

Knowledge on doubly-strange hypernuclei and experimental prospect

1 - 2/24

Kazuma NAKAZAWA High Energy Nuclear Physics Lab., <u>RIKEN</u> Faculty of Education, <u>Gifu Univ.</u> 26th June, 2023

MESON2023 22nd -27th June, 2023 KRAKÓW, POLAND

* To understand Bryon-Baryon interaction under $SU(3)_f$ symmetry Advancement of knowledge with *Hybrid-emulsion method* for doubly-strange Hypernuclei (s = -2 nuclei) (double- Λ hypernucleus, Xi hypernucleus)

- * New questions are arising and discuss how to solve them? *Overall-scanning method* (without information by real-time detectors)
- * Summary and experimental prospects

4/24

Double-A **Hypernucleus**

M.Danysz et al., PRL.11(**1963**)29;

Re-analysis Expected Ξ stops ~ 4 $\stackrel{10}{\text{M}}$ Be $\Rightarrow {}^{9}_{\Lambda}$ Be + p + π - $B_{\Lambda\Lambda} = 17.7 \pm 0.4$ MeV

 $\Delta B_{\Lambda\Lambda} = 4.3 \pm 0.4 \text{ MeV}$ R.H.Dalitz et al., Proc. R.S.Lond.A436(1989)1

D.J.Prowse, PRL.17(**1966**)782

${}^{6}_{\Lambda\Lambda}$ **He** $\rightarrow {}^{5}_{\Lambda}$ **He** + **p** + π -

 $B_{\Lambda\Lambda}$ = no discussion(?) $\Delta B_{\Lambda\Lambda}$ = **4**.6 ± 0.5 MeV

Why VAA so strong? **"interesting theoretical problem" C.B.Dover,** Proc. HYP91, NP.A547(1992)27c

KEK-E176

S.Aoki et al, PTP.85(1991)1287

13 B in ~80 \pm stops $B_{AA} = 27.6 \pm 0.7 \text{ MeV}$ or $\Delta B_{AA} = 4.9 \pm 0.7 \text{ MeV}$ **10 Be** $B_{AA} = 8.5 \pm 0.7 \text{ MeV}$ $\Delta B_{AA} = -4.8 \pm 0.7 \text{ MeV}$

<u> E Hypernucleus</u>

Experimental status in ~1985

-60

Excitation Energy (MeV)

Double-A Hypernucleus NAGARA event (E373)

The event was named after Nagara, a clear stream in Gifu, Japan $1^{2}C + \Xi - \bigwedge_{A}^{6}He + \stackrel{4}{}He + t$ $\stackrel{6}{}_{A}He - \stackrel{5}{}_{A}He + p + \pi^{-}$ Unique assignment $B_{AA} = 7.25 + l \cdot 0.19 \text{ MeV},$ $B_{AA} = 1.01 + l \cdot 0.20 \text{ MeV},$ $P_{AA} = 0.00 +$

<u>∆B_{AA} = 0.55 + 0.91B ≘- (+/- 0.17)</u> MeV

We take into account $B \equiv -= 0.13$ MeV [atomic $3D : {}^{12}C- \equiv -$]

 $B_{AA} = 6.91 + -0.16 \text{ MeV}, \Delta B_{AA} = 0.67 + -0.17 \text{ MeV}$

10µm

H. Ekawa et al., PTEP, 2019, 021D02 (2019)

12/24**Double-**A Hypernucleus Linear relation between mass numbers A and $B_{\Lambda\Lambda}$ for double- Λ hypernuclei. 25 F176 20 D001 Mino ^8Li В_{лл} [MeV] Danysz, et al. Demachi-yanag 10 ^6,He Nakazawa, K. (2023). "Experimental Aspect of S = -2 Hypernuclei" In: Tanihata, I., Toki, H., Kajino, T. (eds) Nagara Handbook of Nuclear Physics . Springer, Singapore. 5 https://doi.org/10.1007/978-981-15-8818-1 33-1 6 8 10 12 14 [Questions] 1. What is the lightest double- Λ hypernucleus? 2. When one of two Λ hyperons enters the excited state, is there still attractive between them?

Systematic understanding is still lacking!!

Driven by piezo actuator for scanning (2022)@ Gifu U. Driven by motor (2013)μm 00 CCD camera (512 x 440 pix.) 8 s/view (1000 days/sheet) 60 GB/day μm 00 4.5 days x 1,200 sheets CMOS camera (4M pix.) /year (300 days) / 5 microscopes 1.3 s/view (4.5 days/sheet)

→ 3.6 years (/all sheets)

12 TB/day

Collaboration of Gifu & RIKEN

Overall-scanning trained with machine learning

Mchine learning for detection @ RIKEN

Double-A hypernucleus via K- interaction

Study of *ground state* of Double- Λ hypernuclei (independent of $B_{\rm H}$ -)

Doubly-strange hypernuclei via Ξ^- capture at-rest (estimated ~ 1×10^3 events)

* E hypernucleus : no candidate at present

Under tuning the ML model

19/24 by Overall-scanning trained with machine learning Λ Possible to study (Near Future) [1] lightest double- Λ hypernucleus [2] double- Λ with one Λ in excited state [3] precise measurement of level scheme in ${}^{15}_{\pm}C$ [4] Ξ hypernuclei as systems of ($\Xi^{-12}C$) and ($\Xi^{-16}O$) In addition to them, [5] precise measurement of B_{Λ} for single- Λ (~1 M events) [6] Λ -bar nucleus with p-bar beam [1.8 GeV/c]? No new beam time is needed. 20/24by Overall-scanning trained with machine learning Next-step (New beam time is needed) **Nuclear Chart with Strangeness** [7] Ξ Hypernucleus : ${}^{11}_{\Xi}$ Be. [N-Star/Strange Matter] ¹⁰B has to be doped into the emulsion $ex. \Xi + {}^{10}B = ({}^{11}_{\Xi}Be) \Longrightarrow {}^{5}_{\Lambda}He + {}^{5}_{\Lambda}He + n,$ 6 (+?) NAGARA [8] S = -3 nuclear physics 35 Ω Hypernucleus Ζ Ordinal Nuclei 3000 / 7000 (K10@J-PARC)oton Neutron **Unstable Nuclide Stable Nuclide**

21-1/24

Summary and experimental prospects

- Under the few results for DBL-Λ hypernuclei by past experiments, we have challenged E176, E373 and E07 experiments. Detection and analysis with Hybrid-emulsion method have been finished by April, 2021, and then we got <u>47 samples</u> of Doubly-strange hypernuclei.
- At present, B_{ΛΛ} for DBL-Λ hypernuclei may <u>linearly</u> depends on mass number (A). Ξ/V interaction is <u>attractive</u> and level scheme in ¹⁵/₂C hypernucleus could be seen without any theoretical aspects.
- 3. **Overall-scanning with Machine learning** must make our knowledge rich on not only S = -1 but also S = -2.
- 4. New experiment (E70) on Xi hypernucleus : ¹²/_ΞBe shall be started at J-PARC, soon. →→→

24/24

Hypernuclear chart (S = -2 floor)

- K. Nakazawa et al., PTEP 2015, 033D02 (2015)
- M. Yoshimoto et al., PTEP 2021, 073D02 (2021)
- S. Hayakawa et al., PRL 126, 062501 (2021)

slide by T. Gogami

21-2/24

Summary and experimental prospects

- Under the few results for DBL-Λ hypernuclei by past experiments, we have challenged E176, E373 and E07 experiments. Detection and analysis with Hybrid-emulsion method have been finished by April, 2021, and then we got <u>47 samples</u> of Doubly-strange hypernuclei.
- At present, B_{ΛΛ} for DBL-Λ hypernuclei may <u>linearly</u> depends on mass number (A). Ξ/V interaction is <u>attractive</u> and level scheme in ¹⁵/₂C hypernucleus could be seen without any theoretical aspects.
- 3. **Overall-scanning with Machine learning** must make our knowledge rich on not only S = -1 but also S = -2.
- 4. New experiment (E70) on Xi hypernucleus : ¹²/_ΞBe shall be started at J-PARC, soon. →→→
- 5. Future experiments;
 → 5.1 Challenge for Ξ⁻- ¹⁰B(¹¹/₂Be : ¹⁰B doping emulsion)
 - → 5.2 S = -3 physics. (K10 beam-line @ J-PARC)

Thank you for your attention