MESOND2021

Study of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \eta^{\prime}(958)$ in the double-tag mode at BABAR
Evgeny Kozyrev
Novosibirsk State University Budker INP SB RAS, Novosibirsk, Russia on behalf of the BaBar collaboration Phys.Rev.D 98 (2018) 11, 112002

$16^{\text {th }}$ International Workshop on Meson Physics

Outline

\rightarrow Introduction
Transition form factor (TFF) at large momentum transfers TFF at small momentum transfers Existing experimental data
\rightarrow Measurement of the TFF of n^{\prime} meson with BaBar detector
\rightarrow Comparison with theoretical predictions
\rightarrow Summary

The amplitude of the $\gamma^{*} y^{*} \rightarrow P$ transition
P - pseudoscalar meson
$e_{1,2}$ - photon polarization

$$
\boldsymbol{A}=\boldsymbol{e}^{2} \boldsymbol{\varepsilon}_{\mu v \alpha \beta} \boldsymbol{e}_{1}^{\mu} \boldsymbol{e}_{2}^{v} \boldsymbol{q}_{1}^{\alpha} \boldsymbol{q}_{2}^{\beta} \boldsymbol{F}\left(\boldsymbol{q}_{1}^{2}, \boldsymbol{q}_{2}^{2}\right)
$$

$q_{1,2}$ - 4-momentum of photon

- there are a lot of experimental study of pseudoscalar meson production via the fusion of real (on-shell) and virtual (off-shell) photons $V^{\star} \gamma \rightarrow P: \pi^{0}, n, n^{\prime}, n_{c}$
- there are no measurements of the double off-shell transitions $\gamma^{\star} \gamma^{\star} \rightarrow P$

$$
\mathbf{F}\left(\mathbf{Q}_{1}^{2}, \mathbf{Q}^{2}\right)=\int \mathbf{T}\left(\mathbf{x}, \mathbf{Q}^{2}, \mathbf{Q}_{2}^{2}\right) \varphi\left(\mathbf{x}, \mathbf{Q}^{2}{ }_{1}, \mathbf{Q}_{2}{ }_{2}\right) \mathbf{d x}
$$ x - is the fraction of the meson momentum carried by one of the quarks $\mathbf{T}\left(\mathbf{x}, \mathbf{Q}^{2}, \mathbf{Q}^{2}{ }_{2}\right)$ - hard scattering amplitude for $\gamma^{*} \gamma^{*} \rightarrow \mathrm{qqbar}$ transition which is calculable in pQCD $\varphi\left(\mathbf{x}, \mathbf{Q}^{2}, \mathbf{Q}^{2}\right)$ - nonperturbative meson distribution amplitude (DA) describing transition $\mathrm{P} \rightarrow$ qqbar

$$
\begin{gathered}
\text { Hard part Warm part } \\
T_{H}\left(x, Q_{1}^{2}, Q_{2}^{2}\right)=\frac{1}{2} \cdot \frac{1}{x Q_{1}^{2}+(1-x) Q_{2}^{2}} \cdot(1+\underbrace{\left.C_{F} \frac{\alpha_{S}\left(Q^{2}\right)}{2 \pi} \cdot t\left(x, Q_{1}^{2}, Q_{2}^{2}\right)\right)}_{\substack{\text { NLO correction } \\
\text { [E. Braaten, Phys. Rev. D 28, } 3 \text { (1983)] }}})+(x \rightarrow 1-x)+O\left(\alpha_{s}^{2}\right)+O\left(\Lambda_{Q C D}^{4} / Q^{4}\right)
\end{gathered}
$$

- The meson DA $\varphi\left(x, Q^{2}{ }_{1}, Q^{2}{ }_{2}\right)$ plays an important role in theoretical descriptions of many QCD processes. Its shape (x dependence) is unknown, however its universal asymptotic form:

At the limit $\mu \rightarrow \infty \quad \phi_{P}(x, \mu)=A_{P} 6 x(1-x)\left(1+O\left(\Lambda_{Q C D}^{2} / \mu^{2}\right)\right)$
[S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24, 7 (1981)]

Introduction. $\mathrm{F}\left(\mathrm{Q}^{2}{ }_{1}, \mathrm{Q}^{2}\right)$ at low Q^{2}.

- $F(0,0)$ is related to axial anomaly:

$$
\Gamma_{\eta^{\prime} \rightarrow 2 \gamma}=\frac{\pi \alpha^{2} m_{\eta^{\prime}}^{3}}{4}|F(0,0)|^{2}=4.30 \pm 0.16 \mathrm{keV} \quad \Rightarrow \quad F(0,0)=0.342 \pm 0.006 \mathrm{GeV}^{-1}
$$

- The vector meson dominance model is commonly used to describe TFF at low Q2:

- In case of the TFF with one off-shell photon the pQCD and VMD models leads to the same asymptotic behaviour $\mathrm{F}\left(\mathrm{Q}^{2}\right) \propto 1 / \mathrm{Q}^{2}$ at $\mathrm{Q}^{2} \rightarrow \infty$.

$$
\begin{array}{ccc}
& \mathrm{VMD} & \mathrm{pQCD} \\
\mathrm{Q}_{1}{ }^{2} \approx 0, \mathrm{Q}_{2}{ }^{2} \rightarrow \infty & 1 / \mathrm{Q}^{2} & 1 / \mathrm{Q}^{2} \\
\mathrm{Q}_{1}^{2}, \mathrm{Q}_{2}{ }^{2} \rightarrow \infty & 1 / \mathrm{Q}^{4} & 1 / \mathrm{Q}^{2}
\end{array}
$$

$F_{\eta^{\prime}}\left(Q_{1}^{2}, Q_{2}^{2}\right)=\left(\frac{5 \sqrt{2}}{9} f_{n} \sin \phi+\frac{2}{9} f_{s} \cos \phi\right) \int_{0}^{1} d x \frac{1}{2} \frac{6 x(1-x)}{x Q_{1}^{2}+(1-x) Q_{2}^{2}}\left(1+C_{F} \frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi} \cdot t\left(x, Q_{1}^{2}, Q_{2}^{2}\right)\right)+(x \rightarrow 1-x)$,
Master formula \quad NLO
The form $1 /\left(x \mathrm{Q}_{1}{ }^{2}+(1-\mathrm{x}) \mathrm{Q}_{2}{ }^{2}\right)$ is not divergent, so double-virtual transition FF is less sensitive to a shape of the meson DA than the single-virtual FF.

NLO contribution to the TFF

TFF dependence on DA

The $v^{*} y \rightarrow n^{\prime}(958)$ Transition Form Factor

The analysis is based on the previous BaBar study [1].

previous

$\mathbf{Y} \mathbf{Y}^{*} \rightarrow \mathbf{\eta}^{\prime}$
Single tagged
~ 5000 signal events

- A large number of systematic uncertainties were studied in our previous work where the number of signal events was significantly larger.
[1] [PRD 84, 052001]: P. del Amo Sanchez et al. (BaBer collaboration), Phys. Rev. D 84, 052001 (2011) - (126 citations).

BaBar detector

BABAR detector at center-of mass energy of 10.6 GeV at the $\mathrm{e}^{+} \mathrm{e}^{-}$collider PEP-II at SLAC

- The decay chain $\eta^{\prime} \rightarrow \pi^{+} \pi \Pi^{-} \boldsymbol{n} \boldsymbol{\pi}^{+} \boldsymbol{\pi} \mathbf{- 2} \mathbf{\gamma}$ is used Polar angle distribution for tagged electrons (positrons)
- A total integrated luminosity $L=469 \mathrm{fb}^{-1}$
- GGResRc event generator is used [arXiv:1010.5969]. Initial and final state radiative corrections as well as vacuum polarization effects are included. The form factor is fixed to the constant value $\mathrm{F}(0,0)$.

The strategy: $d N / d Q^{2}$
$\longmapsto d \sigma / d Q^{2}$
$\Longrightarrow\left|F\left(Q^{2}\right)\right|$

- The total reconstructed momentum of $e^{+} e^{-} \pi^{+} \pi^{-} \eta$ system in c.m. frame is less than 0.35 GeV/c. GeV

- The total reconstructed energy of $e^{+} e^{-} \pi^{+} \pi^{-} \eta$ system in c.m. frame belongs to the range [10.3:10.7]

- Events that lie above and on the right of the lines (mostly, Bhabha scattering) are rejected.

The positron c.m. energy vs. the electron c.m. energy

$$
m_{\gamma \gamma} \text { VS. } m_{\pi+\pi-\eta}
$$

- We require $0.50<\mathrm{m}_{\mathrm{yr}}<0.58 \mathrm{GeV} / \mathrm{c}^{2}$

The $\pi^{+} \pi^{-} \eta$ mass spectra for data events. The open histogram is the fit result. The dashed line represents fitted background.

The $Q^{2}{ }_{e-}$ vs. $Q^{2}{ }_{e+}$ for events with $0.945<\boldsymbol{m}_{2 \pi \eta}<0.972 \mathrm{GeV} / \mathrm{c}^{2}$

- New definition: $Q_{1}^{2}=\max \left(Q_{e^{+}}^{2}, Q_{e^{-}}^{2}\right), Q_{2}^{2}=\min \left(Q_{e^{+}}^{2}, Q_{e^{-}}^{2}\right)$
- The average momentum transfers for each region are calculated using the data spectrum normalized to the detection efficiency:

$$
\overline{Q_{1,2}^{2}}=\frac{\sum_{i} Q_{1,2}^{2}(i) / \varepsilon\left(Q_{1}^{2}, Q_{2}^{2}\right)}{\sum_{i} 1 / \varepsilon\left(Q_{1}^{2}, Q_{2}^{2}\right)}
$$

- The total number of signal events $\mathbf{N f i t}_{\text {signal }}=46 . \mathbf{2 + 8 . 3}_{\text {-7.0 }}$

The $\pi^{+} \pi^{-} \eta$ mass spectra for data events for the five Q^{2} ranges. The open histograms are the fit results. The dashed lines represent background.

- The detector acceptance limits the $\mathrm{e}^{-} \mathrm{e}^{+}$detection efficiency at small Q^{2}. The minimum Q^{2} equals to $2 \mathrm{GeV}^{2}$.

$$
\varepsilon_{\text {true }}=\frac{\int \varepsilon\left(Q_{1}^{2}, Q_{2}^{2}\right) F_{\eta^{\prime}}^{2}\left(Q_{1}^{2}, Q_{2}^{2}\right) d Q_{1}^{2} d Q_{2}^{2}}{\int F_{\eta^{\prime}}^{2}\left(Q_{1}^{2}, Q_{2}^{2}\right) d Q_{1}^{2} d Q_{2}^{2}}
$$

($\boldsymbol{F}_{\boldsymbol{\eta}^{\prime}}$ from master formula at slide \#7)

The dependence of detection efficiency on momentum transfers.

- Radiative corrections $\quad R\left(Q_{1}^{2}, Q_{2}^{2}\right)=\frac{\sigma^{r a d}\left(Q_{1}^{2}, Q_{2}^{2}\right)}{\sigma^{\text {born }}\left(Q_{1}^{2}, Q_{2}^{2}\right)}$
- R leads to the decrease of the detection efficiency by $\sim 15 \%$.
- The maximum energy of the photon emitted from the initial state is restricted by the requirement $\mathrm{E}_{\gamma}<0.05 \sqrt{ } \mathrm{~s}$, where $\sqrt{ } \mathrm{s}$ is the $\mathrm{e}^{+} \mathrm{e}^{-}$center-of-mass (c.m.) energy.
- The differential cross section for $\mathrm{e}^{+} \mathrm{e}^{-} . \mathrm{E}^{+} \mathrm{e}^{-} \mathrm{n}^{n}$ is calculated_as
$\frac{d^{2} \sigma}{d Q_{1}^{2} d Q_{2}^{2}}=\frac{1}{\varepsilon_{\text {true }} R L B} \frac{d^{2} N}{d Q_{1}^{2} d Q_{2}^{2}} \quad \quad \vdots \quad F^{2}\left(\overline{Q_{1}^{2}}, \overline{Q_{2}^{2}}\right)=\frac{\left(d^{2} \sigma /\left(d Q_{1}^{2} d Q_{2}^{2}\right)\right)_{\text {data }}}{\left(d^{2} \sigma /\left(d Q_{1}^{2} d Q_{2}^{2}\right)\right)_{M C}} F_{\eta^{\prime}}\left(\overline{Q_{1}^{2}}, \overline{Q_{2}^{2}}\right) ;$

0.169 ± 0.003
- $\sigma_{\text {e+e }-\rightarrow+e-\eta^{\prime}}\left(2<\mathrm{Q}_{1}{ }^{2}, \mathrm{Q}_{2}{ }^{2}<60 \mathrm{GeV}^{2}\right)=\left(11.4^{+2.8}{ }_{-2.4}\right) \mathrm{fb}$

$\overline{Q_{1}^{2}}, \overline{Q_{2}^{2}}, \mathrm{GeV}^{2}$	$\varepsilon_{\text {true }}$	R	$N_{\text {events }}$	$d^{2} \sigma /\left(d Q_{1}^{2} d Q_{2}^{2}\right)$ $\times 10^{4}, \mathrm{fb}^{2} / \mathrm{GeV}^{4}$	$F\left(\overline{Q_{1}^{2}}, \overline{Q_{2}^{2}}\right)$ $\times 10^{3}, \mathrm{GeV}^{-1}$
$6.48,6.48$	0.019	1.03	$14.7_{-3.6}^{+4.3}$	$1471.8_{-362.9}^{+430.1}$	$14.32_{-1.89}^{+1.95} \pm 0.83 \pm 0.14$
$16.85,16.85$	0.282	1.10	$4.1_{-2.7}^{+2.7}$	$4.2_{-2.8}^{+2.8}$	$5.35_{-1.54}^{+1.54} \pm 0.31 \pm 0.42$
$14.83,4.27$	0.145	1.07	$15.8_{-4.0}^{+4.8}$	$39.7_{-10.2}^{+12.0}$	$8.24_{-1.13}^{+1.16} \pm 0.48 \pm 0.65$
$38.11,14.95$	0.226	1.11	$10.0_{-3.2}^{+3.9}$	$3.0_{-1.0}^{+1.2}$	$6.07_{-1.07}^{+1.09} \pm 0.35 \pm 1.21$
$45.63,45.63$	0.293	1.22	$1.6_{-1.1}^{+1.8}$	$0.6_{-0.6}^{+0.7}$	$8.71_{-8.71}^{+3.06} \pm 0.50 \pm 1.04$

Statistical
Systematic
Model

- Statistical uncertainty dominates
- $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \boldsymbol{\eta}^{\prime} \boldsymbol{\pi}^{\mathbf{0}} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{+} \boldsymbol{\eta} \boldsymbol{\pi}^{\mathbf{0}}$ - kinematically closest background for the process under study. Using the simulation of the $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{a}_{0}(1450) \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \eta^{\prime} \pi^{0}$ process we estimate the contribution $\mathrm{N}_{\text {n' }^{\prime} 0}<0.16$ at 90% C.L.
- $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \mathbf{J} / \boldsymbol{\Psi}(\boldsymbol{\varphi}) \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \mathbf{\eta}^{\prime} \mathbf{Y}$ as well as $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{Y}^{*} \rightarrow \mathbf{X}$ are also negligible.
- The systematic uncertainty (12%) of cross section is dominated by the uncertainty related to selection criteria (11\%).
- Predominantly, the model uncertainty arises from the model dependence of $\left(\mathbf{d}^{2} \boldsymbol{\sigma} /\left(\mathbf{d Q}^{2}{ }_{\mathbf{1}} \mathbf{d Q}^{2}{ }_{\mathbf{2}}\right)\right)_{\mathbf{M C}}$ and $\boldsymbol{\varepsilon}_{\text {true }}$.

Repeating the calculations with a constant TFF we estimate the model uncertainty.

For the cross section - about 60\% due to the strong dependence of $\varepsilon_{\text {true }}$ on the input model for TFF at small values of $\mathrm{Q}^{2}{ }_{1}$ and $\mathrm{Q}^{2}{ }_{2}$.

However, the TFF is much less sensitive to the model.

$$
F_{\eta^{\prime}}\left(Q_{1}^{2}, Q_{2}^{2}\right)=\frac{F_{\eta^{\prime}}(0,0)}{\left(1+Q_{1}^{2} / \Lambda_{P}^{2}\right)\left(1+Q_{2}^{2} / \Lambda_{P}^{2}\right)}
$$

The Λ_{p} is fixed at $849 \mathrm{MeV} / \mathrm{c}^{2}$ from the approximation of $F_{\eta^{\prime}}\left(Q^{2}, 0\right)$ with one off-shell photon [Phys. Rev. D 85, 057501 (2012)].

The comparison of obtained form-factor with theoretical predictions

$$
F_{\eta^{\prime}}\left(Q_{1}^{2}, Q_{2}^{2}\right)=\left(\frac{5 \sqrt{2}}{9} f_{n} \sin \phi+\frac{2}{9} f_{s} \cos \phi\right) \int_{0}^{1} d x \frac{1}{2} \frac{6 x(1-x)}{x Q_{1}^{2}+(1-x) Q_{2}^{2}}\left(1+C_{\text {NLO }} \frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi} \cdot t\left(x, Q_{1}^{2}, Q_{2}^{2}\right)\right)+(x \rightarrow 1-x),
$$

- pQCD calculation is in good agreement with data ($\chi^{2} /$ n.d.f. $=6.2 / 5$, Prob $=28 \%$)
- VMD model exhibits a clear disagreement with the experiment

On some implications of the BaBar data on the $\gamma^{*} \eta^{\prime}$ transition form factor

```
Peter Kroll (Wuppertal U.), Kornelija Passek-Kumerički (Boskovic Inst., Zagreb)
Mar 15, 2019
5 pages
Published in: Phys.Lett.B}793\mathrm{ (2019) 195-199
e-Print: 1903.06650 [hep-ph]
```

$\bar{Q}^{2}\left[\mathrm{GeV}^{2}\right]$	ω	$\bar{Q}^{2} F_{\eta^{\prime} \gamma^{*}}^{\exp }[\mathrm{MeV}]$	$\bar{Q}^{2} F_{\eta^{\prime} \gamma^{*}}[\mathrm{MeV}]$	χ^{2}	$\bar{Q}^{2} F_{\eta \gamma^{*}}[\mathrm{MeV}]$
6.48	0.000	92.8 ± 13.8	92.7 ± 3.9	0.00	56.2 ± 3.3
16.85	0.000	90.1 ± 37.3	93.8 ± 3.9	0.01	56.8 ± 3.3
9.55	0.553	78.7 ± 13.5	98.7 ± 4.1	2.19	59.9 ± 3.5
26.53	0.436	161.0 ± 44.2	97.7 ± 4.1	2.05	59.2 ± 3.5
45.63	0.000	397.4 ± 400.9	94.6 ± 4.0	0.57	57.4 ± 3.4

Predictions of transition form factors with NLO meson distribution amplitude

The improvement of accuracy in the further experiments will allow:

1. measuring of quarks distribution amplitudes
2. measuring of contribution from NLO twist

BABAR

- About 46 events of $e^{+} e^{-} \rightarrow e^{+} e^{-} \eta^{\prime}(958)$ were observed in the double tagged mode for the first time.
- The $\gamma^{\star} \gamma^{\star} \rightarrow \eta^{\prime}(958)$ transition form factor $F\left(Q^{2}{ }_{1}, Q^{2}{ }_{2}\right)$ have been measured for Q^{2} range from 2 to $60 \mathrm{GeV}^{2}$.
- The form factor is in reasonable agreement with the pQCD prediction.

Thank you!

Back up slides

k - Poisson probability for k number of events to be detected according to pQCD;

Black arrow - the number of observed signal events;

Red arrows - the window of errors from fit.

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \eta^{\prime} \pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \pi^{-} \pi^{+} \eta \pi^{0}$ - kinematically closest background for the process under study.
- We perform the search of the process using all BaBar data and the same technique as for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \eta^{\prime}$ with additional requirements for π^{0}.
- We simulate the process via the mechanism $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{a}_{0}(1450) \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \eta^{\prime} \pi^{0}$. More details can be found in BAD\#2689.

The $\pi^{+} \pi^{-} \eta$ invariant mass spectrum

$$
N_{\eta^{\prime} \pi^{0}}^{\text {signal }}<1.45 \text { at } 90 \% \text { C.L. }
$$

The detection efficiency for $\mathrm{e}^{+} \mathrm{e}^{-} \eta^{\prime} \pi^{0}$ events to pass the selections of $\mathbf{e}^{+} \mathbf{e}^{-} \boldsymbol{\eta}^{\prime}$.

$$
\mathrm{N}_{b k g r}=\frac{N_{\eta^{\prime} \pi^{0}}^{s i g n a l} \epsilon_{\eta^{\prime} \pi^{0}}^{(2)}}{\epsilon_{\eta^{\prime} \pi^{0}}^{(1)}}<0.16 \text { at } 90 \% \text { C.L. }
$$

The detection efficiency for $\mathrm{e}^{+} \mathrm{e}^{-} \eta^{\prime} \pi^{0}$ events to pass the selections of $\mathbf{e}^{+} \mathbf{e}^{-} \boldsymbol{\eta}^{\prime} \boldsymbol{\pi}^{0}$.

Systematic uncertainty

The main source of systematic uncertainty of cross section

Source	Uncertainty $(\%)$
$\pi^{ \pm}$identification	1.0
$e^{ \pm}$identification	1.0
Other selection criteria	11
Track reconstruction	0.9
$\eta \rightarrow 2 \gamma$ reconstruction	2
Trigger, filters	1.3
Background subtraction	3.7
Radiative correction	1.0
Luminosity	1.0
Total	12%

from previous BaBar study of $\gamma^{*} \gamma \rightarrow \eta^{\prime}$ Phys. Rev. D 74012002 (2006)

TABLE IV: The result of the study of the uncertainty associated with the selection criteria

selection	$N_{\text {signal }} / \varepsilon_{\text {true }}$	deviation from standard criteria
standard selection criteria	985 ± 197	
$P_{e^{+} e^{-} \eta^{\prime}}$ is less than $1 \mathrm{GeV} / c$ instead of $0.35 \mathrm{GeV} / c$	1052 ± 273	6.8
$10.20<E_{e+e^{-} \eta^{\prime}}<10.75 \mathrm{GeV}$ instead of $10.3<E_{e+e^{-} \eta^{\prime}}<10.65 \mathrm{GeV}$	942 ± 235	-4.3
without the restrictions on $E_{e^{+}}$and $E_{e^{-}}$	1061 ± 280	7.7
$0.48<m_{2 \gamma}<0.60 \mathrm{GeV} / c^{2}$ instead of	958 ± 181	-2.7
$0.50<m_{2 \gamma}<0.58 \mathrm{GeV} / c^{2}$		11
total		

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{J} / \psi(\varphi) \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \eta^{\prime} \gamma$ is negligible according to [PRD 84, 052001].
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{\gamma}^{*} \rightarrow \mathrm{X}$

The cosine of angle between scattered and initial electron (positron) in c.m.f.

The fraction of the events in the bins.

It is reasonable to assume that the $\cos \left(\alpha_{e \pm}\right)$ spectrums must be symmetric in [-1:1] region for annihilation processes, while signal scattered electron (positron) prefers to fly in the about the same direction.

The comparison of the measured η^{\prime} TFF with $Q^{2}{ }_{e+}<Q^{2}{ }_{e-}$, $Q^{2}{ }_{e+}>=Q^{2}{ }_{e-}$ and without the restriction.

Event selection

The data-MC comparison of $\pi \pi \eta$ invariant mass distribution. The MC histogram is normalized to central bin of data distribution.

The expected number of signal $\mathbf{N}_{\text {signal }}^{\text {side }}=55-18 / 2=46$

The ratio of generated spectra with rad. photons vs. without photons

The dependence of detection efficiency on momentum transfers.

We require the presense

- at least two tracks from GoodTrackLoose list passed

LooseElectronMicroSecection
$-0.3<\theta_{\mathrm{e}}<2.45$ radians

- at least two tracks from GoodTrackLoose list passed TightKMPionMicroSelection
$-0.45<\theta_{\pi}<2.4$ radians
- at least two photons from GoodPhotonLoose list $-\varepsilon_{v}>30 \mathrm{MeV}$
$-0.45<\mathrm{m}_{\mathrm{ry}}<0.65 \mathrm{GeV} / \mathrm{c}^{2}$
-The photon candidates are fitted with a η mass constraint.
- The η candidate and a pair of oppositely-charged pion candidates are fitted with a η ' mass constraint.

TABLE V: $\frac{d^{2} \sigma}{d Q_{1}^{2} d Q_{2}^{2}}$ obtained with different models for TFF

	1	2	3	4	5
QCD	$1471.8_{-362.91}^{+43.136}$	$4.17_{2.75}^{+2.75}$	$39.72_{-10.18}^{+11.98}$	$2.98_{-0.96}^{+1.17}$	$0.62_{-0.62}^{+0.69}$
const	$637.10_{-157.19}^{+186}$	$4.15_{2.74}^{+2.74}$	$33.30_{-8.54}^{+10.05}$	$2.76_{-0.89}^{+1.08}$	$0.62_{-0.62}^{+0.69}$
deviation, $\%$	60	0.6	15	7	1.

TABLE VI: TFF obtained with different models for TFF

	1	2	3	4	5
QCD	$14.32_{-1.89}^{+1.95}$	$5.35_{-1.54}^{+1.54}$	$8.24_{-1.13}^{+1.16}$	$6.07_{-1.07}^{+1.09}$	$8.71_{-8.71}^{+3.96}$
const	$14.61_{-1.92}^{1+.99}$	$5.62_{-1.62}^{1.62}$	$7.24_{-0.99}^{+1.02}$	$7.24_{-1.28}^{+1.30}$	$10.02_{-10.02}^{+4.55}$
deviation $\%$	1	8	8	20	12

