

Precision tests of fundamental physics with η and η ' mesons

Emilie Passemar Indiana University/Jefferson Laboratory

Meson 2021, May 17 - 21, 2021

- 1. Introduction and Motivation
- 2. $\eta \rightarrow 3\pi$ and light quark masses
- 3. $\eta' \rightarrow \eta \pi \pi$ and chiral dynamics
- 4. Conclusion and Outlook

1. Introduction and Motivation

1.1 Why is it interesting to study η and η' physics?

- In the study of η and η' physics, large amount of data have been collected:
 - GlueX

More to come: JEF, REDTOP

- Unique opportunity:
 - Test chiral dynamics at low energy
 - Extract fundamental parameters of the Standard Model: ex: light quark masses
 - Study of fundamental symmetries: C, P & T violation
 - Looking for beyond Standard Model Physics

Rich physics program at η,η' factories

Standard Model highlights

- Theory input for light-by-light scattering for (g-2)_μ
- Extraction of light quark masses
- QCD scalar dynamics

Fundamental symmetry tests

- P,CP violation
- C,CP violation

[Kobzarev & Okun (1964), Prentki & Veltman (1965), Lee (1965), Lee & Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)

- Vector bosons
- Scalars
- Pseudoscalars (ALPs)

(Plus other channels that have not been searched for to date)

Channel	Expt. branching ratio
$\eta ightarrow 2\gamma$	39.41(20)%
$\eta \rightarrow 3\pi^0$	32.68(23)%
$\eta ightarrow \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$
$\eta ightarrow \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$
$\eta \rightarrow 4\gamma$	$< 2.8 \times 10^{-4}$
$\eta \to \pi^+ \pi^- \pi^0$	22.92(28)%
$\eta ightarrow \pi^+ \pi^- \gamma$	4.22(8)%
$\eta ightarrow \pi^+ \pi^- \gamma \gamma$	$< 2.1 \times 10^{-3}$
$\eta \rightarrow e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$
$\eta \to \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$
$\eta \rightarrow e^+ e^-$	$< 7 \times 10^{-7}$
$\eta \to \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$
$\eta \to \pi^0 \pi^0 \ell^+ \ell^-$	
$\eta \to \pi^+ \pi^- e^+ e^-$	$2.68(11) \times 10^{-4}$
$\eta \to \pi^+ \pi^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$
$\eta \to e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$
$\eta \to e^+ e^- \mu^+ \mu^-$	$<1.6\times10^{-4}$
$\eta \to \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$
$\eta ightarrow \pi^+ \pi^- \pi^0 \gamma$	$< 5 \times 10^{-4}$
$\eta \to \pi^{\pm} e^{\mp} v_e$	$< 1.7 \times 10^{-4}$
$\eta \to \pi^+ \pi^-$	$< 4.4 \times 10^{-6}$
$\eta \rightarrow 2\pi^0$	$< 3.5 \times 10^{-4}$
$\eta \to 4\pi^0$	$< 6.9 \times 10^{-7}$

From S.Tulin

chiral anomaly, $\eta - \eta'$ mixing
$m_u - m_d$
χ PT at $O(p^6)$, leptophobic <i>B</i> boson,
light Higgs scalars
χ PT, axion-like particles (ALPs)
< 10 ⁻¹¹ [52]
$m_u - m_d$, <i>C/CP</i> violation,
light Higgs scalars
chiral anomaly, theory input for singly-virtual TFF and $(g - 2)_{\mu}$, <i>P/CP</i> violation
χ PT, ALPs
theory input for $(g-2)_{\mu}$,
dark photon, protophobic X boson
theory input for $(g - 2)_{\mu}$, dark photon
theory input for $(g - 2)_{\mu}$, BSM weak decays
theory input for $(g - 2)_{\mu}$, BSM weak decays,
P/CP violation
<i>C/CP</i> violation, ALPs
theory input for doubly-virtual TFF and $(g - 2)_{\mu}$,
<i>P/CP</i> violation, ALPs
theory input for doubly-virtual TFF and $(g - 2)_{\mu}$,
P/CP violation, ALPs
theory input for $(g - 2)_{\mu}$
theory input for $(g - 2)_{\mu}$
theory input for $(g-2)_{\mu}$
direct emission only
second-class current
<i>P/CP</i> violation Gan, Kubis, E. P.,
P/CP violation Tulin'20
P/CP violation

Discussion

Rich physics program at η,η' factories

Standard Model highlights

- Theory input for light-by-light scattering for (g-2)_μ
- Extraction of light quark masses
- QCD scalar dynamics

Fundamental symmetry tests

- P,CP violation
- C,CP violation

[Kobzarev & Okun (1964), Prentki & Veltman (1965), Lee (1965), Lee & Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV-GeV)

- Vector bosons
- Scalars
- Pseudoscalars (ALPs)

(Plus other channels that have not been searched for to date)

Channel	Expt. branching ratio	Discussion
$\eta \rightarrow 2\gamma$	39.41(20)%	chiral anomaly, $\eta - \eta'$ mixing
$\eta \rightarrow 3\pi^0$	32.68(23)%	$m_u - m_d$
$\eta ightarrow \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic <i>B</i> boson,
		light Higgs scalars
$\eta ightarrow \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$	χ PT, axion-like particles (ALPs)
$\eta \to 4\gamma$	$< 2.8 \times 10^{-4}$	< 10 ⁻¹¹ [52]
$\eta ightarrow \pi^+ \pi^- \pi^0$	22.92(28)%	$m_u - m_d$, C/CP violation, light Higgs scalars
+ -	4 22(8)0	
$\eta \to \pi^+ \pi^- \gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TFF and $(g - 2)_{\mu}$, <i>P/CP</i> violation
$\eta ightarrow \pi^+ \pi^- \gamma \gamma$	$< 2.1 \times 10^{-3}$	χ PT, ALPs
$\eta \to e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g - 2)_{\mu}$, dark photon, protophobic <i>X</i> boson
$\eta \to \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g - 2)_{\mu}$, dark photon
$\eta \rightarrow e^+ e^-$	$< 7 \times 10^{-7}$	theory input for $(g - 2)_{\mu}$, BSM weak decays
$\eta \to \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$	theory input for $(g - 2)_{\mu}$, BSM weak decays, <i>P/CP</i> violation
$\eta \to \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs
$\eta \to \pi^+ \pi^- e^+ e^-$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, <i>P/CP</i> violation, ALPs
$\eta \to \pi^+ \pi^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, <i>P</i> / <i>CP</i> violation, ALPs
$\eta \rightarrow e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_{\mu}$
$\eta \rightarrow e^+ e^- \mu^+ \mu^-$	$< 1.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$
$\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$
$\eta \to \pi^+ \pi^- \pi^0 \gamma$	$< 5 \times 10^{-4}$	direct emission only
$\eta \to \pi^{\pm} e^{\mp} v_e$	$< 1.7 \times 10^{-4}$	second-class current
$\eta \to \pi^+ \pi^-$	$< 4.4 \times 10^{-6}$	
$\eta \rightarrow 2\pi^0$	$< 3.5 \times 10^{-4}$	\mathcal{D}
$\eta \to 2\pi$ $\eta \to 4\pi^0$	$< 6.9 \times 10^{-7}$	P/CP violation Tulin'20

Disquesion

Evet branching ratio

Channal

From S. Tulin

2. $\eta \rightarrow 3\pi$ and light quark mass extraction

In collaboration with G. Colangelo, S. Lanz and H. Leutwyler (ITP-Bern)

Phys. Rev. Lett. 118 (2017) no.2, 022001 *Eur.Phys.J.* C78 (2018) no.11, 947

2.1 Decays of η

• η decay from PDG:

 $M_{\eta} = 547.862(17) \text{ MeV}$

η DECAY MODES			
	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
		Neutral modes	
Γ ₁	neutral modes	(72.12±0.34) %	S=1.2
Γ2	2γ	(39.41±0.20) %	S=1.1
Г ₃	$3\pi^0$	(32.68±0.23) %	S=1.1
		Charged modes	
Г ₈	charged modes	$(28.10\pm0.34)~\%$	S=1.2
Γ ₉	$\pi^+\pi^-\pi^0$	$(22.92\pm0.28)~\%$	S=1.2
Γ ₁₀	$\pi^+\pi^-\gamma$	(4.22±0.08) %	S=1.1

2.1 Why is it interesting to study $\eta \rightarrow 3\pi$?

Decay forbidden by isospin symmetry

$$\implies A = \left(m_{u} - m_{d} \right) A_{1} + \alpha_{em} A_{2}$$

- *α_{em}* effects are small Sutherland'66, Bell & Sutherland'68 Baur, Kambor, Wyler'96, Ditsche, Kubis, Meissner'09
- Decay rate measures the size of isospin breaking $(m_u m_d)$ in the SM:

$$L_{QCD} \rightarrow L_{IB} = -\frac{m_u - m_d}{2} \left(\overline{u} u - \overline{d} d \right)$$

 \rightarrow Unique access to $(m_u - m_d)$

2.1 Definitions
•
$$\eta$$
 decay: $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$
 $\sqrt[\pi^{+}\pi^{-}\pi^{0}}_{\alpha u} |\eta\rangle = i(2\pi)^{+} \delta^{+}(p_{\eta} - p_{\pi^{-}} - p_{\pi^{-}})A(s,t,u)$
• Mandelstam variables $s = (p_{\pi^{+}} + p_{\pi^{-}})^{2}, t = (p_{\pi^{-}} + p_{\pi^{0}})^{2}, u = (p_{\pi^{0}} + p_{\pi^{+}})^{2}$
 \Rightarrow only two independent variables
• 3 body decay \Rightarrow Dalitz plot
 $|A(s,t,u)|^{2} = N(1 + aY + bY^{2} + dX^{2} + fY^{3} + ...)$
Expansion around X=Y=0
 $X = \sqrt{3}\frac{T_{+} - T_{-}}{Q_{c}} = \frac{\sqrt{3}}{2M_{\eta}Q_{c}}(u - t)$
 $Y = \frac{3T_{0}}{Q_{c}} - 1 = \frac{3}{2M_{\eta}Q_{c}}((M_{\eta} - M_{\pi^{0}})^{2} - s) - 1$
while Passemar
 $Q_{c} = M_{\eta} - 2M_{\pi^{c}} - M_{\pi^{0}}$

Emilie Passemar

2.2 Quark mass ratio

• In the following, extraction of Q from $\eta \to \pi^+ \pi^- \pi^0$

$$\begin{bmatrix} \Gamma_{\eta \to \pi^+ \pi^- \pi^0} = \frac{1}{Q^4} \frac{M_K^4}{M_\pi^4} \frac{\left(M_K^2 - M_\pi^2\right)^2}{6912\pi^3 F_\pi^4 M_\eta^3} \int_{s_{\min}}^{s_{\max}} ds \int_{u_-(s)}^{u_+(s)} du \left| M(s,t,u) \right|^2 \\ \text{Determined from experiment} \\ \text{Determined from:} \\ \text{Origonalization} \\ \text{Origonalization} \\ \text{Origonalization} \\ \text{Origonalization} \\ \text{Determined from:} \\ \text{Origonalization} \\ \text{Ori$$

• Aim: Compute M(s,t,u) with the *best accuracy*

2.3 Computation of the amplitude

- What do we know?
- Compute the amplitude using ChPT : ٠

$$\Gamma_{\eta \to 3\pi} = \begin{pmatrix} 66 + 94 + \dots + \dots \end{pmatrix} eV = (300 \pm 12) eV$$

$$IO \quad NLO \quad NNLO \qquad PDG'16$$

$$NLO: Bijnens \& Ghorbani'07$$

The Chiral series has convergence problems

Anisovich & Leutwyler'96

LO: Osborn, Wallace'70

NLO: Gasser & Leutwyler'85

2.3 Computation of the amplitude

- What do we know?
- The amplitude has an Adler zero: soft pion theorem Adler'85
 Amplitude has a zero for :

 $p_{\pi^{+}} \to 0 \implies s = u = 0, \ t = M_{\eta}^{2} \qquad M_{\pi} \neq 0 \qquad s = u = \frac{4}{3}M_{\pi}^{2}, \ t = M_{\eta}^{2} + \frac{M_{\pi}^{2}}{3}$ $p_{\pi^{-}} \to 0 \implies s = t = 0, \ u = M_{\eta}^{2} \qquad s = t = \frac{4}{3}M_{\pi}^{2}, \ u = M_{\eta}^{2} + \frac{M_{\pi}^{2}}{3}$

SU(2) corrections

Anisovich & Leutwyler'96

2.4 Neutral channel :
$$\eta \rightarrow \pi^0 \pi^0 \pi^0$$

- What do we know?
- We can relate charged and neutral channels

 $\overline{A}(s,t,u) = A(s,t,u) + A(t,u,s) + A(u,s,t)$

Correct formalism should be able to reproduce both charged and neutral channels

Ratio of decay width precisely measured

$$r = \frac{\Gamma(\eta \to \pi^0 \pi^0 \pi^0)}{\Gamma(\eta \to \pi^+ \pi^- \pi^0)} = 1.426 \pm 0.026 \qquad PDG'19$$

2.4 Neutral Channel : $\eta \rightarrow \pi^0 \pi^0 \pi^0$

2.5 Dispersive treatment

• The Chiral series has convergence problems

2.5 Dispersive treatment

• The Chiral series has convergence problems

- Dispersive treatment :
 - analyticity, unitarity and crossing symmetry
 - Take into account all the rescattering effects

2.6 Why a new dispersive analysis?

- Several new ingredients:
 - New inputs available: extraction $\pi\pi$ phase shifts has improved

Ananthanarayan et al'01, Colangelo et al'01 Descotes-Genon et al'01 Kaminsky et al'01, Garcia-Martin et al'09

 New experimental programs, precise Dalitz plot measurements *TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich) CBall-Brookhaven, CLAS, GlueX (JLab), KLOE I-II (Frascati) BES III (Beijing)*

- Many improvements needed in view of very precise data: inclusion of
 - Electromagnetic effects (O(e²m)) Ditsche, Kubis, Meissner'09
 - Isospin breaking effects
 - Inelasticities

Emilie Passemar

Gullstrom, Kupsc, Rusetsky'09, Schneider, Kubis, Ditsche'11

Albaladejo & Moussallam'15

2.7 Method

Emilie Passemar

2.7 Method

- S-channel partial wave decomposition $(\theta_s)f_J(s)$ $A_{\lambda}(s,t) = \sum_{j=1}^{\infty} (2J+1)d_{\lambda,0}^J(\theta_s)A_J(s)$ $A_{\lambda}(s,t) = \sum_{j=1}^{\infty} (2J+1)d_{\lambda,0}^J(\theta_s)f_J(s)$
- One truncates the partial wave expansion :

$$\begin{split} A_{\lambda}(s,t) &= \sum_{\substack{A_{\lambda}J(s,t) \\ J_{\max}}}^{J_{\max}} (2J+1)d_{\lambda,0}^{J}(\theta_{s})f_{J}(s) \\ &+ \sum_{\substack{J=1 \\ J}}^{J} (2J+1)d_{\lambda,0}^{J}(s) \\ &+ \sum_{\substack{J=1 \\ J}}^{J} (2J+1)d_{\lambda$$

 $\theta_s, s \mid \theta_t, t$

ν α Ε 눩 Isob

• Use a Khuri-Treiman approach or dir Restore 3 body unitarity and tak in a systematic way

Emilie Passemar

2.8 Representation of the amplitude

• Decomposition of the amplitude as a function of isospin states

$$M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$$

Fuchs, Sazdjian & Stern'93 Anisovich & Leutwyler'96

- \succ M_I isospin *I* rescattering in two particles
- > Amplitude in terms of S and P waves \implies exact up to NNLO ($\mathcal{O}(p^6)$)
- Main two body rescattering corrections inside M₁

2.8 Representation of the amplitude

• Decomposition of the amplitude as a function of isospin states

$$M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$$

• Unitarity relation:

$$disc\left[M_{\ell}^{I}(s)\right] = \rho(s)t_{\ell}^{*}(s)\left(M_{\ell}^{I}(s) + \hat{M}_{\ell}^{I}(s)\right)$$

• Relation of dispersion to reconstruct the amplitude everywhere:

$$M_{I}(s) = \Omega_{I}(s) \left(\frac{P_{I}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{n}} \frac{\sin \delta_{I}(s') \hat{M}_{I}(s')}{|\Omega_{I}(s')| (s' - s - i\varepsilon)} \right) \qquad \left[\Omega_{I}(s) = \exp\left(\frac{s}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{I}(s')}{s'(s' - s - i\varepsilon)}\right) \right]$$
Omnès function

Gasser & Rusetsky'18

P_I(s) determined from a fit to NLO ChPT + experimental Dalitz plot

Emilie Passemar

2.9 $\eta \rightarrow 3\pi$ Dalitz plot

• In the charged channel: experimental data from WASA, KLOE, BESIII

2.10 Results: Amplitude for $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays

• The amplitude along the line s = u :

Emilie Passer

2.10 Results: Amplitude for $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays

• The amplitude along the line t = u :

Emilie Passemar

2.11 Z distribution for $\eta \rightarrow \pi^0 \pi^0 \pi^0$ decays

• The amplitude squared in the neutral channel is

Emilie Passemar

2.12 Comparison of results for α

2.13 Quark mass ratio

Experimental systematics needs to be taken into account

2.14 Light quark masses

• Smaller values for $Q \implies$ smaller values for m_s/m_d and m_u/m_d than LO ChPT

2.14 Comparison with Lattice

Emilie Passemar

2.15 Prospects

3. $\eta' \rightarrow \eta \pi \pi$ and chiral dynamics

In collaboration with S. Gonzalez-Solis (Indiana University) Eur. Phys. J. C78 (2018) no.9, 758

PDG'19 Gan, Kubis, E. P., Tulin'20

$$M_{\eta'} = 957.78(6) \text{ MeV}$$

$\eta' \to 2\gamma$	$(2.20 \pm 0.08)\%$	chiral anomaly
$\eta' \rightarrow 3\gamma$	$< 1.0 \times 10^{-4}$	C, CP violation
$\eta' ightarrow e^+ e^- \gamma$	$< 9 \times 10^{-4}$	χ PT, dark photon (BSM)
$\eta' \rightarrow 2\pi^0$	$< 4 \times 10^{-4}$	P, CP violation
$\eta' ightarrow \pi^+ \pi^-$	$< 1.8 \times 10^{-5}$	P, CP violation
$\eta' \rightarrow 3\pi^0$	$(2.14 \pm 0.20)\%$	$m_u - m_d$
$\eta' ightarrow \pi^+ \pi^- \pi^0$	$(3.8 \pm 0.4) \times 10^{-3}$	$m_u - m_d$, <i>CP</i> violation
$\eta' ightarrow \eta \pi^+ \pi^-$	$(42.6 \pm 0.7)\%$	$R\chi PT$, anomaly, $\eta - \eta'$ mixing
$\eta' o \eta \pi^0 \pi^0$	$(22.8 \pm 0.8)\%$	R χ PT, anomaly, $\eta - \eta'$ mixing
$\eta' ightarrow \pi^0 e^+ e^-$	$< 1.4 \times 10^{-3}$	C violation
$\eta' \to \pi^+ \pi^- e^+ e^-$	$(2.4^{+1.3}_{-1.0}) \times 10^{-3}$	P, CP violation
$\eta' ightarrow \pi^0 \gamma \gamma$	$< 8 \times 10^{-4}$	χ PT, leptophobic <i>B</i> boson (BSM)
$\eta' \rightarrow \eta e^+ e^-$	$< 2.4 \times 10^{-3}$	<i>C</i> violation

3.1 Why is it interesting to study $\eta' \rightarrow \eta \pi \pi$?

PDG'19 Gan, Kubis, E. P., Tulin'20

-		
$\eta' \to 2\gamma$	$(2.20 \pm 0.08)\%$	chiral anomaly
$\eta' \to 3\gamma$	$< 1.0 \times 10^{-4}$	C, CP violation
$\eta' ightarrow e^+ e^- \gamma$	$< 9 \times 10^{-4}$	χ PT, dark photon (BSM)
$\eta' \to 2\pi^0$	$< 4 \times 10^{-4}$	P, CP violation
$\eta' ightarrow \pi^+ \pi^-$	$< 1.8 \times 10^{-5}$	P, CP violation
$\eta' \rightarrow 3\pi^0$	$(2.14 \pm 0.20)\%$	$m_u - m_d$
$\eta' ightarrow \pi^+ \pi^- \pi^0$	$(3.8 \pm 0.4) \times 10^{-3}$	$m_u - m_d$, CP violation
$\eta^\prime o \eta \pi^+ \pi^-$	$(42.6 \pm 0.7)\%$	$R_{\chi}PT$, anomaly, $\eta - \eta'$ mixing
$\eta' o \eta \pi^0 \pi^0$	$(22.8 \pm 0.8)\%$	$R_{\chi}PT$, anomaly, $\eta - \eta'$ mixing
$\eta' \to \pi^0 e^+ e^-$	$< 1.4 \times 10^{-3}$	C violation
$\eta' ightarrow \pi^+ \pi^- e^+ e^-$	$(2.4^{+1.3}_{-1.0}) \times 10^{-3}$	P, CP violation
$\eta^\prime o \pi^0 \gamma \gamma$	$< 8 \times 10^{-4}$	χ PT, leptophobic <i>B</i> boson (BSM)
$\eta' ightarrow \eta e^+ e^-$	$< 2.4 \times 10^{-3}$	C violation

3.1 Why is it interesting to study $\eta' \rightarrow \eta \pi \pi$?

Main decay channel of the η': PDG'19

- Precise meaurements became available: recent results on
 - neutral channel by A2 collaboration : 1.2 x 10⁵ events

 $\mathrm{BR}(\eta' \to \eta \pi^0 \pi^0) = 22.8(8)\%$

neutral and charged channel by BESIII collaboration: 351 016 events

and

 $\mathbf{BR}(\eta' \to \eta \pi^+ \pi^-) = 42.6(7)\%$

36

$$\begin{aligned} \left| A(s,t,u) \right|^{2} &= N \left(1 + aY + bY^{2} + dX^{2} + fY^{3} + ... \right) \\ s &= \left(p_{\eta'} - p_{\eta} \right)^{2}, \ t = \left(p_{\eta'} - p_{\pi^{+}} \right)^{2}, \ u = \left(p_{\eta'} - p_{\pi^{-}} \right)^{2} \\ \text{Expansion around X=Y=0} \\ X &= \sqrt{3} \frac{T_{-} - T_{+}}{Q_{\eta'}} = \frac{\sqrt{3}}{2M_{\eta'}Q_{\eta'}} (t - u) \\ Y &= \frac{\left(M_{\eta} + 2M_{\pi} \right)}{M_{\pi}} \frac{T_{\eta}}{Q_{\eta'}} - 1 = \frac{\left(M_{\eta} + 2M_{\pi} \right)}{M_{\pi}} \frac{\left(\left(M_{\eta'} - M_{\eta} \right)^{2} - s \right)}{2M_{\eta'}Q_{\eta'}} - 1 \\ Q_{\eta'} &= M_{\eta'} - M_{\eta} - 2M_{\pi} \end{aligned}$$

3.1 Why is it interesting to study $\eta' \rightarrow \eta \pi \pi$?

Main decay channel of the η' : •

BR $(\eta' \to \eta \pi^0 \pi^0) = 22.8(8)\%$

 $BR(\eta' -$

PDG'19

$$\rightarrow \eta \pi^+ \pi^-) = 42.6(7)\%$$

- Precise meaurements became available: recent results on •
 - neutral channel by A2 collaboration : 1.2 x 10⁵ events
 - Neutral and charged channel by *BESIII* collaboration: 351 016 events

and

$$|A(s,t,u)|^2 = N(1+aY+bY^2+dX^2+fY^3+...)$$

- Studying this decay allows •
 - to test any of the extensions of ChPT e.g. resonance chiral theory, Large-N_C U(3) ChPT etc
 - to study the effects of the $\pi\pi$ and $\pi\eta$ final-state interactions

3.2 Theoretical Framework

• Unitarity relations

$$\operatorname{Im} \mathcal{M}_{\eta' \to \eta \pi \pi} = \frac{1}{2} \sum_{n} (2\pi)^4 \, \delta^4 \left(p_{\eta} + p_1 + p_2 - p_n \right) \mathcal{T}_{n \to \eta \pi \pi}^* \mathcal{M}_{\eta' \to n}$$

 A dispersive analysis also exists by *Isken et al.*'17 but here we include D waves as well as kaon loops

n'

3.3 Results

$$|A(s,t,u)|^2 = N(1+aY+bY^2+dX^2+fY^3+...)$$

3.3 Results

$$|A(s,t,u)|^{2} = N(1 + aY + bY^{2} + dX^{2} + fY^{3} + ...)$$

Emilie Passemar

Parameter	Analysis I Fit 1 (with <i>D</i> -wave)	Fit 1 (w/o D-wave)	_
M_S	1017(68)(24)	996(66)(25)	_
c_d	30.4(4.8)(9)	23.3(3.5)(1.5)	
c_m	$= c_d$	$= c_d$	
$ ilde{c}_d$	17.6(2.8)(5)	13.5(2.0)(9)	
$ ilde{c}_m$	$= \tilde{c}_d$	$= \tilde{c}_d \qquad M $	$V(X,Y)_{\text{Full}} ^2/ M(X,Y)_{\text{D-wave=0}} ^2$
$a_{\pi\pi}$	0.76(61)(6)	2.01(1.61)(71)	1.00
$\chi^2_{ m dof}$	1.12	1.24 1.0	
a[Y]	-0.074(7)(8)	-0.091(9)(4)	
$b[Y^2]$	-0.049(1)(2)	-0.013(1)(5) ^{0.5}	
c[X]	0	0	
$\frac{d[X^2]}{d[X^2]}$	-0.047(8)(4)	-0.031(6)(3) > 0.0	
$\kappa_{03}[Y^3]$	0.001	0.001	
$\kappa_{21}[YX^2]$	-0.004	-0.001 -0.5	
$\kappa_{22}[Y^2X^{\bar{2}}]$	0.001	0.0004	
		-1.0	-1.0 -0.5 0.0 0.5 1.0

3.5 Prospects

Simultaneous fit by experimental collaborations to the neutral and charged channels etc

4. Conclusion and Outlook

4.1 Conclusion

- η and η' allows to study the fundamental properties of QCD :
 - Extraction of fundamental parameters of the SM,
 - \Rightarrow e.g. light quark masses
 - Study of chiral dynamics
- To studies η and η' with the best precision: Development of amplitude analysis techniques consistent with analyticity, unitarity, crossing symmetry dispersion relations allow to take into account *all rescattering effects* being as model independent as possible combined with ChPT Provide parametrization for experimental studies
- In this talk, illustration with $\eta\!\to\!3\pi$ and extraction of the light quark masses and $\eta'\!\to\eta\pi\pi$
- Other illustrations in the talk of e.g. *B. Kubis*

4.2 Outlook

- Apply dispersion relations + (R)ChPT to other modes in the light meson sector
 - ω/φ → 3π, πγ: Niecknig, Kubis, Schneider'12, Danilkin et al. JPAC'15,'16, Albaladejo et al"20
 - $\phi \rightarrow \eta \pi \gamma$: Moussallam, Shekhovtsova in progress
 - $J/\psi \rightarrow \gamma \pi \pi$ and $J/\psi \rightarrow \gamma KK$ Rodas, Pilloni et al., JPAC in progress
 - $\eta' \rightarrow 3\pi$: Isken, Kubis and Stoffer in progress
 - e^+e^- → $\psi(2S)\pi^+\pi^-$. e^+e^- → $J/\psi\pi^+\pi^-$. e^+e^- → $h_c\pi^+\pi^-$ Danilkin, Molnar, Vanderhaeghen'19 ,'20
 - etc...

See talks by B. Kubis, D. Molnar, A. Pilloni,... at this conference

5. Back-up

Experimental Facilities and Role of JLab 12

M. J. Amaryan et al. CLAS Analysis Proposal, (2014)

π	e⁺ e⁻ γ			
η	e⁺ e⁻ γ	<i>π⁺</i> π⁻ γ	$\pi^+\pi^-\pi^0,$ $\pi^+\pi^-$	π ⁺ π ⁻ e ⁺ e ⁻
η΄	e⁺ e⁻ γ	<i>π⁺</i> π⁻ γ	π ⁺ π ⁻ π ⁰ , π ⁺ π ⁻	π ⁺ π ⁻ η, π ⁺ π ⁻ e ⁺ e ⁻
ρ		<i>π⁺</i> π⁻ γ		
ω	<i>e</i> ⁺ <i>e</i> ⁻ <i>π</i> ⁰	<i>π⁺</i> π ⁻ γ	$\pi^+\pi^-\pi^0$	
φ			$\pi^+\pi^-\pi^0$	π ⁺ π ⁻ η

2.3 Computation of the amplitude

- What do we know?
- Compute the amplitude using ChPT : the effective theory that describe dynamics of the Goldstone bosons (kaons, pions, eta) at low energy
- Goldstone bosons interact weakly at low energy and $m_u, m_d \ll m_s < \Lambda_{QCD}$ Expansion organized in external momenta and quark masses

Weinberg's power counting rule

$$\mathcal{L}_{eff} = \sum_{d \ge 2} \mathcal{L}_{d} , \mathcal{L}_{d} = \mathcal{O}(p^{d}), p \equiv \{q, m_{q}\}$$

$$p \ll \Lambda_{_H} = 4\pi F_{\pi} \sim 1 \text{ GeV}$$

2.5 Iterative Procedure

2.6 Subtraction constants

• Extension of the numbers of parameters compared to Anisovich & Leutwyler'96

$$P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$$
$$P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$$
$$P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2$$

- In the work of Anisovich & Leutwyler'96 matching to one loop ChPT Use of the SU(2) x SU(2) chiral theorem
 ➡ The amplitude has an Adler zero along the line s=u
- Now data on the Dalitz plot exist from KLOE, WASA, MAMI and BES III
 Use the data to directly fit the subtraction constants
- However normalization to be fixed to ChPT!

2.7 Subtraction constants

• The subtraction constants are

 $P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$ $P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$ $P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2 + \delta_0 s^3$

Only 6 coefficients are of physical relevance

- They are determined from combining ChPT with a fit to KLOE Dalitz plot
- Taylor expand the dispersive M_I Subtraction constants Taylor coefficients

$$M_{0}(s) = A_{0} + B_{0}s + C_{0}s^{2} + D_{0}s^{3} + \dots$$
$$M_{1}(s) = A_{1} + B_{1}s + C_{1}s^{2} + \dots$$
$$M_{2}(s) = A_{2} + B_{2}s + C_{2}s^{2} + D_{2}s^{3} + \dots$$

• Gauge freedom in the decomposition of M(s,t,u)

2.7 Subtraction constants

• Build some gauge independent combinations of Taylor coefficients

$$H_{0} = A_{0} + \frac{4}{3}A_{2} + s_{0}\left(B_{0} + \frac{4}{3}B_{2}\right) \qquad H_{0}^{ChPT} = 1 + 0.176 + O\left(p^{4}\right)$$

$$H_{1} = A_{1} + \frac{1}{9}\left(3B_{0} - 5B_{2}\right) - 3C_{2}s_{0} \qquad \Longrightarrow \qquad h_{1}^{ChPT} = \frac{1}{\Delta_{\eta\pi}}\left(1 - 0.21 + O\left(p^{4}\right)\right)$$

$$H_{2} = C_{0} + \frac{4}{3}C_{2}, \qquad H_{3} = B_{1} + C_{2} \qquad h_{2}^{ChPT} = \frac{1}{\Delta_{\eta\pi}^{2}}\left(4.9 + O\left(p^{4}\right)\right)$$

$$H_{4} = D_{0} + \frac{4}{3}D_{2}, \qquad H_{5} = C_{1} - 3D_{2} \qquad h_{3}^{ChPT} = \frac{1}{\Delta_{\eta\pi}^{2}}\left(1.3 + O\left(p^{4}\right)\right)$$

$$\chi^{2}_{theo} = \sum_{i=1}^{3} \left(\frac{h_{i} - h_{i}^{ChPT}}{\sigma_{h_{i}^{ChPT}}} \right)^{2}$$

$$\sigma_{\boldsymbol{h}_{i}^{ChPT}}=0.3\left|\boldsymbol{h}_{i}^{NLO}-\boldsymbol{h}_{i}^{LO}\right|$$

 $h_i \equiv \frac{H_i}{H_0}$

Isospin breaking corrections

Dispersive calculations in the isospin limit

 to fit to data one has to include
 isospin breaking corrections

•
$$M_{c/n}(s,t,u) = M_{disp}(s,t,u) \frac{M_{DKM}(s,t,u)}{\tilde{M}_{GL}(s,t,u)}$$
 with M_{DKM} : amplitude at one loop with $\mathcal{O}(e^2m)$ effects
 $Ditsche, Kubis, Meissner'09$
 M_{GL} : amplitude at one loop in the isospin limit
 $Gasser \& Leutwyler' 85$
Kinematic map:
 $isospin symmetric boundaries$
 $M_{GL} \Rightarrow \tilde{M}_{GL}$

Emilie Passemar

Emilie Passemar