Meson nucleus bound states studied with high-resolution missing-mass spectroscopy Yoshiki Tanaka (RIKEN)

Hadron mass

QCD vacuum : spontaneous breaking of chiral symmetry

Hadron masses are dynamically generated

 $\Box \ \pi, K, \eta \ \textbf{\sim} \ Nambu-Goldstone \ boson$

Restoration of chiral symmetry

- \square Chiral symmetry can be partially restored in finite T and/or ρ
- Hadron properties (e.g., mass, width) under restoration of chiral symmetry

Experimental approach

Invariant mass spectroscopy

Reconstruct invariant-mass via e.g. e⁺e⁻ decays

Systematic measurements of meson production

transparency ratio

excitation function

momentum distribution

Spectroscopy of bound states in nuclei

□ Well defined quantum states
 □ Overlap with nucleus → Probe for finite density

Pseudoscalar mesons

Spectroscopy of deeply-bound pionic atoms

recent results:	Takahiro Nishi, Kenta Itahashi, et al.,		
nature physics	piAF collaboration, published March 2023		

Article

https://doi.org/10.1038/s41567-023-02001-x

Chiral symmetry restoration at high matter density observed in pionic atoms

recent review:

Itahashi, K. (2023). Pionic Atoms in Experiment. In: Tanihata, I., Toki, H., Kajino, T. (eds) Handbook of Nuclear Physics . Springer, Singapore. https://doi.org/10.1007/978-981-15-8818-1_36-1

Deeply bound π^- atom

Pioneering experiments at GSI

Pioneering experiments at GSI

Precision experiments at RIKEN-RIBF (2010–)

High intensity deuteron beam (>10¹²/s) with SRC
 Large acceptance high-resolution spectrometer BigRIPS

Experimental setup

Missing-mass spectroscopy of (d, ³He) reaction

Pilot run with π -¹²¹Sn atom (2010)

High-precision spectroscopy of π -¹²¹Sn (2014)

piAF collaboration, RIKEN, 2014 May

High-precision spectroscopy of π -¹²¹Sn (2014)

T. Nishi, K. Itahashi, et al.,

Nature Physics (2023)

DOI: 10.1038/s41567-023-02001-x

12

			Value (keV)	Statistical	Systematic
		<i>B</i> _π (1s)	3,830	±3	+78-76
Is and 2p states observed		B _п (2р)	2,265	±3	+84-83
simultaneously		B _π (1s)-B _π (2p)	1,565	±4	±11
with high-statistics		Γ _π (1s)	314	±11	+43-40
		Γ _π (2p)	120	±12	+49-28
		$\Gamma_n(1s) - \Gamma_n(2p)$	194	±16	+31-42

Deduction b₁ and chiral condensate at ρ_e

High-precision data + updates, corrections in potential analysis

isovector bl in medium

Ericson-Ericson potential

 $U_{\rm opt}(r) = U_s(r) + U_p(r),$

$$U_{s}(r) = b_{0} \rho + b_{1} (\rho_{n} - \rho_{p}) + B_{0} \rho^{2}$$

$$U_p(r) = \frac{2\pi}{\mu} \vec{\nabla} \cdot [c(r) + \varepsilon_2^{-1} C_0 \rho^2(r)] L(r) \vec{\nabla}$$

- Short range correlation:
- Measured neutron density distribution
- Green's function method for cross section calculation
- Residual interaction
- Neutron spectroscopic factors

N. Ikeno et al., PTEP 2015, 033D01 (2015) Terashima et al., PHYSICAL REVIEW C 77, 024317 (2008) Nose-Togawa et al., PRC71, 061601(R) (2005) Szwec et al., PRC104,054308

T. Nishi, K. Itahashi, et al., Nature Physics (2023) DOI: 10.1038/s41567-023-02001-x

Deduction b₁ and chiral condensate at ρ_e

Nature Physics (2023) DOI: 10.1038/s41567-023-02001-x

Deduced chiral condensate

Deduced chiral condensate

Present and future experiments

Precision and systematic spectroscopy (2021)

 \square Sn isotopes from π -111Sn to π -123Sn

 \square aiming at evaluation of $\rho\text{-dependence}$

D(HI, ³He) inverse-kinematics reaction

high-resolution owing to its kinematics

- \square π atom formed in projectile nucleus
 - → various beam including unstable nuclei

Search for η' -nucleus bound states

η' meson

 η' meson in vacuum

η'

□ Mass = 958 MeV/c^2 (especially large), Width : 0.2 MeV, JP = 0⁻

 \Box U_A(I) anomaly and spontaneous breaking of chiral symmetry

U_A(I) anomaly contributes η' mass through ChSB

H. Nagahiro, D. Jido et *al*, PRC 87, 045201 (2013).

D. Jido, H. Nagahiro, S. Hirenzaki, PRC 85, 032201 (2012).

η' meson

η'-nucleus potential

η'-nucleus optical potential :
$$V_{\eta'} = (V_0 + iW_0) \frac{\rho(r)}{\rho_0}$$
$$V_0 = \Delta m(\rho_0), W_0 = -\Gamma(\rho_0)/2$$

Theoretical predictions

 $\Delta m(\rho_0) \sim -150 \text{ MeV/c}^2 (NJL), -80 \text{ MeV/c}^2 (linear \sigma), -37 \text{ MeV/c}^2 (QMC)$

Experimental indications (CBELSA/TAPS)

 \Box V₀ ~ -40 MeV (excitation function, mom. distribution)

 \square W₀ = -13 ±3(stat) ±3(syst) MeV (transparency ratio)

H. Nagahiro et al., PRC 74, 045203(2006). S. Sakai, D. Jido, PRC 88, 064906 (2013). S.D. Bass, A.W. Thomas, PLB 634, 368 (2006)

M. Nanova *et al.*, PRC 94 025205 (2016)
M. Nanova *et al.*, PLB 727, 417 (2013).
M. Nanova *et al.*, PLB 710, 600 (2012).
S. Friedrich *et al.*, EPJA 52, 297 (2016).

η'-nucleus potential

η'-nucleus optical potential :

$$V_{\eta'} = (V_0 + iW_0) \frac{\rho(r)}{\rho_0}$$

$$V_0 = \Delta m(\rho_0), W_0 = -\Gamma(\rho_0)/2$$

Theoretical predictions

 $\Delta m(\rho_0) \sim -150 \text{ MeV/c}^2 (NJL), -80 \text{ MeV/c}^2 (linear \sigma), -37 \text{ MeV/c}^2 (QMC)$

Experimental indications (CBELSA/TAPS)

□ $V_0 \sim -40$ MeV (excitation function, mom. distribution) □ $W_0 = -13 \pm 3$ (stat) ± 3 (syst) MeV (transparency ratio) H. Nagahiro et al., PRC 74, 045203(2006). S. Sakai, D. Jido, PRC 88, 064906 (2013). S.D. Bass, A.W. Thomas, PLB 634, 368 (2006)

M. Nanova et al., PRC 94 025205 (2016
M. Nanova <i>et al.</i> , PLB 727, 417 (2013).
M. Nanova <i>et al.</i> , PLB 710, 600 (2012).
5. Flieulich <i>et al.</i> , EFJA 52, 297 (2010).

E. Czerwiński et al.,

A. V. Anisovich et al., PLB 785 (2018) 626

PRL 113, 062004 (2014)

 η 'p scattering length

$$pp \rightarrow pp\eta'$$
 : $Re(a_{\eta'p}) = 0 \pm 0.43 \text{ fm}, Im(a_{\eta'p}) = 0.37 \stackrel{+0.40}{_{-0.16}} \text{ fm}$

 $\gamma p \rightarrow p \eta'$: $|a_{\eta' p}| = 0.403 \pm 0.015 \pm 0.060$ fm, $\delta = (87\pm 2)^{\circ}$

Direct experimental study is needed. If $|W_0| < |V_0| \rightarrow possibility$ of observing bound states

Experimental search for η'-mesic nuclei

Experimental search for η'-mesic nuclei

Experimental search for η '-mesic nuclei

Experimental search for η '-mesic nuclei

H. Nagahiro, Nucl. Phys. A 914, 360 (2013).

Coincidence measurement of decay proton and forward deuteron

decay proton and forward deuteron

Y. Higashi

~ 100 improvement in Signal / BG ratio

H. Nagahiro, Nucl. Phys. A 914, 360 (2013).

Coincidence measurement of decay proton and forward deuteron

WASA-FRS beam time in 2022

WASA-FRS / Super-FRS Experiment collaboration

WASA-FRS Experimental Setup

WASA-FRS Experimental Setup

Analysis Status (FRS)

R. Sekiya, et al., presentation in Hadron2023, Y. K. Tanaka et al., Acta Phys. Pol. B Proc. Suppl.16, 4-A27 (2023)

Analysis Status (FRS)

R. Sekiya, et al., presentation in Hadron2023, Y. K. Tanaka et al., Acta Phys. Pol. B Proc. Suppl.16, 4-A27 (2023)

Analysis Status (FRS)

Analysis Status (WASA)

R. Sekiya, et al., presentation in Hadron2023, Y. K. Tanaka et al., Acta Phys. Pol. B Proc. Suppl.16, 4-A27 (2023)

Analysis Status (WASA)

R. Sekiya, et al., presentation in Hadron2023, Y. K. Tanaka et al., Acta Phys. Pol. B Proc. Suppl.16, 4-A27 (2023)

Summary

- Meson-nucleus bound states are well-defined quantum states with finite overlap between meson and a nucleus and therefore provide possibilities to study QCD phenomena in finite nuclear density.
- \Box Spectroscopy of deeply-bound π -atoms have contributed to experimental evaluation of partial restoration of chiral symmetry in finite nuclear density.
 - A recent high-precision experiment evaluated 23 ± 2% reduction of chiral condensate at density $\rho_e = 0.58 \rho_0$ (ρ_0 : normal nuclear density)
 - Further investigation of its ρ-dependence is ongoing by high-precision and systematic spectroscopy of pionic atoms with a wide range of nuclei.
- $\label{eq:properties} \begin{subarray}{c} \label{eq:properties} \label{eq:properties} \begin{subarray}{c} \label{eq:properties} \label{eq:properties} \label{eq:properties} \begin{subarray}{c} \label{eq:properties} \label{eq:properti$
 - First experiments did not observe bound states and evaluated upper limits on the formation cross section as well as on η'-nucleus potential parameters.
 - A new semi-exclusive experiment to search for η'-mesic nuclei with improved sensitivity has been performed in 2022 with the WASA-FRS setup at GSI/FAIR.
 Data analysis is in progress.