im}\,\Pi_{\rm em}^{\rm vac}$ is accurately known from e^+e^- annihilation:

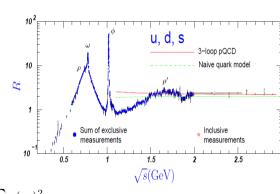
$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} \propto \frac{\text{Im}\,\Pi_{\text{em}}^{\text{vac}}}{M^2}$$

In the low-mass regime (LMR: $M \le 1$ GeV) the EM spectral function is saturated by the spectral functions of the light vector mesons (VMD):

$$\operatorname{Im}\Pi_{\mathrm{EM}}^{\mathrm{vac}}(M) = \sum_{v=\rho,\omega,\phi} \left(\frac{m_v^2}{g_v}\right)^2 \operatorname{Im}D_v^{\mathrm{vac}}(M)$$

For higher energies, quark degrees of freedom:

or nigher energies, quark degrees of freedom:
$${\rm Im}\Pi^{\rm vac}_{\rm EM}(M) = -\frac{M^2}{12\pi}\,\left[1+\frac{\alpha_s(M)}{\pi}+\dots\right]\,N_c\sum_{q=u,d,s}(e_q)^2$$



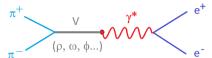
[R. Rapp, J. Wambach, Adv.Nucl.Phys. 25, 1 (2000)][R. Rapp, Acta Phys.Polon. B42, 2823-2852 (2011)]

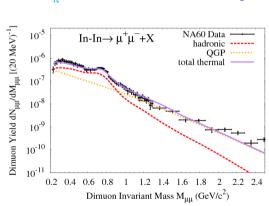
Connection between dileptons and vector mesons

Vector mesons have the same quantum numbers as photons and can decay directly into dileptons:

Excess dimuon invariant-mass spectrum as measured in In-In collisions at $\sqrt{s_{NN}}=17.3~{\rm GeV}$ by the NA60 collaboration at the SPS is well described by using **vector meson dominance**:

$$\mathrm{Im}\Pi^{\mu\nu}_{\mathrm{EM}}(M)\sim\mathrm{Im}D^{\mu\nu}_{\rho}+\frac{1}{9}\mathrm{Im}D^{\mu\nu}_{\omega}+\frac{2}{9}\mathrm{Im}D^{\mu\nu}_{\phi}$$





[R. Rapp, H. van Hees, Phys. Lett. B 753 (2016) 586-590]

Connection of (axial-)vector mesons and chiral symmetry

Chiral symmetry:

- ightharpoonup QCD Lagrangian has chiral symmetry $SU(N_f)_L \times$ $SU(N_f)_R$ in the limit of vanishing quark masses
- chiral symmetry is broken spontaneously by dynamical formation of a quark condensate $\langle \bar{q}q \rangle \sim \Delta_{l,s}$

QCD and chiral sum rules:

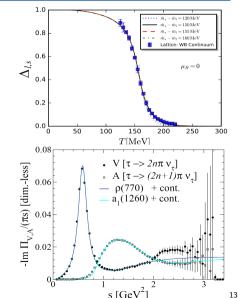
$$\int_0^\infty \frac{ds}{\pi} (\Pi_V(s) - \Pi_A(s)) = m_\pi^2 f_\pi^2 = -2m_q \langle \bar{q}q \rangle$$

- sum rules connect spectral functions and condensates
- chiral restoration manifests itself through mixing of vector and axial-vector correlators!

[W.-i. Fu. J.M. Pawlowski, F. Rennecke, Phys. Rev. D 101, 054032 (2020)] [S. Borsanyi et al. (Wuppertal-Budapest), JHEP 09, 073 (2010)]

[R. Barate, et al., (ALEPH), EPJC 4 (1998) 409-431]

[R. Rapp, J. Wambach, H. v. Hees, Landolt-Bornstein 23, 134]



Chiral Mixing

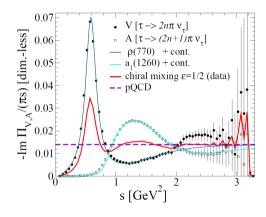
At low temperatures and densities, i.e. for a dilute pion gas, one can apply chiral reduction and current algebra to find the following 'mixing theorem' for the vector and axial-vector correlation functions:

$$\Pi_V(q) = (1 - \varepsilon) \,\Pi_V^0(q) + \varepsilon \,\Pi_A^0(q)$$

with mixing parameter $\varepsilon = T^2/6f_\pi^2$.

Chiral mixing has direct consequences on the thermal dilepton rate:

$$\frac{dN_{ll}}{d^4xd^4q} = \frac{4\alpha_{\rm EM}^2f^B}{(2\pi)^2} \left\{ \rho_{\rm EM} - (\varepsilon - \frac{\varepsilon^2}{2})(\rho_V - \rho_A)) \right\} \label{eq:local_local_local}$$



[R. Rapp, Acta Phys. Polon. B 42 (2011) 2823-2852]

[M. Dey et al., Phys. Lett. B 252 (1990), 620-624[Z. Huang, Phys. Lett. B 361 (1995) 131-136]

Part II

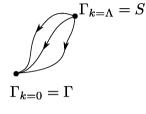
Theoretical setup

Method of choice: FRG

Functional Renormalization Group (FRG):

$$\partial_k \Gamma_k = \frac{1}{2} \mathrm{STr} \left(\partial_k R_k \left[\Gamma_k^{(2)} + R_k \right]^{-1} \right)$$

[C. Wetterich, Phys.Lett. B301, 90 (1993)]



[wikipedia.org]

- non-perturbative continuum framework
- ▶ implements Wilson's coarse-graining idea: fluctuations integrated out
- ightharpoonup In the UV and effective action Γ in the IR
- ▶ capable of describing phase transitions at finite temperature and density
- ▶ analytically-continued FRG (aFRG) method gives access to spectral functions!

Effective theory for nuclear matter

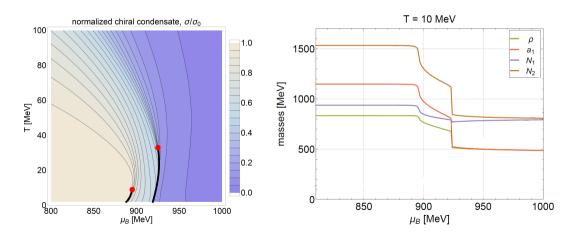
We use the parity-doublet model with $N_1 = N(938) = (n, p)$, $N_2 = N^*(1535)$:

$$\Gamma_{k} = \int d^{4}x \left\{ \bar{N}_{1} \left(\partial - \mu_{B} \gamma_{0} + h_{1} (\sigma + i\vec{\tau} \cdot \vec{\pi} \gamma^{5}) \right) N_{1} + \bar{N}_{2} \left(\partial - \mu_{B} \gamma_{0} + h_{2} (\sigma - i\vec{\tau} \cdot \vec{\pi} \gamma^{5}) \right) N_{2} + m_{0,N} \left(\bar{N}_{1} \gamma^{5} N_{2} - \bar{N}_{2} \gamma^{5} N_{1} \right) + U_{k} (\phi^{2}) - c\sigma \right\}$$

- provides a phenomenologically successful description of nuclear matter
- describes nuclear liquid-gas transition together with a chiral phase transition
- lacktriangle accounts for a finite nucleon mass $m_{0,N}$ in a chirally-invariant fashion
- provides a natural description for the parity-doubling structure of the low-lying baryons

Parity-doublet model (I)

describes nuclear liquid-gas transition together with a chiral phase transition:



Parity-doublet model (II)

Accounts for a finite nucleon mass in a chirally-invariant fashion:

▶ the proton mass can be obtained from the trace of the energy-momentum tensor of QCD

$$T \equiv T^{\mu}_{\mu} = \frac{\beta(g)}{2g} G^{\mu\nu a} G^{a}_{\mu\nu} + \sum_{l=u,d,s} m_l (1 + \gamma_{m_l}) \bar{q}_l q_l$$

$$\rightarrow \langle \mathbf{p}_1 | T | \mathbf{p}_2 \rangle \sim G(q^2), \qquad G(0) = M$$

with the scalar gravitational form factor G

- \triangleright only $\sim 8\%$ from chiral symmetry breaking ('sigma-term'), rest from gluon term!
- **mass radius of the proton** can be obtained as derivative w.r.t. momentum transfer $t=q^2$:

$$\langle R_m^2 \rangle = \frac{6}{M} \frac{dG}{dt} \Big|_{t=0}$$

 \rightarrow GlueX data leads to $R_m \approx 0.55$ fm, as opposed to $R_c \approx 0.84$ fm!

[J. C. Collins, A. Duncan, S. D. Joglekar, Phys. Rev. D 16, 438 (1977)],
 [N. K. Nielsen, Nucl. Phys. B 120, 212 (1977)]
 [D. E. Kharzeev, Phys.Rev.D 104, 054015 (2021)],
 [A. Ali et al. (GlueX), Phys. Rev. Lett. 123, 072001 (2019)]

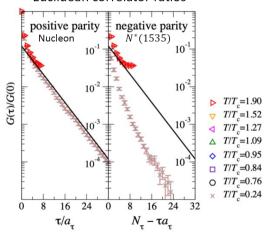
Parity doubling also observed in lattice QCD

Results from FASTSUM 2+1 flavour ensembles:

- steeper slope corresponds to larger mass $G(\tau) \sim \exp(-m\tau)$
- $lackbox{ nucleon ground state } m_N \mbox{ is largely independent of } T$
- ightharpoonup mass of negative-parity partner decreases substantially and approaches m_N

- ightarrow indicates parity doubling above T_c due to restoration of chiral symmetry!
- \rightarrow mass splitting burns off but ground state mass remains!

Euclidean correlator ratios



[Aarts et al., Phys. Rev. D 92 (2015) no.1, 014503] [Allton et al., PoS LATTICE (2016) 183]

Introducing vector and axial-vector mesons

Parity-doublet model with vector mesons:

$$\begin{split} \Gamma_k &= \int d^4x \left\{ \bar{N}_1 \left(\not \! \partial - \mu_B \gamma_0 + h_{s,1} (\sigma + i \vec{\tau} \cdot \vec{\pi} \gamma^5) + h_{v,1} (\gamma_\mu \vec{\tau} \cdot \vec{\rho}_\mu + \gamma_\mu \gamma^5 \vec{\tau} \cdot \vec{a}_{1,\mu}) \right) N_1 \right. \\ &+ \bar{N}_2 \left(\not \! \partial - \mu_B \gamma_0 + h_{s,2} (\sigma - i \vec{\tau} \cdot \vec{\pi} \gamma^5) + h_{v,2} (\gamma_\mu \vec{\tau} \cdot \vec{\rho}_\mu - \gamma_\mu \gamma^5 \vec{\tau} \cdot \vec{a}_{1,\mu} \right) N_2 \\ &+ m_{0,N} \left(\bar{N}_1 \gamma^5 N_2 - \bar{N}_2 \gamma^5 N_1 \right) + U_k (\phi^2) - c \sigma + \frac{1}{2} (D_\mu \phi)^\dagger D_\mu \phi \\ &- \frac{1}{4} \operatorname{tr} \partial_\mu \rho_{\mu\nu} \partial_\sigma \rho_{\sigma\nu} + \frac{m_v^2}{8} \operatorname{tr} \rho_{\mu\nu} \rho_{\mu\nu} \right\}. \end{split}$$

ho and a_1 in terms of anti-symmetric rank-2 tensor fields which transform according to the (1,0) and (0,1) representations of the Euclidean O(4) group (with generators T_R and T_L):

$$\rho_{\mu\nu} = \rho_{\mu\nu}^{+} + \rho_{\mu\nu}^{-} = \vec{\rho}_{\mu\nu}^{+} \vec{T}_R + \vec{\rho}_{\mu\nu}^{-} \vec{T}_L$$

▶ the iso-triplet vector and axial-vector fields are obtained as

$$ec{
ho}_{\mu}=rac{1}{2m_{v}}{
m tr}(\partial_{\sigma}
ho_{\sigma\mu}ec{T}_{V}), \qquad \qquad ec{a}_{1\mu}=rac{1}{2m_{v}}{
m tr}(\partial_{\sigma}
ho_{\sigma\mu}ec{T}_{A})$$

Flow equations for ρ and a_1 2-point functions

$$\partial_{k}\Gamma_{\rho,k}^{(2)} = \underbrace{\rho \left(\stackrel{\otimes}{\pi} \stackrel{\otimes}{\pi} \right)}_{\pi} \rho + \underbrace{\rho \left(\stackrel{\otimes}{\pi} \stackrel{\otimes}{\pi} \right)}_{a_{1}} \rho + \underbrace{\rho \left(\stackrel{\otimes}{\pi} \stackrel{\otimes}{\pi} \right)}_{\pi} \rho - 2 \underbrace{\rho \left(\stackrel{\otimes}{N} \stackrel{\otimes}{N} \right)}_{N} \rho - \frac{1}{2} \underbrace{\left(\stackrel{\otimes}{\pi} \stackrel{\otimes}{\pi} \right)}_{\rho} \rho }_{N} \partial_{\mu} \partial_$$

- \blacktriangleright vertices extracted from ansatz for the effective average action Γ_k
- ▶ aFRG method allows for analytic continuation of flow equations to real energies ω !

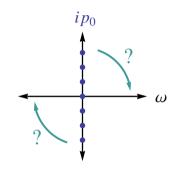
Two-step analytic continuation procedure

1) Use periodicity w.r.t. imaginary energy $ip_0 = i2n\pi T$:

$$n_{B,F}(E+ip_0) \to n_{B,F}(E)$$

2) Substitute p_0 by continuous real frequency ω :

$$\Gamma^{(2),R}(\omega,\vec{p}) = -\lim_{\epsilon \to 0} \Gamma^{(2),E}(ip_0 \to -\omega - i\epsilon,\vec{p})$$



Spectral function is then given by

$$\rho(\omega,\vec{p}) = -\frac{1}{\pi} \mathrm{Im} \frac{1}{\Gamma^{(2),R}(\omega,\vec{p})}$$

IK, Kamikado, N. Strodthoff, L. von Smekal, J. Wambach, Eur, Phys. J. C74 (2014) 28061 [R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)] [J. M. Pawlowski, N. Strodthoff, Phys. Rev. D 92, 094009 (2015)]

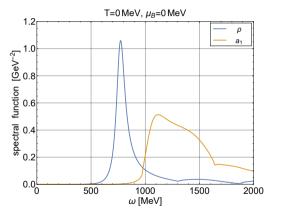
[N. Landsman and C. v. Weert, Physics Reports 145, 3&4 (1987) 141]

Part III

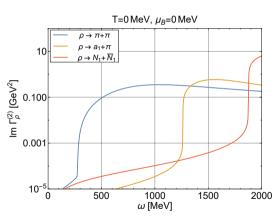
Results on spectral functions and dileptons

ho and a_1 spectral functions in the vacuum (aFRG)

spectral functions:



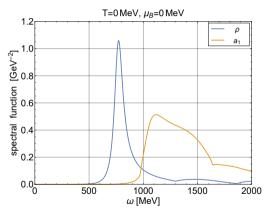
imaginary part of ρ 2-point function:



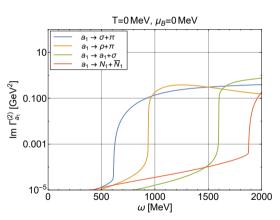
[R.-A. T., C. Jung, L. von Smekal, J. Wambach, Phys. Rev. D 104, 054005 (2021)]

ho and a_1 spectral functions in the vacuum (aFRG)

spectral functions:



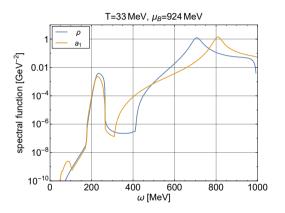
imaginary part of a_1 2-point function:



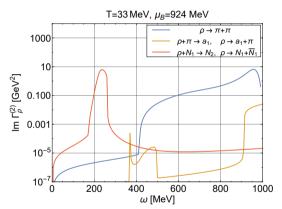
[R.-A. T., C. Jung, L. von Smekal, J. Wambach, Phys. Rev. D 104, 054005 (2021)]

ρ and a_1 spectral functions near chiral CEP (aFRG)

spectral functions:



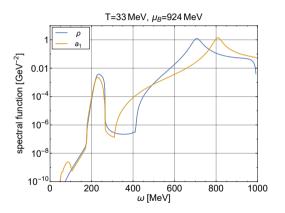
imaginary part of ρ 2-point function:



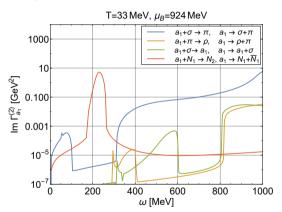
lacktriangle a pronounced peak at lower energies due to the process $ho+N_1 o N_2$ is observed!

ρ and a_1 spectral functions near chiral CEP (aFRG)

spectral functions:

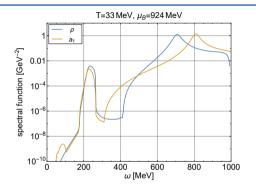


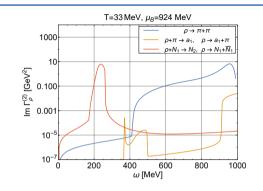
imaginary part of a_1 2-point function:



▶ a pronounced peak at lower energies due to the process $a_1 + N_1 \rightarrow N_2$ is observed!

ρ and a_1 spectral functions near chiral CEP



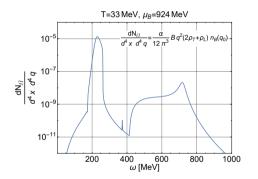


▶ peak due to process $\rho + N \rightarrow N^*(1535)$, depends on size of ρ -N- $N^*(1535)$ coupling:

Preliminary results on dilepton rate and spectrum

The resonance-production peak in the ρ spectral function due to the process $\rho + N \to N^*(1535)$ directly translates into an **enhancement of the thermal dilepton rate**:

dilepton rate from Weldon formula:

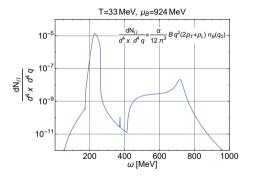


- unique prediction of the parity-doublet model!
- ▶ detection would yield strong evidence in support of the parity-doubling scenario as providing the mechanism for chiral symmetry restoration in dense nuclear matter!

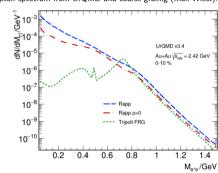
Preliminary results on dilepton rate and spectrum

The resonance-production peak in the ρ spectral function due to the process $\rho + N \to N^*(1535)$ directly translates into an **enhancement of the thermal dilepton rate**:

dilepton rate from Weldon formula:



dilepton spectrum from UrQMD and coarse-grainig (Max Wiest):

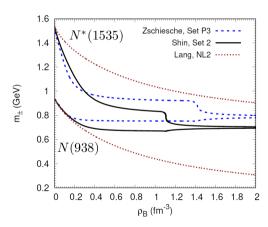


- unique prediction of the parity-doublet model!
- ▶ detection would yield strong evidence in support of the parity-doubling scenario as providing the mechanism for chiral symmetry restoration in dense nuclear matter!

Transport simulation with parity doubling

Parity-doublet model (PDM) mean fields for the nucleon, N(938), and its parity partner, $N^*(1535)$, were included in the GiBUU microscopic transport model:

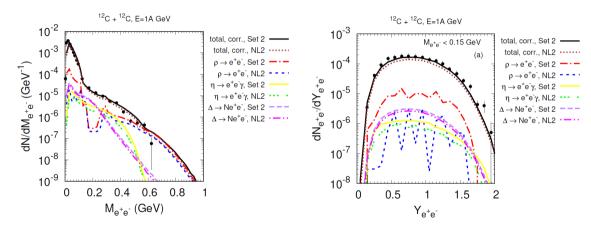
- red-dotted line: Walecka mean fields (NL2)
- ▶ black and blue-dashed lines: PDM mean fields (Set 2 and P3)
- ightharpoonup mass of the $N^*(1535)$ resonance decreases quickly with increasing baryon density ho_B for the PDM fields
- ightarrow leads to enhancement of $N^*(1535)$ production in the intermediate stages of central heavy-ion collisions at 1 AGeV!



[A. B. Larionov, L. von Smekal, Phys. Rev. C 105, 034914 (2022)]

Transport simulation with parity doubling

Invariant-mass and rapidity distributions of dileptons in C+C collisions at 1 AGeV with GiBUU:



ightarrow PDM mean fields lead to enhanced $ho
ightarrow e^+e^-$ and $\eta
ightarrow e^+e^-\gamma$ signals!

Summary and Outlook

We computed ρ and a_1 spectral functions in nuclear matter:

- based on the parity-doublet model and the aFRG method
- effects of chiral symmetry restoration lead to peak in spectral functions at low energies
- ▶ might be observed experimentally in terms of increased dilepton yield!

Outlook:

- lacktriangleright include repulsive effect $(\sim\omega)$ for realistic desciption of nuclear matter
- ▶ include isospin-chemical potential to describe neutron-rich matter
- compute equation of state and thermal neutrino rates