

Study of $e^+e^-\rightarrow e^+e^-\eta'$ (958) in the double-tag mode at BABAR

Evgeny Kozyrev

Novosibirsk State University Budker INP SB RAS, Novosibirsk, Russia

on behalf of the **BaBar collaboration** Phys.Rev.D 98 (2018) 11, 112002

16th International Workshop on Meson Physics online via ZOOM 17th - 20th May 2021

Outline

- \rightarrow Introduction
 - Transition form factor (TFF) at **large** momentum transfers TFF at small momentum transfers Existing experimental data
- →Measurement of the TFF of η' meson with BaBar detector
- \rightarrow Comparison with theoretical predictions
- → Summary

The amplitude of the $\gamma^*\gamma^* \rightarrow P$ transition $A = e^2 \varepsilon_{\mu\nu\alpha\beta} e_1^{\mu} e_2^{\nu} q_1^{\alpha} q_2^{\beta} F(q_1^2, q_2^2),$ P - pseudoscalar meson $e_{1,2} - photon polarization$ $q_{1,2} - 4$ -momentum of photon

• there are a lot of experimental study of pseudoscalar meson production via the fusion of real (on-shell) and virtual (off-shell) photons $\gamma^*\gamma \rightarrow P: \pi^0, n, n', n_c$

• there are no measurements of the double off-shell transitions $\gamma^*\gamma^* \rightarrow P$

Introduction. $F(Q_1^2, Q_2^2)$ at <u>large</u> Q^2 .

Hard part

Warm part

 $F(Q_{1}^{2},Q_{2}^{2}) = \int T(x,Q_{1}^{2},Q_{2}^{2}) \phi(x,Q_{1}^{2},Q_{2}^{2}) dx$

x - is the fraction of the meson momentum carried by one of the quarks

 $T(x,Q_1^2,Q_2^2)$ - hard scattering amplitude for

 $\gamma^*\gamma^* \rightarrow$ qqbar transition which is calculable in pQCD $\varphi(\mathbf{x}, \mathbf{Q}_1^2, \mathbf{Q}_2^2)$ - nonperturbative meson distribution amplitude (DA) describing transition P \rightarrow qqbar

$$T_H(x,Q_1^2,Q_2^2) = \frac{1}{2} \cdot \frac{1}{xQ_1^2 + (1-x)Q_2^2} \cdot \left(1 + C_F \frac{\alpha_S(Q^2)}{2\pi} \cdot t(x,Q_1^2,Q_2^2)\right) + (x \to 1-x) + O(\alpha_s^2) + O(\Lambda_{QCD}^4/Q^4)$$

NLO correction [E. Braaten, Phys. Rev. D 28, 3 (1983)]

• The meson DA $\varphi(x, Q_1^2, Q_2^2)$ plays an important role in theoretical descriptions of many QCD processes. Its shape (x dependence) is unknown, however its universal asymptotic form:

At the limit $\mu \rightarrow \infty$ $\phi_P(x,\mu) = A_P 6x(1-x)(1+O(\Lambda_{QCD}^2/\mu^2))$

[S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24, 7 (1981)]

Introduction. $F(Q_1^2, Q_2^2)$ at <u>low</u> Q^2 .

• In case of the TFF with one off-shell photon the pQCD and VMD models leads to the same asymptotic behaviour F (Q²) $\propto 1/Q^2$ at Q² $\rightarrow \infty$.

	VMD	pQCD
$Q_1^2 pprox 0, Q_2^2 \rightarrow \infty$	1/Q ²	1/Q ²
$Q_1^2, Q_2^2 \rightarrow \infty$	1/Q4	1/Q ²

 $F(Q^2,0)$ vs VMD.

transition FF is less sensitive to a shape of the meson DA than the single-virtual FF.

NLO contribution to the TFF

TFF dependence on DA

The $\gamma^*\gamma \rightarrow \eta'(958)$ Transition Form Factor

Introduction

The analysis is based on the previous BaBar study [1].

 A large number of systematic uncertainties were studied in our previous work where the number of signal events was significantly larger.

[1] [PRD 84, 052001]: P. del Amo Sanchez *et al. (BaBar collaboration),* Phys. Rev. D 84, 052001 (2011) — (126 citations).

BABAR detector at center-of mass energy of 10.6 GeV at the e⁺e⁻ collider PEP-II at SLAC

Technique

- The decay chain $\eta' \rightarrow \pi^+\pi^-\eta \rightarrow \pi^+\pi^- 2\gamma$ is used *Polar angle distribution for tagged electrons (positrons)*
- A total integrated luminosity $L = 469 \text{ fb}^{-1}$

• GGResRc event generator is used [arXiv:1010.5969]. Initial and final state radiative corrections as well as vacuum polarization effects are included. The form factor is fixed to the constant value F(0,0).

The strategy: $dN/dQ^2 = d\sigma/dQ^2 = |F(Q^2)|$

Event selection

• The total reconstructed **momentum** of $e^+e^-\pi^+\pi^-\eta$ system in c.m. frame is less than 0.35 GeV/c.

 The total reconstructed energy of e⁺e⁻π⁺π⁻η system in c.m. frame belongs to the range [10.3:10.7]

The positron c.m. energy vs. the electron c.m. energy

 $m_{\gamma\gamma}$ VS. $m_{\pi+\pi-\eta}$

• We require $0.50 < m_{yy} < 0.58 \text{ GeV/c}^2$

Event selection

The $\pi^+\pi^-\eta$ mass spectra for data events. The open histogram is the fit result. The dashed line represents fitted background.

The $Q_{e^-}^2$ vs. $Q_{e^+}^2$ for events with **0.945** < $m_{2\pi\eta}$ < **0.972** GeV/c²

- New definition: $Q_1^2 = \max(Q_{e^+}^2, Q_{e^-}^2), Q_2^2 = \min(Q_{e^+}^2, Q_{e^-}^2)$
- The average momentum transfers for each region are calculated using the data spectrum normalized to the detection efficiency:

$$\overline{Q_{1,2}^2} = \frac{\sum_i Q_{1,2}^2(i) / \varepsilon(Q_1^2, Q_2^2)}{\sum_i 1 / \varepsilon(Q_1^2, Q_2^2)}.$$

• The total number of signal events N^{fit}_{signal} = 46.2^{+8.3}-7.0

The $\pi^+\pi^-\eta$ mass spectra for data events for the five Q^2 ranges. The open histograms are the fit results. The dashed lines represent background.

• The detector acceptance limits the e^-e^+ detection efficiency at small Q^2 . The minimum Q^2 equals to 2 GeV².

The dependence of detection efficiency on momentum transfers.

- Radiative corrections $R(Q_1^2,Q_2^2) = \frac{\sigma^{rad}(Q_1^2,Q_2^2)}{\sigma^{born}(Q_1^2,Q_2^2)}$
- R leads to the decrease of the detection efficiency by \sim 15 %.

• The maximum energy of the photon emitted from the initial state is restricted by the requirement $E_v < 0.05\sqrt{s}$, where \sqrt{s} is the e⁺e⁻ center-of-mass (c.m.) energy.

 0.169 ± 0.003

- The differential cross section for $e^+e^- \rightarrow e^+e^-n'$ is calculated as $\begin{bmatrix} \frac{d^2\sigma}{dQ_1^2dQ_2^2} = \frac{1}{\varepsilon_{\text{true}}RLB}\frac{d^2N}{dQ_1^2dQ_2^2} \end{bmatrix} = \frac{f^2(\overline{Q_1^2},\overline{Q_2^2}) = \frac{(d^2\sigma/(dQ_1^2dQ_2^2))_{data}}{(d^2\sigma/(dQ_1^2dQ_2^2))_{MC}}F_{\eta'}^2(\overline{Q_1^2},\overline{Q_2^2}) = \frac{(d^2\sigma/(dQ_1^2dQ_2^2))_{data}}{(d^2\sigma/(dQ_1^2dQ_2^2))_{MC}}F_{\eta'}^2(\overline{Q_1^2},\overline{Q_2^2}) = \frac{(d^2\sigma/(dQ_1^2dQ_2^2))_{data}}{(d^2\sigma/(dQ_1^2dQ_2^2))_{MC}}F_{\eta'}^2(\overline{Q_1^2},\overline{Q_2^2}) = \frac{(d^2\sigma/(dQ_1^2dQ_2^2))_{data}}{(d^2\sigma/(dQ_1^2dQ_2^2))_{MC}}F_{\eta'}^2(\overline{Q_1^2},\overline{Q_2^2}) = \frac{(d^2\sigma/(dQ_1^2dQ_2^2))_{data}}{(d^2\sigma/(dQ_1^2dQ_2^2))_{MC}}F_{\eta'}^2(\overline{Q_1^2},\overline{Q_2^2}) = \frac{(d^2\sigma/(dQ_1^2dQ_2^2))_{MC}}{(d^2\sigma/(dQ_1^2dQ_2^2))_{MC}}F_{\eta'}^2(\overline{Q_1^2},\overline{Q_2^2}) = \frac{(d^2\sigma/(dQ_1^2dQ_2^2))_{MC}}{(d^$
 - $\sigma_{e+e-\rightarrow e+e-n'}$ (2 < Q₁², Q₂² < 60 GeV²) = (11.4^{+2.8}_{-2.4}) fb

6.48, 6.48	0.019	1.03	$14.7^{+4.3}_{-3.6}$	$\times 10^4$, fb/GeV ⁴ 1471.8 ^{+430.1} -362.9	$\frac{\times 10^3, \text{GeV}^{-1}}{14.32^{+1.95}_{-1.89} \pm 0.83 \pm 0.14}$	
16.85, 16.85	0.282	1.10	$4.1^{+2.7}_{-2.7}$	$4.2^{+2.8}_{-2.8}$	$5.35^{+1.54}_{-1.54} \pm 0.31 \pm 0.42$	
14.83, 4.27	0.145	1.07	$15.8^{+4.8}_{-4.0}$	$39.7^{+12.0}_{-10.2}$	$8.24^{+1.16}_{-1.13} \pm 0.48 \pm 0.65$	
38.11, 14.95	0.226	1.11	$10.0^{+3.9}_{-3.2}$	$3.0^{+1.2}_{-1.0}$	$6.07^{+1.09}_{-1.07} \pm 0.35 \pm 1.21$	
45.63, 45.63	0.293	1.22	$1.6^{+1.8}_{-1.1}$	$0.6^{+0.7}_{-0.6}$	$8.71^{+3.96}_{-8.71} \pm 0.50 \pm 1.04$	
				Statistical	Systematic Mo	de

• Statistical uncertainty dominates

• $e^+e^- \rightarrow e^+e^-\eta'\pi^0 \rightarrow e^+e^-\pi^-\pi^+\eta\pi^0$ - kinematically closest background for the process under study. Using the simulation of the $e^+e^- \rightarrow e^+e^-a_0(1450) \rightarrow e^+e^-\eta'\pi^0$ process we estimate the contribution $N_{n'\pi 0} < 0.16$ at 90% C.L.

• $e^+e^- \rightarrow e^+e^- J/\psi(\phi) \rightarrow e^+e^- \eta'\gamma$ as well as $e^+e^- \rightarrow \gamma^* \rightarrow X$ are also negligible.

• The systematic uncertainty (12%) of cross section is dominated by the uncertainty related to selection criteria (11%).

• Predominantly, the model uncertainty arises from the model dependence of $(d^2\sigma/(dQ_1^2 dQ_2^2))_{MC}$ and ϵ_{true} .

Repeating the calculations with a constant TFF we estimate the model uncertainty.

For the cross section - about 60% due to the strong dependence of ϵ_{true} on the input model for TFF at small values of Q_1^2 and Q_2^2 .

However, the TFF is much less sensitive to the model.

Comparison with theoretical predictions

 $F_{\eta'}(Q_1^2, Q_2^2) = \frac{F_{\eta'}(0, 0)}{(1 + Q_1^2 / \Lambda_P^2)(1 + Q_2^2 / \Lambda_P^2)}$ The Λ_{P} is fixed at 849 MeV/c² from the approximation of $F_{n'}(Q^2, 0)$ with one off-shell photon [Phys.

The comparison of obtained form-factor with theoretical predictions

$$F_{\eta'}(Q_1^2, Q_2^2) = \left(\frac{5\sqrt{2}}{9}f_n \sin\phi + \frac{2}{9}f_s \cos\phi\right) \int_0^1 dx \frac{1}{2} \frac{6x(1-x)}{xQ_1^2 + (1-x)Q_2^2} \left(1 + C_F \frac{\alpha_s(\mu^2)}{2\pi} \cdot t(x, Q_1^2, Q_2^2)\right) + (x \to 1-x) \frac{1}{2\pi} \frac$$

- pQCD calculation is in good agreement with data (χ^2 /n.d.f. = 6.2/5, Prob = 28%)
- VMD model exhibits a clear disagreement with the experiment

On some implications of the BaBar data on the $\gamma^*\eta'$ transition form factor

Peter Kroll (Wuppertal U.), Kornelija Passek-Kumerički (Boskovic Inst., Zagreb) Mar 15, 2019

5 pages

Published in: Phys.Lett.B 793 (2019) 195-199

e-Print: 1903.06650 [hep-ph]

\bar{Q}^2 [GeV ²]	ω	$\bar{Q}^2 F^{\exp}_{\eta'\gamma^*}$ [MeV]	$\bar{Q}^2 F_{\eta'\gamma^*}$ [MeV]	χ^2	$\bar{Q^2}F_{\eta\gamma^*}[$ MeV]
6.48	0.000	92.8 ± 13.8	92.7 ± 3.9	0.00	56.2 ± 3.3
16.85	0.000	90.1 ± 37.3	93.8 ± 3.9	0.01	56.8 ± 3.3
9.55	0.553	78.7 ± 13.5	98.7 ± 4.1	2.19	59.9 ± 3.5
26.53	0.436	161.0 ± 44.2	97.7 ± 4.1	2.05	59.2 ± 3.5
45.63	0.000	397.4 ± 400.9	94.6 ± 4.0	0.57	57.4 ± 3.4

Predictions of transition form factors with NLO meson distribution amplitude

The improvement of accuracy in the further experiments will allow:

- 1. measuring of quarks distribution amplitudes
- 2. measuring of contribution from NLO twist

- About 46 events of $e^+e^- \rightarrow e^+e^-\eta'$ (958) were observed in the double tagged mode for the first time.
- The $\gamma^*\gamma^* \rightarrow \eta'(958)$ transition form factor $F(Q_1^2, Q_2^2)$ have been measured for Q^2 range from 2 to 60 GeV².
- $\boldsymbol{\cdot}$ The form factor is in reasonable agreement with the pQCD prediction.

Thank you!

Back up slides

20

k

k

Background subtraction

- $e^+e^- \rightarrow e^+e^-\eta'\pi^0 \rightarrow e^+e^-\pi^-\pi^+\eta\pi^0$ kinematically closest background for the process under study.
- We perform the search of the process using all BaBar data and the same technique as for $e^+e^- \rightarrow e^+e^-\eta'$ with additional requirements for π^0 .
- We simulate the process via the mechanism $e^+e^- \rightarrow e^+e^-a_0(1450) \rightarrow e^+e^-\eta'\pi^0$. More details can be found in BAD#2689.

Systematic uncertainty

The main source of systematic uncertainty of cross section

TABLE IV: The result of the study of the uncertainty associated with the selection criteria

selection	$N_{signal} / \varepsilon_{true}$	deviation from standard criteria
standard selection criteria	985 ± 197	
$P_{e^+e^-\eta'}$ is less than 1 GeV/c instead of 0.35 GeV/c	1052 ± 273	6.8
$10.20 < E_{e^+e^-\eta^\prime} < 10.75~{\rm GeV}$ instead of $10.3 < E_{e^+e^-\eta^\prime} < 10.65~{\rm GeV}$	942 ± 235	-4.3
without the restrictions on E_{e^+} and E_{e^-}	1061 ± 280	7.7
$0.48 < m_{2\gamma} < 0.60 \text{ GeV}/c^2$ instead of	958 ± 181	-2.7
$0.50 < m_{2\gamma} < 0.58 \text{ GeV}/c^2$		
total		11

- $e^+e^- \rightarrow e^+e^- J/\psi(\phi) \rightarrow e^+e^- \eta'\gamma$ is negligible according to [**PRD 84**, **052001**].
- e⁺e⁻→γ^{*}→X

and initial electron (positron) in c.m.f.

The fraction of the events in the bins.

It is reasonable to assume that the $cos(\alpha_{e\pm})$ spectrums must be symmetric in [-1:1] region for **annihilation processes**, while signal scattered electron (positron) prefers to fly in the about the same direction.

The comparison of the measured η' TFF with $Q_{e+}^2 < Q_{e-}^2$, $Q_{e+}^2 >= Q_{e-}^2$ and without the restriction.

Event selection

The data-MC comparison of $\pi\pi\eta$ invariant mass distribution. The MC histogram is normalized to central bin of data distribution.

The expected number of signal $N^{side}_{signal} = 55 - 18/2 = 46$

The dependence of detection efficiency on momentum transfers.

Event selection

We require the presense • at least **two tracks** from *GoodTrackLoose* list passed *LooseElectronMicroSecection* $-0.3 < \theta_{o} < 2.45$ radians

• at least **two tracks** from *GoodTrackLoose* list passed TightKMPionMicroSelection

- 0.45 < θ_{π} < 2.4 radians

• at least **two photons** from *GoodPhotonLoose* list $-\epsilon_{\gamma} > 30 \text{ MeV}$ $-0.45 < m_{\gamma\gamma} < 0.65 \text{ GeV/c}^2$ -The photon candidates are fitted with a η mass constraint.

- The $\,\eta$ candidate and a pair of oppositely-charged pion candidates are fitted with a η' mass constraint.

$dQ_1^2 dQ_2^2$ obtained with different models for TTT					
	1	2	3	4	
QCD	$1471.8^{+430.136}_{-362.91}$	$4.17^{+2.75}_{2.75}$	$39.72^{+11.98}_{-10.18}$	$2.98^{+1.17}_{-0.96}$	
const	$637.10^{+186.19}_{-157.09}$	$4.15_{2.74}^{+2.74}$	$33.30^{+10.05}_{-8.54}$	$2.76^{+1.08}_{-0.89}$	
deviation, %	60	0.6	15	7	

TABLE V: $\frac{d^2\sigma}{d^2\sigma}$ obtained with different models for TFF

5 $0.62\substack{+0.69 \\ -0.62}$ $0.62\substack{+0.69 \\ -0.62}$ 1.

TABLE VI: TFF obtained with different models for TFF

	1	2	3	4	5
QCD	$14.32^{+1.95}_{-1.89}$	$5.35^{+1.54}_{-1.54}$	$8.24^{+1.16}_{-1.13}$	$6.07\substack{+1.09 \\ -1.07}$	$8.71_{-8.71}^{+3.96}$
const	$14.61^{+1.99}_{-1.92}$	$5.62^{+1.62}_{-1.62}$	$7.24^{+1.02}_{-0.99}$	$7.24^{+1.30}_{-1.28}$	$10.02^{+4.55}_{-10.02}$
deviation $\%$	1	8	8	20	12