Results on Hadron Properties in π , p, A+A Collisions from HADES

Manuel Lorenz for the HADES collaboration Goethe-University Frankfurt

Outline

Introduction:

QCD and hadron properties Observables and experimental access

Results:

Dilepton radiation Strangeness Bulk properties in A+A

FAIR-Phase 0:

New detectors and new Ag+Ag data

QCD and the Generation of Mass

Distortion of color neutrality

Localization "costs" energy! $\Delta x \Delta p \ge \hbar \quad E^2 = (pc)^2 + (mc^2)^2$

"Observed hadron masses are nature's compromise between distortion of the vacuum and localization!" F. Wilczek

M >> ∑ m_i Only a few percent result from the Higgs-field.

The QCD vacuum is not empty but filled with condensates which must be displaced and are related to hadron properties:

 \rightarrow Change vacuum, change hadron properties!

Experimental Access and Observable

p,π,**γ**

Experimental Access and Observable

Example: **p meson**

Probe: dilepton decay **Observable:** line shape modifications More controlled conditions in cold nuclear matter, no time evolution Stronger effects in HIC, time evolution of density and temperature

Example: K⁻ meson

Experimental Access and Observable

HADES

200

 $m_t - m_0 [MeV/c^2]$

0

Fast detector: 16 kHz Ag+Ag Large acceptance: full azimuthal and polar angle coverage of $\Theta = 18^{\circ} - 85^{\circ}$

Dilepton Radiation: p+Nb

for Strangeness in p+Nb see K. Nowakowski 20/05/ 17:15

for Transition Form Factors in p+p: see W. Przygoda17/05/ 16:45

Experimental Acceptance

Compared to CLAS and KEK-E325 better coverage of slow vector mesons → compare "slow" and "fast" vector meson with p+p reference

"Fast" and "Slow"

10

"Fast" and "Slow" Vector Mesons

High momentum: no significant difference in line shape of continuum and ω mesons.

Low momentum: strong difference due to additional **ρ**-like contribution and suppression of **ω**'s

Fast and Slow Vector Mesons

High momentum: pairs no significant difference in line shape of dielectrons and ω mesons.

Low momentum: strong difference due to additional ρ -like contribution and suppression of ω 's

Dilepton Radiation: Heavy-Ions

- First measurement for a heavy collision system at low $\sqrt{s_{NN}}$.
- Strong excess (0.15<M<0.7 GeV/c²) above components of meson decays at freeze-out and NN-reference.
 - Isolation of excess by subtracting the NN-reference.

Dilepton Radiation: Heavy-Ions

- First measurement for a heavy system at low $\sqrt{s_{NN}}$.
- Strong excess (0.15<M<0.7 GeV/c²) above components of meson decays at freeze-out and NN-reference.
- Isolation of excess by subtracting the NN-reference.
- Medium radiation: Strong broadening of the ρ due to direct ρ -baryon scattering
- Exponentially falling spectrum,
- \rightarrow extraction of temperature $\langle T_{ee} \rangle = 72 \text{ MeV}$

Dilepton Radiation: Heavy-lons

Onset of medium radiation ("fireball") in Ar+KCl collisions

- First measurement for a heavy system at low $\sqrt{s_{NN}}$.
- Strong excess (0.15<M<0.7 GeV/c²) above components of meson decays at freeze-out and NN-reference.
- Isolation of excess by subtracting the NN-reference.
- Medium radiation: Strong broadening of the ρ due to direct ρ -baryon scattering
- Exponentially falling spectrum,
- \rightarrow extraction of temperature $\langle T_{ee} \rangle$ = 72 MeV

Neutron star merger and HIC at HADES

M. Hanauske, J.Phys.: Conf. Series878 012031 (2017) L. Rezzolla et. al. PRL 122, n0.6, 061101 (2019) Au+Au simulation UrQMD: S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).

$T \approx 70 \text{ MeV}, \rho \approx 3\rho_0 \text{ in both cases}$

Neutron Star Matter under the Microscope: How "strange" is it?

Chemistry: How much strangeness is there? How is it distributed amoung different hadrons?

Kinematics: K, Y – nucleon potential?

Relevant for stability of neutron stars

Weak decay topology recognition with neural networks

Weak decay topology recognition with neural networks

Strangeness in Au+Au @ √s_{NN}= 2.4 GeV

Complete set of strange hadrons produced below NN-threshold: $NN \rightarrow NYK^+$: $\sqrt{s_{NN}} = 2.55 \text{ GeV}$ $NN \rightarrow NNK^+K^-: \sqrt{s_{NN}} = 2.86 \text{ GeV}$

 \rightarrow unique observable:

Energy must be provided by the system.

Strange particle yields rise stronger than linear with

$$(M \sim ^{\alpha})$$

Universal <A_{part}> dependence of strangeness production

→ Hierarchy in production threshold not reflected in scaling

Scaling with absolute amount of ssbar, not with individual hadron states.

Φ-AntiKaon Interplay in HIC

(1/m²) x (d²N/(dm_tdy))) [(MeV/c²)⁻³]

10⁻¹¹

10^{-12∟}

0

K cocktail

50

----- K⁻ thermal — – K⁻ from ø

Increased in HIC at low $\sqrt{s_{NN}}$: \rightarrow 25% of K⁻ result from Φ decays! Φ feed-down can explain lower inverse slope parameter of K⁻ spectrum (T_{eff} = 84 ± 6 MeV) in comparison to the one of K⁺(T_{eff} = 104 ± 1 MeV)

100

---- Fit T=84 MeV "cold" K⁻ from ϕ

84 MeV

104 MeV

m_t-m_k [MeV/c²]

150

 \rightarrow No indication for sequential K⁺K⁻ freeze-out from K⁻ spectrum if corrected for feed-down.

M. Lorenz et al. PoS BORMIO2010 (2010) 038

Phys.

ett.

B77

 ∞

(20)

)18)

403-40,

200

Φ-AntiKaon Interplay in Cold Matter

Phys.Rev.Lett. 123 (2019) 2, 022002

Global Collision Dynamics

Flow Anisotropies

 ${\sf Out-of-plane}\;v_2$

- Long spectator passing time $\tau_{\text{passing}} \approx \tau_{\text{expansion}}$
- Squeeze-out

Event plane reconstruction based on hits of charged projectile spectators in the FW

p, d, t : v₁ - v₆

First analysis up to v_6 in this energy regime

sensitve to EOS

Parameterization of y dependence:

 $v_{1,3,5}(y_{cm}) = ay_{cm} + by_{cm}^3$ $v_{2,4,6}(y_{cm}) = c + dy_{cm}^2$

3D Visualization of Particle Flow

FAIR - Phase 0

$Ag+Ag \sqrt{s_{NN}} = 2.6 \text{ GeV: Virtual Photons}$

¹/₂ of the modules CBM RICH photon detector Stable operation during 4 weeks of beamtime

$Ag+Ag \sqrt{s_{NN}} = 2.6 \text{ GeV}$: Charged Pions

High statistics allow for higher flow coefficients

 \rightarrow First observation of pion v₃ at this energy

$Ag+Ag \sqrt{s_{NN}} = 2.6$ GeV: Strangeness

Slightly lower slope $\mathbf{a}_{Ag+Ag} = 1.38 \pm 0.03$ Test for universal scaling: K⁻ and $\mathbf{\phi}$

First observation ³_AH at midrapidity in this energy range

Summary

Virtual Photons:

p+Nb:

strong difference due to additional ${f
ho}$ -like contribution and suppression of ${m \omega}$'s for low pair momenta

HIC:

Strong broadening of the \mathbf{p} , exponentially falling spectrum,

 \rightarrow extraction of temperature $\langle T_{ee} \rangle = 72$ MeV Onset of medium radiation in Ar+KCl collisions.

Strangeness:

No indication for sequential K^+K^- freeze-out if p_t spectra corrected for feed-down. Universal $\langle A_{part} \rangle$ dependence of strangeness production.

The Bulk:

First data on: flow anisotropies up to v_6 .

FAIR-Phase0:

High quality data to come are here A lot to come in the next years.

