Precision tests of fundamental physics with η and η ' mesons

Emilie Passemar
Indiana University/Jefferson Laboratory

Meson 2021, May 17-21, 2021

1. Introduction and Motivation
2. $\eta \rightarrow 3 \pi$ and light quark masses
3. $\eta^{\prime} \rightarrow \eta \pi \pi$ and chiral dynamics
4. Conclusion and Outlook
5. Introduction and Motivation

1.1 Why is it interesting to study η and η ' physics?

- In the study of η and η ' physics, large amount of data have been collected:
\Rightarrow CBall, WASA, KLOE \& KLOEII, BESIII, A2@MAMI, CLAS, GlueX

More to come: JEF, REDTOP

- Unique opportunity:
- Test chiral dynamics at low energy
- Extract fundamental parameters of the Standard Model: ex: light quark masses
- Study of fundamental symmetries: C, P \& T violation
- Looking for beyond Standard Model Physics

Rich physics program at η, η^{\prime} factories

Standard Model highlights

- Theory input for light-by-light scattering for $(\mathrm{g}-2)_{\mu}$
- Extraction of light quark masses
- QCD scalar dynamics

Fundamental symmetry tests

- P,CP violation
- C,CP violation
[Kobzarev \& Okun (1964), Prentki \& Veltman (1965), Lee (1965), Lee \&
Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors ($\mathrm{MeV}-\mathrm{GeV}$)

- Vector bosons
- Scalars
- Pseudoscalars (ALPs)
(Plus other channels that have not been searched for to date)

Channel	Expt. branching ratio	Discussion
$\eta \rightarrow 2 \gamma$	39.41(20)\%	chiral anomaly, $\eta-\eta^{\prime}$ mixing
$\eta \rightarrow 3 \pi^{0}$	32.68(23)\%	$m_{u}-m_{d}$
$\eta \rightarrow \pi^{0} \gamma \gamma$	$2.56(22) \times 10^{-4}$	$\chi \mathrm{PT}$ at $O\left(p^{6}\right)$, leptophobic B boson, light Higgs scalars
$\eta \rightarrow \pi^{0} \pi^{0} \gamma \gamma$	$<1.2 \times 10^{-3}$	χ PT, axion-like particles (ALPs)
$\eta \rightarrow 4 \gamma$	$<2.8 \times 10^{-4}$	$<10^{-11}[52]$
$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$	22.92(28)\%	$m_{u}-m_{d}, C / C P$ violation, light Higgs scalars
$\eta \rightarrow \pi^{+} \pi^{-} \gamma$	4.22(8)\%	chiral anomaly, theory input for singly-virtual TFF and $(g-2)_{\mu}, P / C P$ violation
$\eta \rightarrow \pi^{+} \pi^{-} \gamma \gamma$	$<2.1 \times 10^{-3}$	χ PT, ALPs
$\eta \rightarrow e^{+} e^{-} \gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g-2)_{\mu}$, dark photon, protophobic X boson
$\eta \rightarrow \mu^{+} \mu^{-} \gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g-2)_{\mu}$, dark photon
$\eta \rightarrow e^{+} e^{-}$	$<7 \times 10^{-7}$	theory input for $(g-2)_{\mu}$, BSM weak decays
$\eta \rightarrow \mu^{+} \mu^{-}$	$5.8(8) \times 10^{-6}$	theory input for $(g-2)_{\mu}$, BSM weak decays, $P / C P$ violation
$\eta \rightarrow \pi^{0} \pi^{0} \ell^{+} \ell^{-}$		$C / C P$ violation, ALPs
$\eta \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g-2)_{\mu}$, $P / C P$ violation, ALPs
$\eta \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}$	$<3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g-2)_{\mu}$, $P / C P$ violation, ALPs
$\eta \rightarrow e^{+} e^{-} e^{+} e^{-}$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_{\mu}$
$\eta \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}$	$<1.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$
$\eta \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-}$	$<3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$
$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0} \gamma$	$<5 \times 10^{-4}$	direct emission only
$\eta \rightarrow \pi^{ \pm} e^{\mp} v_{e}$	$<1.7 \times 10^{-4}$	second-class current
$\eta \rightarrow \pi^{+} \pi^{-}$	$<4.4 \times 10^{-6}$	$P / C P$ violation Gan, Kubis, E. P.,
$\eta \rightarrow 2 \pi^{0}$	$<3.5 \times 10^{-4}$	$P / C P$ violation Tulin'20
$\eta \rightarrow 4 \pi^{0}$	$<6.9 \times 10^{-7}$	$P / C P$ violation

Rich physics program at η, η^{\prime} factories

Standard Model highlights

- Theory input for light-by-light scattering for $(\mathrm{g}-2)_{\mu}$
- Extraction of light quark masses
- QCD scalar dynamics

Fundamental symmetry tests

- P,CP violation
- C,CP violation
[Kobzarev \& Okun (1964), Prentki \& Veltman (1965), Lee (1965), Lee \&
Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors ($\mathrm{MeV}-\mathrm{GeV}$)

- Vector bosons
- Scalars
- Pseudoscalars (ALPs)
(Plus other channels that have not been searched for to date)

2. $\eta \rightarrow 3 \pi$ and light quark mass extraction

In collaboration with G. Colangelo, S. Lanz and H. Leutwyler (ITP-Bern)
Phys. Rev. Lett. 118 (2017) no. 2, 022001
Eur.Phys.J. C78 (2018) no.11, 947

2.1 Decays of η

- η decay from PDG:

$$
M_{\eta}=547.862(17) \mathrm{MeV}
$$

η DECAY MODES

Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Scale factor/ Confidence level		
	Neutral modes			
Γ_{1}	neutral modes	$(72.12 \pm 0.34) \%$	$\mathrm{~S}=1.2$	
Γ_{2}	2γ	$(39.41 \pm 0.20) \%$	$\mathrm{~S}=1.1$	
Γ_{3}	$3 \pi^{0}$	$(32.68 \pm 0.23) \%$	$\mathrm{~S}=1.1$	
	Charged modes			
Γ_{8}	charged modes	$(28.10 \pm 0.34) \%$		
Γ_{9}	$\pi^{+} \pi^{-} \pi^{0}$	$(22.92 \pm 0.28) \%$	$\mathrm{~S}=1.2$	
Γ_{10}	$\pi^{+} \pi^{-} \gamma$	$(4.22 \pm 0.08) \%$	$\mathrm{~S}=1.2$	
			$\mathrm{~S}=1.1$	

2.1 Why is it interesting to study $\eta \rightarrow 3 \pi$?

- Decay forbidden by isospin symmetry

$$
\Rightarrow A=\left(m_{u}-m_{d}\right) A_{1}+\alpha_{e n} A_{2}
$$

- $\boldsymbol{\alpha}_{e m}$ effects are small

Sutherland'66, Bell \& Sutherland'68
Baur, Kambor, Wyler'96, Ditsche, Kubis, Meissner'09

- Decay rate measures the size of isospin breaking $\left(m_{u}-m_{d}\right)$ in the SM:

$$
L_{Q C D} \rightarrow L_{I B}=-\frac{m_{u}-m_{d}}{2}(\bar{u} u-\bar{d} d)
$$

\Rightarrow Unique access to $\left(m_{u}-m_{d}\right)$

2.1 Definitions

- Mandelstam variables $s=\left(p_{\pi^{+}}+p_{\pi^{-}}\right)^{2}, t=\left(p_{\pi^{-}}+p_{\pi^{0}}\right)^{2}, u=\left(p_{\pi^{0}}+p_{\pi^{+}}\right)^{2}$
\Rightarrow only two independent variables

$$
s+t+u=M_{\eta}^{2}+M_{\pi^{0}}^{2}+2 M_{\pi^{+}}^{2} \equiv 3 s_{0}
$$

- 3 body decay \Rightarrow Dalitz plot

$$
|A(s, t, u)|^{2}=N\left(1+a Y+b Y^{2}+d X^{2}+f Y^{3}+\ldots\right)
$$

Expansion around $X=Y=0$

$$
\begin{aligned}
& \quad X=\sqrt{3} \frac{T_{+}-T_{-}}{Q_{c}}=\frac{\sqrt{3}}{2 M_{\eta} Q_{c}}(u-t) \\
& Y=\frac{3 T_{0}}{Q_{c}}-1=\frac{3}{2 M_{\eta} Q_{c}}\left(\left(M_{\eta}-M_{\pi^{0}}\right)^{2}-s\right)-1 \\
& \text { e Passemar } \\
& Q_{c} \equiv M_{\eta}-2 M_{\pi^{+}}-M_{\pi^{0}}
\end{aligned}
$$

2.2 Quark mass ratio

- In the following, extraction of Q from $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$

$$
\begin{array}{ll}
\left.\begin{array}{ll}
\Gamma_{\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}}=\frac{\mathbf{1}}{Q^{4}} \frac{M_{K}^{4}}{\boldsymbol{M}_{\pi}^{4}} \frac{\left(\boldsymbol{M}_{K}^{2}-M_{\pi}^{2}\right)^{2}}{\mathbf{6 9 1 2} \pi^{3} F_{\pi}^{4} M_{\eta}^{3}} \int_{s_{\text {min }}}^{s_{\min }} d \boldsymbol{s} \int_{u_{-}(s)}^{u_{+}(s)} d \boldsymbol{u}|\boldsymbol{M}(s, t, u)|^{2} \\
\text { Determined from experiment } & \text { Determined from: } \\
& \text { Dispersive calculation } \\
& \text { ChPT }
\end{array}\right] \begin{array}{l}
\text { Fit to } \\
\text { Dalitz distr. }
\end{array}
\end{array}
$$

$$
\left[\widehat{m} \equiv \frac{m_{d}+m_{u}}{2}\right]
$$

- Aim: Compute $\mathrm{M}(\mathrm{s}, \mathrm{t}, \mathrm{u})$ with the best accuracy

2.3 Computation of the amplitude

- What do we know?
- Compute the amplitude using ChPT :

$$
\Gamma_{\eta \rightarrow 3 \pi}=(\underset{\text { LO }}{(66+94+\ldots+\ldots)} \mathrm{NLO} \mathrm{NNLO}
$$

LO: Osborn, Wallace'70
NLO: Gasser \& Leutwyler' 85
NNLO: Bijnens \& Ghorbani'07

The Chiral series has convergence problems

2.3 Computation of the amplitude

- What do we know?
- The amplitude has an Adler zero: soft pion theorem

Adler'85

\[

\]

SU(2) corrections

2.4 Neutral channel : $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$

- What do we know?
- We can relate charged and neutral channels

$$
\bar{A}(s, t, u)=A(s, t, u)+A(t, u, s)+A(u, s, t)
$$

\square Correct formalism should be able to reproduce both charged and neutral channels

- Ratio of decay width precisely measured

$$
r=\frac{\Gamma\left(\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)}{\Gamma\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)}=\mathbf{1 . 4 2 6} \pm \mathbf{0 . 0 2 6} \quad \text { PDG'19 }
$$

2.4 Neutral Channel : $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$

$$
Q_{n} \equiv M_{\eta}-3 M_{n^{0}}
$$

- Decay amplitude $\Gamma_{\eta \rightarrow 3 \pi} \propto|\bar{A}|^{2} \propto 1+2 \alpha Z$ with $Z=\frac{2}{3} \sum_{i=1}^{3}\left(\frac{3 T_{i}}{Q_{n}}-1\right)^{2}$

2.5 Dispersive treatment

- The Chiral series has convergence problems
\square Large $\pi \pi$ final state interactions
Roiesnel \& Truong'81

$+\ldots$

2.5 Dispersive treatment

- The Chiral series has convergence problems
\square Large $\pi \pi$ final state interactions

Roiesnel \& Truong'81

- Dispersive treatment :
- analyticity, unitarity and crossing symmetry
- Take into account all the rescattering effects

2.6 Why a new dispersive analysis?

- Several new ingredients:
- New inputs available: extraction $\pi \pi$ phase shifts has improved

> Ananthanarayan et al'01, Colangelo et al'01
> Descotes-Genon et al'01
> Kaminsky et al'01, Garcia-Martin et al'09

- New experimental programs, precise Dalitz plot measurements

TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich) CBall-Brookhaven, CLAS, GlueX (JLab), KLOE I-II (Frascati) BES III (Beijing)

- Many improvements needed in view of very precise data: inclusion of
- Electromagnetic effects $\left(\mathcal{O}\left(\mathrm{e}^{2} \mathrm{~m}\right)\right)$ Ditsche, Kubis, Meissner'09
- Isospin breaking effects
- Inelasticities

Gullstrom, Kupsc, Rusetsky'09, Schneider, Kubis, Ditsche'11

Albaladejo \& Moussallam'15

2.7 Method

- S-channel partial wave decomposition

$$
A_{\lambda}(s, t)=\sum_{J}^{\infty}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) A_{J}(s)
$$

- One truncates the partial wave expansion : \Rightarrow Isobar approximation

$$
\begin{aligned}
A_{\lambda}(s, t) & =\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) f_{J}(s) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{t}\right) f_{J}(t) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{u}\right) f_{J}(u)
\end{aligned}
$$

3 BWs ($\left.\rho^{+}, \rho^{-}, \rho^{0}\right)+$ background term
\Rightarrow Improve to include final states interactions

2.7 Method

- S-channel partial wave decomposition

$$
A_{\lambda}(s, t)=\sum_{J}^{\infty}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) A_{J}(s)
$$

- One truncates the partial wave expansion : \square Isobar approximation

$$
\begin{aligned}
A_{\lambda}(s, t) & =\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) f_{J}(s) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{t}\right) f_{J}(t) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{u}\right) f_{J}(u)
\end{aligned}
$$

- Use a Khuri-Treiman approach or dispersive approach

\RightarrowRestore 3 body unitarity and take into account the final state interactions in a systematic way

2.8 Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

Fuchs, Sazdjian \& Stern'93
$>\boldsymbol{M}_{I}$ isospin / rescattering in two particles Anisovich \& Leutwyler'96
$>$ Amplitude in terms of S and P waves \Rightarrow exact up to $\operatorname{NNLO}\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
> Main two body rescattering corrections inside M_{1}

2.8 Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}^{0}(s)+(s-u) M_{1}^{1}(t)+(s-t) M_{1}^{1}(u)+M_{0}^{2}(t)+M_{0}^{2}(u)-\frac{2}{3} M_{0}^{2}(s)
$$

Roy analysis

- Unitarity relation:

$$
\frac{\operatorname{disc}\left[M_{\ell}^{I}(s)\right]=\rho(s) t_{\ell}^{*}(s)\left(M_{\ell}^{I}(s)+\hat{\boldsymbol{M}}_{\ell}^{I}(s)\right)}{\pi \pi \rightarrow \pi \pi} \overbrace{\text { right-hand cut }}^{\text {left-hand cut }}
$$

2.8 Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

- Unitarity relation:

$$
\operatorname{disc}\left[M_{\ell}^{I}(s)\right]=\rho(s) t_{\ell}^{*}(s)\left(M_{\ell}^{I}(s)+\hat{M}_{\ell}^{I}(s)\right)
$$

- Relation of dispersion to reconstruct the amplitude everywhere:

$$
\begin{aligned}
& \begin{array}{l}
M_{I}(s)=\Omega_{I}(s)\left(P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime n}} \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\Omega_{I}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right) \\
\text { Omnès function }
\end{array} \quad\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right] \\
& \text { Gasser \& Rusetsky'18 }
\end{aligned}
$$

- $P_{\mathrm{l}}(\mathrm{s})$ determined from a fit to NLO ChPT + experimental Dalitz plot

$2.9 \eta \rightarrow 3 \pi$ Dalitz plot

- In the charged channel: experimental data from WASA, KLOE, BESIII

- New data expected from CLAS and GlueX with very different systematics

2.10 Results: Amplitude for $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays

- The amplitude along the line $\mathrm{s}=\mathrm{u}$:

2.10 Results: Amplitude for $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays

- The amplitude along the line $t=u$:

2.11 Z distribution for $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$ decays

- The amplitude squared in the neutral channel is

2.12 Comparison of results for α

2.13 Quark mass ratio

$Q=22.1 \pm 0.7$

- Experimental systematics needs to be taken into account

2.14 Light quark masses

- Smaller values for $Q \Rightarrow$ smaller values for m_{s} / m_{d} and $m_{\mathrm{u}} / \mathrm{m}_{\mathrm{d}}$ than LO ChPT

2.14 Comparison with Lattice

2.15 Prospects

- Uncertainties in the quark mass ratio

Can be investigated and reduced at future facilities

3. $\eta^{\prime} \rightarrow \eta \pi \pi$ and chiral dynamics

In collaboration with
S. Gonzalez-Solis (Indiana University)

Eur. Phys. J. C78 (2018) no.9, 758

3.1 Why is it interesting to study $\eta^{\prime} \rightarrow \eta \pi \pi$?

$M_{\eta^{\prime}}=957.78(6) \mathrm{MeV}$

$\eta^{\prime} \rightarrow 2 \gamma$	$(2.20 \pm 0.08) \%$	chiral anomaly
$\eta^{\prime} \rightarrow 3 \gamma$	$<1.0 \times 10^{-4}$	$C, C P$ violation
$\eta^{\prime} \rightarrow e^{+} e^{-} \gamma$	$<9 \times 10^{-4}$	$\chi \mathrm{PT}$, dark photon (BSM)
$\eta^{\prime} \rightarrow 2 \pi^{0}$	$<4 \times 10^{-4}$	$P, C P$ violation
$\eta^{\prime} \rightarrow \pi^{+} \pi^{-}$	$<1.8 \times 10^{-5}$	$P, C P$ violation
$\eta^{\prime} \rightarrow 3 \pi^{0}$	$(2.14 \pm 0.20) \%$	$m_{u}-m_{d}$
$\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0}$	$(3.8 \pm 0.4) \times 10^{-3}$	$m_{u}-m_{d}, C P$ violation
$\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$	$(42.6 \pm 0.7) \%$	$\mathrm{R} \chi \mathrm{PT}$, anomaly, $\eta-\eta^{\prime}$ mixing
$\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}$	$(22.8 \pm 0.8) \%$	$\mathrm{R} \chi \mathrm{PT}$, anomaly, $\eta-\eta^{\prime}$ mixing
$\eta^{\prime} \rightarrow \pi^{0} e^{+} e^{-}$	$<1.4 \times 10^{-3}$	C violation
$\eta^{\prime} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$	$\left(2.4_{-1.0}^{+1.3}\right) \times 10^{-3}$	$P, C P$ violation
$\eta^{\prime} \rightarrow \pi^{0} \gamma \gamma$	$<8 \times 10^{-4}$	$\chi \mathrm{PT}$, leptophobic B boson (BSM)
$\eta^{\prime} \rightarrow \eta e^{+} e^{-}$	$<2.4 \times 10^{-3}$	C violation

3.1 Why is it interesting to study $\eta^{\prime} \rightarrow \eta \pi \pi$?

3.1 Why is it interesting to study $\eta^{\prime} \rightarrow \eta \pi \pi$?

- Main decay channel of the η^{\prime} :

$$
\operatorname{BR}\left(\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}\right)=22.8(8) \% \quad \text { and }
$$

$$
\operatorname{BR}\left(\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}\right)=42.6(7) \%
$$

- Precise meaurements became available: recent results on
- neutral channel by A2 collaboration: 1.2×10^{5} events
- neutral and charged channel by BESIII collaboration: 351016 events

$$
|A(s, t, u)|^{2}=N\left(1+a Y+b Y^{2}+d X^{2}+f Y^{3}+\ldots\right)
$$

$s=\left(p_{\eta^{\prime}}-p_{\eta}\right)^{2}, t=\left(p_{\eta^{\prime}}-p_{\pi^{+}}\right)^{2}, u=\left(p_{\eta^{\prime}}-p_{\pi^{-}}\right)^{2}$
Expansion around $\mathrm{X}=\mathrm{Y}=0$

$$
X=\sqrt{3} \frac{T_{-}-T_{+}}{Q_{\eta^{\prime}}}=\frac{\sqrt{3}}{2 M_{\eta^{\prime}} Q_{\eta^{\prime}}}(t-u)
$$

$Y=\frac{\left(M_{\eta}+2 M_{\pi}\right)}{M_{\pi}} \frac{T_{\eta}}{Q_{\eta^{\prime}}}-1=\frac{\left(M_{\eta}+2 M_{\pi}\right)}{M_{\pi}} \frac{\left(\left(M_{\eta^{\prime}}-M_{\eta}\right)^{2}-s\right)}{2 M_{\eta^{\prime}} Q_{\eta^{\prime}}}-1$

3.1 Why is it interesting to study $\eta^{\prime} \rightarrow \eta \pi \pi$?

- Main decay channel of the η^{\prime} :

$$
\operatorname{BR}\left(\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}\right)=22.8(8) \% \quad \text { and } \quad \operatorname{BR}\left(\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}\right)=42.6(7) \%
$$

- Precise meaurements became available: recent results on
- neutral channel by A2 collaboration: 1.2×10^{5} events
- Neutral and charged channel by BESIII collaboration: 351016 events

$$
|A(s, t, u)|^{2}=N\left(1+a Y+b Y^{2}+d X^{2}+f Y^{3}+\ldots\right)
$$

- Studying this decay allows
- to test any of the extensions of ChPT e.g. resonance chiral theory, Large- $\mathrm{N}_{\mathrm{C}} \mathrm{U}(3) \mathrm{ChPT}$ etc
- to study the effects of the $\pi \pi$ and $\pi \eta$ final-state interactions

3.2 Theoretical Framework

$$
\binom{\eta}{\eta^{\prime}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{\eta_{8}}{\eta_{1}}
$$

- $\mathrm{U}(3)$ ChPT with resonances at one-loop

3.2 Theoretical Framework

$$
\binom{\eta}{\eta^{\prime}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{\eta_{8}}{\eta_{1}}
$$

- $\mathrm{U}(3)$ ChPT with resonances at one-loop

$+$

Final-state interaction through the N/D unitarization method

3.2 Theoretical Framework

- Unitarity relations

$$
\operatorname{Im} \mathcal{M}_{\eta^{\prime} \rightarrow \eta \pi \pi}=\frac{1}{2} \sum_{n}(2 \pi)^{4} \delta^{4}\left(p_{\eta}+p_{1}+p_{2}-p_{n}\right) \mathcal{T}_{n \rightarrow \eta \pi \pi}^{*} \mathcal{M}_{\eta^{\prime} \rightarrow n}
$$

- A dispersive analysis also exists by Isken et al.'17 but here we include D waves as well as kaon loops

3.3 Results

3.3 Results

ChPT
$a[Y]=-0.095(6)$
$b\left[Y^{2}\right]=0.005(1)$
$d\left[X^{2}\right]=-0.037(5)$

Dalitz slope parameters
Final-state interactions

$$
a[Y]=-0.073(7)(5)
$$

$\Rightarrow \quad b\left[Y^{2}\right]=-0.052(1)(2)$

$$
d\left[X^{2}\right]=-0.052(8)(5)
$$

$$
\left.A(s, t, u)\right|^{2}=N\left(1+a Y+b Y^{2}+d X^{2}+f Y^{3}+\ldots\right)
$$

3.3 Results

$$
|A(s, t, u)|^{2}=N\left(1+a Y+b Y^{2}+d X^{2}+f Y^{3}+\ldots\right)
$$

3.4 Role of the D-wave $\pi \pi$ FSI

Parameter

Analysis I
Fit 1 (with D-wave) Fit 1 (w/o D-wave)

3.5 Prospects

- Comparison to BESIII data

- Simultaneous fit by experimental collaborations to the neutral and charged channels etc

4. Conclusion and Outlook

4.1 Conclusion

- $\quad \eta$ and η ' allows to study the fundamental properties of QCD :
- Extraction of fundamental parameters of the SM, \square e.g. light quark masses
- Study of chiral dynamics
- To studies η and η ' with the best precision: Development of amplitude analysis techniques consistent with analyticity, unitarity, crossing symmetry dispersion relations allow to take into account all rescattering effects being as model independent as possible combined with ChPT \square Provide parametrization for experimental studies
- In this talk, illustration with $\eta \rightarrow 3 \pi$ and extraction of the light quark masses and $\eta^{\prime} \rightarrow \eta \pi \pi$
- Other illustrations in the talk of e.g. B. Kubis

4.2 Outlook

- Apply dispersion relations + (R)ChPT to other modes in the light meson sector
- $\omega / \varphi \rightarrow 3 \pi, \pi \gamma:$ Niecknig, Kubis, Schneider'12, Danilkin et al. JPAC'15,'16, Albaladejo et al"20
- $\varphi \rightarrow \eta \pi \gamma:$ Moussallam, Shekhovtsova in progress
- J/ $\psi \rightarrow$ үாாт and J/ $\psi \rightarrow$ үKK Rodas, Pilloni et al., JPAC in progress
- $\eta^{\prime} \rightarrow 3 \pi$: Isken, Kubis and Stoffer in progress
$-\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(2 \mathrm{~S}) \pi^{+} \pi^{-} . \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-} . \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{h}_{\mathrm{c}} \pi^{+} \pi^{-}$Danilkin, Molnar, Vanderhaeghen'19,'20
- etc...

See talks by B. Kubis, D. Molnar, A. Pilloni,... at this conference

5. Back-up

Experimental Facilities and Role of JLab 12

M. J. Amaryan et al.

CLAS Analysis Proposal, (2014)

π	$e^{+} e^{*} \boldsymbol{y}$			
η	$e^{+} e^{*} \gamma$	$\pi^{+} \pi^{\prime} \boldsymbol{V}$	$\frac{\pi^{+} \pi^{+} \pi^{0},}{\pi^{+} \pi^{\prime}}$	$\pi^{+} \boldsymbol{r}^{+} e^{+} e^{-}$
η^{\prime}	$e^{+} e^{*} \boldsymbol{y}$	$\pi^{+} \pi^{\prime} \gamma$	$\begin{gathered} \pi^{+} \pi^{\prime} \pi^{0} \\ \pi^{+} \pi \end{gathered}$	$\begin{gathered} \pi^{+} \pi \eta \\ \pi^{+} \pi e^{+} e^{-} \end{gathered}$
ρ		$\pi^{+} \pi^{*} \gamma$		
ω	$e^{+} e^{-} \pi^{0}$	$\pi^{+} \pi^{\prime} \gamma$	$\pi^{+} \pi \pi^{0}$	
φ			$\pi^{+} \pi^{+} \pi^{0}$	$\pi^{+} \pi^{\prime} \eta$

2.3 Computation of the amplitude

- What do we know?
- Compute the amplitude using ChPT : the effective theory that describe dynamics of the Goldstone bosons (kaons, pions, eta) at low energy
- Goldstone bosons interact weakly at low energy and $\boldsymbol{m}_{u}, \boldsymbol{m}_{\boldsymbol{d}} \ll \boldsymbol{m}_{s}<\Lambda_{Q C D}$ Expansion organized in external momenta and quark masses

Weinberg's power counting rule

$$
\mathcal{L}_{e f f}=\sum_{d \geq 2} \mathcal{L}_{d}, \mathcal{L}_{d}=\mathcal{O}\left(p^{d}\right), p \equiv\left\{q, m_{q}\right\}
$$

$$
\mathrm{p} \ll \Lambda_{H}=4 \pi F_{\pi} \sim 1 \mathrm{GeV}
$$

2.5 Iterative Procedure

- Solution linear in the subtraction constants
$\boldsymbol{M}(\boldsymbol{s}, \boldsymbol{t}, \boldsymbol{u})=\alpha_{0} M_{\alpha_{0}}(\boldsymbol{s}, \boldsymbol{t}, \boldsymbol{u})+\boldsymbol{\beta}_{0} M_{\beta_{0}}(\boldsymbol{s}, \boldsymbol{t}, \boldsymbol{u})+\ldots \Rightarrow$ makes the fit much easier

2.6 Subtraction constants

- Extension of the numbers of parameters compared to Anisovich \& Leutwyler'96

$$
\begin{aligned}
& P_{0}(s)=\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3} \\
& P_{1}(s)=\alpha_{1}+\beta_{1} s+\gamma_{1} s^{2} \\
& P_{2}(s)=\alpha_{2}+\beta_{2} s+\gamma_{2} s^{2}
\end{aligned}
$$

- In the work of Anisovich \& Leutwyler'96 matching to one loop ChPT Use of the $\operatorname{SU}(2) \times \operatorname{SU}(2)$ chiral theorem
\Rightarrow The amplitude has an Adler zero along the line $\mathrm{s}=\mathrm{u}$
- Now data on the Dalitz plot exist from KLOE, WASA, MAMI and BES III \Rightarrow Use the data to directly fit the subtraction constants
- However normalization to be fixed to ChPT!

2.7 Subtraction constants

- The subtraction constants are

$$
\begin{aligned}
& P_{0}(s)=\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3} \\
& P_{1}(s)=\alpha_{1}+\beta_{1} s+\gamma_{1} s^{2} \\
& P_{2}(s)=\alpha_{2}+\beta_{2} s+\gamma_{2} s^{2}+\delta_{0} s^{3}
\end{aligned}
$$

Only 6 coefficients are of physical relevance

- They are determined from combining ChPT with a fit to KLOE Dalitz plot
- Taylor expand the dispersive M_{1} Subtraction constants \Leftrightarrow Taylor coefficients

$$
\begin{aligned}
& M_{0}(s)=A_{0}+B_{0} s+C_{0} s^{2}+D_{0} s^{3}+\ldots \\
& M_{1}(s)=A_{1}+B_{1} s+C_{1} s^{2}+\ldots \\
& M_{2}(s)=A_{2}+B_{2} s+C_{2} s^{2}+D_{2} s^{3}+
\end{aligned}
$$

- Gauge freedom in the decomposition of $\mathrm{M}(\mathrm{s}, \mathrm{t}, \mathrm{u})$

2.7 Subtraction constants

- Build some gauge independent combinations of Taylor coefficients

$$
\left.\begin{array}{ll}
H_{0}=A_{0}+\frac{4}{3} A_{2}+s_{0}\left(B_{0}+\frac{4}{3} B_{2}\right) \\
H_{1}=A_{1}+\frac{1}{9}\left(3 B_{0}-5 B_{2}\right)-3 C_{2} s_{0} \\
H_{2}=C_{0}+\frac{4}{3} C_{2}, \quad H_{3}=B_{1}+C_{2} & \boldsymbol{H}_{\mathbf{0}}^{\text {ChIT }}=\mathbf{1}+\mathbf{0 . 1 7 6}+\boldsymbol{O}\left(\boldsymbol{p}^{4}\right) \\
H_{4}=D_{0}+\frac{4}{3} D_{2}, \quad H_{5}=C_{1}-3 D_{2} & \boldsymbol{h}_{\mathbf{1}}^{\text {ChIT }}=\frac{\mathbf{1}}{\Delta_{\eta \pi}}\left(\mathbf{1}-\mathbf{0 . 2 1}+\boldsymbol{O}\left(\boldsymbol{p}^{4}\right)\right) \\
\Rightarrow \boldsymbol{h}_{\boldsymbol{i}}^{\text {ChIT }}=\frac{\mathbf{1}}{\Delta_{\eta \pi}^{2}}\left(\mathbf{4 . 9}+\boldsymbol{O}\left(\boldsymbol{p}^{4}\right)\right) \\
\boldsymbol{H}_{\mathbf{0}}
\end{array}\right]
$$

Isospin breaking corrections

- Dispersive calculations in the isospin limit \Rightarrow to fit to data one has to include isospin breaking corrections
- $M_{c / n}(s, t, u)=M_{d i s p}(s, t, u) \frac{M_{D K M}(s, t, u)}{\tilde{M}_{G L}(s, t, u)}$

$$
Y_{n}=\frac{3 T_{3}}{Q_{n}}-1
$$

Neutral channel
with $M_{\text {DKM }}$: amplitude at one loop
$M_{G L}$: amplitude at one loop in the isospin limit

Gasser \& Leutwyler' 85

Kinematic map: isospin symmetric boundaries
\Rightarrow physical boundaries

$$
M_{G L} \rightarrow \tilde{M}_{G L}
$$

$Q_{n} \equiv M_{\eta}-3 M_{n^{0}}$

2.15 Prospects

Exp.	$3 n^{0}$ Events $\left(10^{6}\right)$	$n^{+} n^{-} n^{0}$ Events $(\mathbf{1 0})$
Total world data (include prel. WASA and prel. KLOE)	6.5	6.0
GlueX+PrimEx- + +JEF	20	19.6

- Existing data from the low energy facilities are sensitive to the detection threshold effects
- JEF at high energy has uniform detection efficiency over Dalitz phase space
- JEF will offer large statistics and different systematics

