Theoretical status of antikaon-nucleon interactions

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Theoretical status of

Theoretical status of

Contents

Contents

$\Lambda(1405)$ and $\bar{K}N$ interactions

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012); T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021); T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th] (Handbook of Nuclear Physics)

- Recent developments

J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL 130, 071902 (2023); Talk by D. Mohler on 22nd June

K⁻p femtoscopy

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL 124, 132501 (2020)

- Experimental data

ALICE collaboration, PRL 124, 092301 (2020); PLB 822, 136708 (2021); EPJC 83, 340 (2023)

Contents

Contents

$\Lambda(1405)$ and $\bar{K}N$ interactions

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012); T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021); T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th] (Handbook of Nuclear Physics)

- Recent developments

J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL 130, 071902 (2023); Talk by D. Mohler on 22nd June

K⁻p femtoscopy

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL 124, 132501 (2020)

- Experimental data

ALICE collaboration, PRL 124, 092301 (2020); PLB 822, 136708 (2021); EPJC 83, 340 (2023)

$\Lambda(1405)$ and $\bar{K}N$ interactions

$\Lambda(1405)$ and $\bar{K}N$ scattering

$\Lambda(1405)$ does not fit in standard picture —> exotic candidate

N. Isgur and G. Karl, PRD 18, 4187 (1978)

$\Lambda(1405)$ and $\bar{K}N$ interactions

$\Lambda(1405)$ and $\bar{K}N$ scattering

$\Lambda(1405)$ does not fit in standard picture —> exotic candidate

N. Isgur and G. Karl, PRD 18, 4187 (1978)

Detailed analysis of $\bar{K}N$ - $\pi\Sigma$ scattering is necessary

Strategy for *KN* interaction

Above the $\bar{K}N$ threshold : direct constraints

- K⁻p total cross sections (old data)
- *KN* threshold branching ratios (old data)
- K⁻p scattering length (new data : SIDDHARTA)

Below the $\bar{K}N$ threshold: indirect (reaction model needed) - $\pi\Sigma$ mass spectra (LEPS, CLAS, HADES, J-PARC, ...)

$\Lambda(1405)$ and $\bar{K}N$ interactions

Strategy for *KN* interaction

Above the $\bar{K}N$ threshold : direct constraints

- K⁻p total cross sections (old data)
- *k̄N* threshold branching ratios (old data)
- K⁻p scattering length (new data : SIDDHARTA)

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012)</u>

Below the $\bar{K}N$ threshold: indirect (reaction model needed) - $\pi\Sigma$ mass spectra (LEPS, CLAS, HADES, J-PARC, ...)

$\Lambda(1405)$ and \overline{KN} interactions

Best-fit results by chiral SU(3) dynamics

		TW	TWB	NLO	Experiment	
St	$\Delta E [\mathrm{eV}]$	373	377	306	$283\pm 36\pm 6$	[10]
Ő	$\Gamma \ [eV]$	495	514	591	$541\pm89\pm22$	[10]
	γ	2.36	2.36	2.37	2.36 ± 0.04	[11]
a	R_n	0.20	0.19	0.19	0.189 ± 0.015	[11]
X	R_c	0.66	0.66	0.66	0.664 ± 0.011	[11]
	$\chi^2/d.o.f$	1.12	1.15	0.96		

SIDDHARTA

Branching ratios

Accurate description of all existing data ($\chi^2/d.o.f \sim 1$)

PDG has changed

2020 update of PDG

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012); ▲

Z.H. Guo, J.A. Oller, PRC 87, 035202 (2013); × M. Mai, U.G. Meißner, EPJA 51, 30 (2015) ■ ○

T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021)

PDG has changed

2020 update of PDG

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);</u> Z.H. Guo, J.A. Oller, PRC 87, 035202 (2013); × $\pi\Sigma$ M. Mai, U.G. Meißner, EPJA 51, 30 (2015) 0 -20 - Particle Listing section: -40 Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) [m z [MeV] -60 $I(J^P) = 0(\frac{1}{2})$ Status: **** $\Lambda(1405) \ 1/2^{-1}$ -80 -100 Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) -120 $J^{P} = \frac{1}{2}^{-}$ A(1380) 1/2⁻⁻ Status: ** -140 new 1320 1360 1400 1440 Re z [MeV]

T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021)

- "Λ(1405)" is no longer at 1405 MeV but ~ 1420 MeV.
- Lower pole : two-star resonance $\Lambda(1380)$

 $\Lambda(1405)$ and $\bar{K}N$ interactions

Construction of *KN* **potentials**

Local *KN* potential is useful for various applications

meson-baryon amplitude (chiral SU(3) EFT)

T. Hyodo, W. Weise, PRC 77, 035204 (2008)

Kyoto *k̄N* potential (single-channel, complex)

K. Miyahara. T. Hyodo, PRC 93, 015201 (2016) Kyoto $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential (coupled-channel, real)

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)

Kaonic nuclei

Kaonic deuterium

K⁻p correlation function

NNLO analysis

New analysis at NNLO! (KN and πN included)

J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL 130, 071902 (2023)

Two poles are confirmed at NNLO

NNLO analysis

New analysis at NNLO! (KN and πN included)

J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL 130, 071902 (2023)

Two poles are confirmed at NNLO

$\Lambda(1405)$ and $\bar{K}N$ interactions

Coupled-channel scattering by lattice QCD

Lattice calculation of $\bar{K}N$ - $\pi\Sigma$ scattering

Talk by D. Mohler on 22nd June

Two poles are found on t

approach

pole 1 [MeV]

nole 2 Me

Contents

$\Lambda(1405)$ and $\bar{K}N$ interactions

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012); T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021); T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th] (Handbook of Nuclear Physics)

- Recent developments

J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL 130, 071902 (2023); Talk by D. Mohler on 22nd June

K⁻p femtoscopy

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL 124, 132501 (2020)

- Experimental data

ALICE collaboration, PRL 124, 092301 (2020); PLB 822, 136708 (2021); EPJC 83, 340 (2023)

Summary

K⁻*p* femtoscopy **Correlation function and hadron interaction**

High-energy collision: chaotic source S(r) of hadron emission

- Definition

$$C(\boldsymbol{q}) = \frac{N_{K^-p}(\boldsymbol{p}_{K^-}, \boldsymbol{p}_p)}{N_{K^-}(\boldsymbol{p}_{K^-})N_p(\boldsymbol{p}_p)} \quad \text{(= 1 in the absence of FSI/QS)}$$

K⁻*p* femtoscopy **Correlation function and hadron interaction**

High-energy collision: chaotic source S(r) of hadron emission

- Definition

$$C(\boldsymbol{q}) = \frac{N_{K^-p}(\boldsymbol{p}_{K^-}, \boldsymbol{p}_p)}{N_{K^-}(\boldsymbol{p}_{K^-})N_p(\boldsymbol{p}_p)} \quad \text{(= 1 in the absence of FSI/QS)}$$

- Theory (Koonin-Pratt formula)

S.E. Koonin PLB 70, 43 (1977); S. Pratt, PRD 33, 1314 (2986) $C(q) \simeq \int d^3 r S(r) |\Psi_q^{(-)}(r)|^2$

Source function S(r) < -> wave function $\Psi_q^{(-)}(r)$ (FSI)

Experimental data of *K*⁻*p* **correlation**

K⁻*p* total cross sections

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)</u>

- Old bubble chamber data
- Resolution is not good
- Threshold cusp is not visible

Experimental data of *K*⁻*p* **correlation**

K⁻*p* total cross sections

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)</u>

- Old bubble chamber data
- Resolution is not good
- Threshold cusp is not visible

K⁻p correlation function

ALICE collaboration, PRL 124, 092301 (2020)

- Excellent precision ($\bar{K}^0 n$ cusp)
- Low-energy data below $\bar{K}^0 n$

-> Important constraint on $\bar{K}N$ and $\Lambda(1405)$

Coupled-channel effects

Schrödinger equation (s-wave)

Coupled-channel effects

Schrödinger equation (s-wave)

Asymptotic ($r \rightarrow \infty$) wave function

 $\begin{pmatrix} \psi_{K^-p}(r) \\ \psi_{\bar{K}^0n}(r) \\ \cdot \end{pmatrix} \propto \begin{pmatrix} \#e^{-iqr} + \#e^{iqr} \\ \#e^{-iq_2r} + \#e^{iq_2r} \\ \vdots \end{pmatrix}$ incoming + outgoing

Coupled-channel effects

Schrödinger equation (s-wave)

Asymptotic ($r \rightarrow \infty$) wave function

$$\begin{pmatrix} \psi_{K^-p}(r) \\ \psi_{\bar{K}^0n}(r) \\ \vdots \end{pmatrix} \propto \begin{pmatrix} \#e^{-iqr} + \#e^{iqr} \\ \#e^{-iq_2r} + \#e^{iq_2r} \\ \vdots \end{pmatrix}$$

incoming + outgoing

- Transition from $\bar{K}^0 n, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^- \Sigma^+, \pi^0 \Lambda$ is in $\psi_i(r)$ with $i \neq K^- p$

Coupled-channel correlation function

Coupled-channel Koonin-Pratt formula

R. Lednicky, V.V. Lyuboshitz, V.L.Lyuboshitz, Phys. Atom. Nucl. 61, 2950 (1998); J. Haidenbauer, NPA 981, 1 (2019);

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

$$C_{K^{-p}}(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S_{K^{-p}}(\boldsymbol{r}) \, | \, \Psi_{K^{-p},\boldsymbol{q}}^{(-)}(\boldsymbol{r}) \, |^2$$

Coupled-channel correlation function

Coupled-channel Koonin-Pratt formula

- R. Lednicky, V.V. Lyuboshitz, V.L.Lyuboshitz, Phys. Atom. Nucl. 61, 2950 (1998); J. Haidenbauer, NPA 981, 1 (2019);
- Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

$$C_{K^{-p}}(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S_{K^{-p}}(\boldsymbol{r}) \, |\Psi_{K^{-p},\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2 + \sum_{i \neq K^{-p}} \omega_i \int d^3 \boldsymbol{r} \, S_i(\boldsymbol{r}) \, |\Psi_{i,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2$$

- Transition from $\bar{K}^0 n, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^- \Sigma^+, \pi^0 \Lambda$
- ω_i : weight of source channel *i* relative to K^-p

Coupled-channel correlation function

Coupled-channel Koonin-Pratt formula

R. Lednicky, V.V. Lyuboshitz, V.L.Lyuboshitz, Phys. Atom. Nucl. 61, 2950 (1998); J. Haidenbauer, NPA 981, 1 (2019);

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

$$C_{K^{-p}}(q) \simeq \int d^3 r \, S_{K^{-p}}(r) \, |\Psi_{K^{-p},q}^{(-)}(r)|^2 + \sum_{i \neq K^{-p}} \omega_i \int d^3 r \, S_i(r) \, |\Psi_{i,q}^{(-)}(r)|^2$$

- ITANSILION ITOM K° n, π ' Σ , π ° Σ °, π , Σ ', π ° Λ
- ω_i : weight of source channel *i* relative to K^-p

Coupled-channel effect is enhanced for small sources

K⁻p femtos<u>copy</u>

Correlation from chiral SU(3) dynamics

Wave function $\Psi_{i,q}^{(-)}(r)$: coupled-channel $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)

- Source function S(r): Gaussian, $R \sim 1$ fm in K^+p data
- Source weight $\omega_{\pi\Sigma} \sim 2$ by simple statistical model estimate

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL 124, 132501 (2020)

Correlation function by ALICE is well reproduced

Source size dependence

New data with Pb-Pb collisions at 5.02 TeV

ALICE collaboration, PLB 822, 136708 (2021)

- Scattering length $a_{K^-p} = -0.91 + 0.92i$ fm

Correlation is suppressed at larger *R***, as predicted**

Systematic study of source size dependence

Correlations in *pp*, *p*-Pb, Pb-Pb **by Kyoto** $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ **potential**

ALICE collaboration, EPJC 83, 340 (2023)

$$C_{K^{-p}}(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S_{K^{-p}}(\boldsymbol{r}) \, |\Psi_{K^{-p},\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2 + \sum_{i \neq K^{-p}} \omega_i \int d^3 \boldsymbol{r} \, S_i(\boldsymbol{r}) \, |\Psi_{i,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2$$

More strength is needed in the $\bar{K}^0 n$ channel

Summary

K⁻p scattering and kaonic hydrogen are well described by NLO chiral SU(3) dynamics. Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012) - NNLO, scattering on the lattice, ... J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL 130, 071902 (2023); Talk by D. Mohler on 22nd June **Global structures of** K⁻p **correlation functions** are reproduced by Kyoto $\bar{K}N-\pi\Sigma-\pi\Lambda$ potential. Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020) - Source size dependence ALICE collaboration, PRL 124, 092301 (2020); PLB 822, 136708 (2021); EPJC 83, 340 (2023)