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• Dileptons in HIC

• Spectral functions from aFRG flows

• Vector and axial-vector spectral functions

• Effective hadronic theory for dense nuclear matter

• Summary and Outlook

• GiBUU transport simulations for SIS18 energies
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Photons and Dileptons in HIC
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T. Galatyuk et al., Physik Journal 17 (2018) no. 10

courtesy H. van Hees 

• from all stages of the collision

• measure temperature in QGP, 
   lifetime of fireball… 
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Dileptons at SIS18 Energies
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• simulate with GiBUU transport model O. Buss, T. Gaitanos, K. Gallmeister et al. 
(A. Larionov), Phys. Rept. 512 (2012) 1 

A. Larionov, U. Mosel & L.v.S.,  
Phys. Rev. C 102 (2020) 064913

Data: HADES collaboration, 
PLB 690 (2010) 118 
PRC 85 (2012) 054005 
EPJA 48 (2012) 64 
PRC 95 (2017) 065205
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FIG. 10. (Color online) Invariant-mass differential cross section of dilepton production in p + p

collisions at the beam energies 1.25, 2.2, and 3.5 GeV, and in d + p collisions at beam energy

1.25A GeV. Thick solid (black) lines show the total calculated cross sections. Other lines show the

partial contributions of the different production channels as indicated. For the d+ p reaction, the

cross section of the pn bremsstrahlung component (see Eq. (63)) was thereby corrected in order

for the total (thick black line) cross section to agree with experiment. The total cross without

this correction is shown as the thin solid (black) line for comparison. Experimental data are from

Refs. [70–72]. In the d+ p reaction, the n+ p collisions were exclusively selected by detecting the

fast forward spectator proton.
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Transport Simulations
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• Dileptons from GiBUU Data: HADES Collaboration,  
Nature Physics 15 (2019) 1040

A. Larionov, U. Mosel & L.v.S., Phys. Rev. C 102 (2020) 064913
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FIG. 20. (Color online) Invariant-mass spectra of dileptons produced in Au+Au collisions at

1.23A GeV calculated with vacuum (a), (c) and in-medium (b), (d) ρ spectral function. The cal-

culation with the Skyrme-like potential is shown in panel (c). Panel (d) shows the results obtained

with updated resonance parameters. Thick solid black lines show the total spectra obtained from

GiBUU output with multiplying the pn bremsstrahlung component by the factor given in Eq. (63).

Thin solid black lines show the same spectra without this correction. The other lines show the par-

tial contributions of different production channels to the total spectra as indicated. Experimental

data are from Ref. [25].
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FIG. 20. (Color online) Invariant-mass spectra of dileptons produced in Au+Au collisions at

1.23A GeV calculated with vacuum (a), (c) and in-medium (b), (d) ρ spectral function. The cal-

culation with the Skyrme-like potential is shown in panel (c). Panel (d) shows the results obtained

with updated resonance parameters. Thick solid black lines show the total spectra obtained from

GiBUU output with multiplying the pn bremsstrahlung component by the factor given in Eq. (63).

Thin solid black lines show the same spectra without this correction. The other lines show the par-

tial contributions of different production channels to the total spectra as indicated. Experimental

data are from Ref. [25].
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Dilepton Spectra
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dilepton rate (local thermal equilibrium):
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electromagnetic correlator:

vector meson dominance 
& quark counting:

A. Drees, NPA 830 (2009) 435

p + p @ √s = 200 GeV 
(schematic)
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Spectral Functions
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I) Introduction and Motivation

[courtesy L. Holicki]

October 24th, 2014 | Ralf-Arno Tripolt | Flow Equations for Spectral Functions | 2

• some theory basics
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Spectral Functions
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commutator of interacting fields: free fields

free fields (stable pion):
What is a Spectral Function?
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October 24th, 2014 | Ralf-Arno Tripolt | Flow Equations for Spectral Functions | 4

Fourier transform: ⇢(!, ~p) =
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October 24th, 2014 | Ralf-Arno Tripolt | Flow Equations for Spectral Functions | 5

finite lifetime/width
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Spectral Functions
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What is a Spectral Function?

w

rHwL
p

w= mp

2 g

p y y

w≥ 2my
October 24th, 2014 | Ralf-Arno Tripolt | Flow Equations for Spectral Functions | 6

σπ

mσ +mπ

two-particle thresholds:

D(p) =

Z 1

0
dm2 ⇢(m2)

1

p2 +m2

discontinuity at cut of propagator: 

mπ2

p2

p2 > 0

Euclidean space:  

D(t, ~p = 0) =

Z 1

0
dm ⇢(m2) exp{�mt}Euclidean data:

(inverse Laplace, try e.g. MEM,  
 but ill-posed numerical problem)

retarded, imaginary part: ⇢(p2) = � 1

⇡
ImDR(p)
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Functional RG (Flow) Equations
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280 4 Model descriptions of strongly interacting matter near deconfinement

expansion, except for some simple potentials. Thus, a precise determination
of the critical temperature of a first-order transition is very difficult within an
expansion scheme around only one potential minimum. Another important
advantage of the grid solution is that the potential is not fixed to a certain
truncation. During the evolution, arbitrary higher mesonic O(4)-symmetric
self-interactions in the potential are allowed to be generated numerically by
the RG evolution. By calculating higher potential derivatives it is possible
to extract and investigate the flow of these higher contributions. For these
reasons the grid solution is favored. For each grid point a flow equation is
obtained, which finally leads to a coupled closed system and can be solved
with standard numerical methods.

Fig. 4.36 Scale evolution of the grand canonical potential Ωk towards the infrared starting
at kφ. The dashed line shows the scale evolution of the nontrivial minimum of the potential
starting at kχ. For small values of k, the potential becomes more and more convex and the
minimum becomes scale-independent.

4.7.2.4 RG evolution towards the infrared

The RG evolution is started at the compositeness scale kφ and is displayed
in Fig. 4.36 where the k-evolution of the potential as a function of (posi-
tive) φ and its minimum φ0 (dashed line), starting at kχ, is visualized. The
dynamics at the beginning of the scale evolution just below the composite-
ness scale is almost entirely driven by quark fluctuations. These fluctuations
rapidly drive the squared scalar mass term in the action to negative values.
This then immediately leads to a potential minimum away from the origin

(quark-meson model, leading order derivative expansion)
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• flow of Landau free energy density:
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• compute effective (average) action:
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Ch. Wetterich, PLB 301 (1993) 90

• include mixing with density fluctuations K. Kamikado, T. Kunihiro, K. Morita, 
A. Ohnishi, PTEP 2013 (2013) 053D01
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Euclidean Mass Parameters
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Flow of Euclidean 
(curvature) masses

chiral restoration 
at finite T and µ 
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• physical pole masses:

Ch. Jung & L.v.S., PRD 100 (2019) 116009 

including 
(axial-)vector mesons
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Analytically Continued aFRG Flows
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• quark-meson model, T = µ = 0:

4. Analytic continuation and spectral functions

Euclidean propagator,

DE(p0, ~p) =

Z 1

�1

⇢(!0, ~p)

!0 + ip0
d!0, (4.25)

which is defined with an overall minus sign. By comparing this with Eq. (4.22) and
Eq. (4.23), we find that the retarded and the advanced propagator can be obtained from
the Euclidean propagator by analytic continuation, i.e.

DR(!, ~p) = �DE(p0 ! i! � ✏, ~p), (4.26)

DA(!, ~p) = �DE(p0 ! i! + ✏, ~p). (4.27)

This is equivalent to the analytic continuation used in Eq. (4.13) for the retarded two-
point function. Similarly, the retarded and the advanced propagator can also be obtained
from the analytic continuation D(z) as follows,

DR(!, ~p) = D(z ! ! + i✏, ~p), (4.28)

DA(!, ~p) = D(z ! ! � i✏, ~p), (4.29)

cf. Eq. (4.24). By inserting these expression into Eq. (4.14), we can write the spectral
function as

⇢(!, ~p) =
i

2⇡
(D(z ! ! + i✏, ~p)�D(z ! ! � i✏, ~p)) , (4.30)

which makes it evident that there has to be a non-analyticity on the real !-axis in
order for the spectral function to be non-vanishing. Such a non-analyticity can either be
produced by a Dirac delta function, as for example in the case of a free particle, see also
Sec. 4.5, or by a branch cut along the real axis, which represents the existence of decay
channels for interacting particles, see also the discussion in Sec. 8.1. Such a branch cut
gives rise to a discontinuity in the imaginary part of D(z), while its real part does not
change when crossing the real !-axis. This can be seen from the following relations for
the real and the imaginary part of the retarded and the advanced propagator,

ImDR(!, ~p) = �ImDA(!, ~p), (4.31)

ReDR(!, ~p) = ReDA(!, ~p), (4.32)

which follow from Eq. (4.22) and Eq. (4.23). We also note that the retarded propagator
is analytic in the upper half of the complex !-plane, while the advanced propagator is
analytic in the lower half of the complex !-plane.
By means of Eq. (4.31) we can express the spectral function solely in terms of the

retarded propagator, i.e.

⇢(!, ~p) = � 1

⇡
ImDR(!, ~p). (4.33)

In terms of the retarded two-point function, �(2),R(!, ~p), which is essentially the inverse

31

p0 = �i(! + i")

• for ε ➞ 0:

p0 = �i(! + i") (retarded)

K. Kamikado, N. Strodthoff, L.v.S. & 
J. Wambach, EPJC 74 (2014) 2806 



18 May 2021  |  Lorenz von Smekal  |  p.

aFRG Flow at Finite Temperature
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• analytic continuation not unique:

Spectral Functions are not easy to calculate...

Analytical Continuation Problem: How to get back to real energies?

w

iw

?

?

October 24th, 2014 | Ralf-Arno Tripolt | Flow Equations for Spectral Functions | 9

Two-Step Analytical Continuation Procedure

1) Use periodicity in external energy p0 = n 2⇡T :

nB,F (E + ip0) ! nB,F (E)

2) Substitute p0 by continuous real frequency:

�(2),R(!) = � lim
✏!0

�(2),E (p0 = i! � ✏)

p p

p+q

q

[N. Landsman, C. v. Weert, Physics Reports 145, 3&4 (1987) 141]

[A. Das, R. Francisco, J. Frenkel, Phys. Rev. D 86 (2012) 047702]

October 24th, 2014 | Ralf-Arno Tripolt | Flow Equations for Spectral Functions | 14

exploit one-loop structure, 3-dim. regulators

Two-Step Analytical Continuation Procedure

1) Use periodicity in external energy p0 = n 2⇡T :

nB,F (E + ip0) ! nB,F (E)

2) Substitute p0 by continuous real frequency:

�(2),R(!) = � lim
✏!0

�(2),E (p0 = i! � ✏)

p p

p+q

q

[N. Landsman, C. v. Weert, Physics Reports 145, 3&4 (1987) 141]

[A. Das, R. Francisco, J. Frenkel, Phys. Rev. D 86 (2012) 047702]

October 24th, 2014 | Ralf-Arno Tripolt | Flow Equations for Spectral Functions | 14

⤳ Baym-Mermin physical b.c.’s satisfied

4. Analytic continuation and spectral functions

Euclidean propagator,

DE(p0, ~p) =

Z 1

�1

⇢(!0, ~p)

!0 + ip0
d!0, (4.25)

which is defined with an overall minus sign. By comparing this with Eq. (4.22) and
Eq. (4.23), we find that the retarded and the advanced propagator can be obtained from
the Euclidean propagator by analytic continuation, i.e.

DR(!, ~p) = �DE(p0 ! i! � ✏, ~p), (4.26)

DA(!, ~p) = �DE(p0 ! i! + ✏, ~p). (4.27)

This is equivalent to the analytic continuation used in Eq. (4.13) for the retarded two-
point function. Similarly, the retarded and the advanced propagator can also be obtained
from the analytic continuation D(z) as follows,

DR(!, ~p) = D(z ! ! + i✏, ~p), (4.28)

DA(!, ~p) = D(z ! ! � i✏, ~p), (4.29)

cf. Eq. (4.24). By inserting these expression into Eq. (4.14), we can write the spectral
function as

⇢(!, ~p) =
i

2⇡
(D(z ! ! + i✏, ~p)�D(z ! ! � i✏, ~p)) , (4.30)

which makes it evident that there has to be a non-analyticity on the real !-axis in
order for the spectral function to be non-vanishing. Such a non-analyticity can either be
produced by a Dirac delta function, as for example in the case of a free particle, see also
Sec. 4.5, or by a branch cut along the real axis, which represents the existence of decay
channels for interacting particles, see also the discussion in Sec. 8.1. Such a branch cut
gives rise to a discontinuity in the imaginary part of D(z), while its real part does not
change when crossing the real !-axis. This can be seen from the following relations for
the real and the imaginary part of the retarded and the advanced propagator,

ImDR(!, ~p) = �ImDA(!, ~p), (4.31)

ReDR(!, ~p) = ReDA(!, ~p), (4.32)

which follow from Eq. (4.22) and Eq. (4.23). We also note that the retarded propagator
is analytic in the upper half of the complex !-plane, while the advanced propagator is
analytic in the lower half of the complex !-plane.
By means of Eq. (4.31) we can express the spectral function solely in terms of the

retarded propagator, i.e.

⇢(!, ~p) = � 1

⇡
ImDR(!, ~p). (4.33)

In terms of the retarded two-point function, �(2),R(!, ~p), which is essentially the inverse

31

4. Analytic continuation and spectral functions

of the retarded propagator, cf. Eq. (B.21), the spectral function is then given by

⇢(!, ~p) =
1

⇡

Im�(2),R(!, ~p)
�
Re�(2),R(!, ~p)

�2
+
�
Im�(2),R(!, ~p)

�2 . (4.34)

This representation will be used in this thesis to calculate spectral functions based on
retarded two-point functions.
We now summarize further important properties of spectral functions. For example,

from the following relations for the retarded and the advanced propagator,

DR(!,�~p) = DR(!, ~p), (4.35)

DR(�!, ~p) = DA(!, ~p), (4.36)

we find that the following symmetry properties of the spectral function,

⇢(!,�~p) = ⇢(!, ~p), (4.37)

⇢(�!, ~p) = �⇢(!, ~p), (4.38)

⇢(�!,�~p) = �⇢(!, ~p). (4.39)

Moreover, the spectral function satisfies the sum rule
Z 1

�1
d! !⇢(!, ~p) = 1, (4.40)

which can be derived by considering the derivative of the Green’s function D(x), as
defined by Eq. (4.17), i.e.

lim
x0!0

@

@x0
D(x) = lim

x0!0

Z
d4p

(2⇡)4
(�i!)e�ipxD(p) = �

Z
d3p

(2⇡)3
ei~p~x

Z
d! !⇢(!, ~p), (4.41)

where we used Eq. (4.18). On the other hand, we can express D(x) in position space by
using Eq. (4.17), which gives

lim
x0!0

@

@x0
D(x) = lim

x0!0

@

@x0
(�ih[�(x),�(0)]i) = �

Z
d3p

(2⇡)3
ei~p~x, (4.42)

where we used the canonical commutation relation

ih[⇡̂(0, ~x), �̂(0,~0)]i = �(~x) =

Z
d3p

(2⇡)3
ei~p~x, (4.43)

which holds for free fields. By comparing Eq. (4.41) with Eq. (4.42) we then find the
sum rule given by Eq. (4.40).

We conclude this section by noting that spectral functions in general obeys the positivity

32

• for " ! 0 :

p0 = �i(! + i")

<latexit sha1_base64="jC/zgcJvuMDpXbrQH5NJR2ATGdw="></latexit>
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two functional derivatives of the Wetterich equation,
Eq. (1), with respect to the fermionic fields, which yields

∂kΓ
ð2Þ;E
k;ψ ðpÞ ¼ 1

2
Trð∂kRBðq⃗ − p⃗ÞDϕϕðq − pÞ

× Γð3Þ
ψ̄ψϕDψ̄ψðqÞΓ

ð3Þ
ψ̄ψϕDϕϕðq − pÞ

þ ∂kRFðq⃗þ p⃗ÞDψ̄ψ ðqþ pÞ

× Γð3Þ
ψ̄ψϕDϕϕðqÞΓ

ð3Þ
ψ̄ψϕDψ̄ψðqþ pÞÞ; ð5Þ

see Fig. 1 for a diagrammatic representation. Therein, q ¼
ðq0; q⃗Þ is the internal and p ¼ ðp0; p⃗Þ the external momen-
tum,D ¼ ðΓð2Þ

k þ RkÞ−1 is the full regulated propagator, the
vertex functions Γð3Þ

ψ̄ψϕ are obtained from the ansatz in
Eq. (2), and the remaining trace represents a summation
over all internal indices as well as an integration over
the internal momentum; see Appendix A for explicit
expressions. As in the original studies [36–38,50], we
use three-dimensional regulator functions, which only
regulate spatial momenta but not the energy components,
at the expense of slightly breaking the Euclidean Oð4Þ
symmetry [36]. While in principle also four-dimensional
regulator functions can be used [68,69], the three-
dimensional regulators allow to analytically perform the
integration over the internal energy component, or the
corresponding Matsubara sum at finite temperature, which
significantly simplifies the analytic-continuation procedure
discussed in the following.
In order to obtain the flow equation for the real-time

quark two-point function, we have to perform an analytic
continuation from imaginary to real energies. This analytic
continuation is performed on the level of the flow equations
and is achieved by the following two-step procedure; see
also Refs. [37,38]. First, the periodicity of the bosonic and
fermionic occupation numbers, which appear in the flow
equation upon evaluating the Matsubara summation ana-
lytically, with respect to the Euclidean Matsubara frequen-
cies p0 ¼ i2πnT is exploited,

nB;FðEþ ip0Þ → nB;FðEÞ: ð6Þ

In a second step, p0 is replaced by a continuous real
energy ω,

∂kΓ
ð2Þ;R
k;ψ ðω; p⃗Þ ¼ −lim

ϵ→0
∂kΓ

ð2Þ;E
k;ψ ðp0 ¼ −iðωþ iϵÞ; p⃗Þ: ð7Þ

One should note that the limit ϵ → 0 can be taken
analytically for the imaginary part of the two-point func-
tion, while for the real part we use a small numerical value
ϵ ¼ 1 MeV. This analytic-continuation procedure obeys
the physical Baym-Mermin boundary conditions [70,71],
and the resulting retarded propagator is analytic in the
upper half of the complex-energy plane, as expected.
We now make the following ansatz for the scale-

dependent quark two-point function:

Γð2Þ
k;ψðω; p⃗Þ¼ γ0Ckðω; p⃗Þþ iγ⃗ · p̂Akðω; p⃗Þ−Bkðω; p⃗Þ; ð8Þ

with p̂≡ p⃗=jp⃗j and where the UV initial conditions for the
dressing functions are given by

AΛðω; p⃗Þ ¼ jp⃗j; ð9Þ

BΛðω; p⃗Þ ¼ hσ; ð10Þ

CΛðω; p⃗Þ ¼ ωþ μ: ð11Þ

See also Ref. [50]. The flow equation for the quark two-
point function,

∂kΓ
ð2Þ
k;ψðω; p⃗Þ ¼ γ0∂kCkðω; p⃗Þ þ iγ⃗ · ˆp⃗∂kAkðω; p⃗Þ

− ∂kBkðω; p⃗Þ; ð12Þ

then leads to flow equations for the individual dressing
functions, which are discussed in the appendix. In particu-
lar, the analyticity of the flow of these dressing functions in
the upper half of the complex-energy plane is evident from
these expressions, cf. Eqs. (D1)–(D6), and guarantees that
the correct analytic behavior of the retarded propagator is
maintained in the flow.

FIG. 1. Diagrammatic representation of the flow equation for the quark two-point function (top), cf. Eq. (5), and of the one-loop
expression for the quark self-energy (bottom), cf. Eq. (20). Solid lines represent quark propagators and dashed lines meson propagators.
The crosses represent regulator insertions ∂kRk and the red circles the appropriate vertex functions.
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C. Quark spectral function

The quark spectral function is then given by

ρk;ψðω; p⃗Þ ¼ −
1

π
ImGk;ψðω; p⃗Þ; ð13Þ

where the propagator is defined as the inverse of the two-
point function. The quark spectral function therefore has
the same Dirac structure as the two-point function,

ρk;ψðω; p⃗Þ ¼ γ0ρ
ðCÞ
k;ψ ðω; p⃗Þ þ iγ⃗ · p̂ρðAÞk;ψ ðω; p⃗Þ þ ρðBÞk;ψ ðω; p⃗Þ;

ð14Þ

where the individual components can be obtained as

ρðXÞk;ψ ðω; p⃗Þ ¼ −
1

π
ImGðXÞ

k;ψ ðω; p⃗Þ; ð15Þ

with X ∈ fA;B; Cg. For a discussion of the properties of
these spectral functions and the corresponding sum rules,
we refer to Ref. [50].
In the following, we will focus on particle and anti-

particle spectral functions, i.e., states associated with
positive and negative energies, which can be extracted
from the quark spectral function ρk;ψðω; p⃗Þ by applying
suitable projection operators. A general form of such a
projection operator is given by

Λ% ¼ 1

2ϵp
½ϵp % ðγ0γ⃗ · p⃗þmγ0Þ'; ð16Þ

with ϵp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
; see, for example, Refs. [12,15]. This

projection operator, however, depends on the quark mass,
which introduces a certain ambiguity when dealing with
resonance states as encountered in the following. We will
therefore focus on two special cases where the dependence
on the quark mass drops out: the case of zero momentum
and that of zero quark mass. For p⃗ ¼ 0, the quark spectral
function can be decomposed as

ρk;ψ ðω; 0Þ ¼ ρþk;LðωÞLþγ0 þ ρ−k;LðωÞL−γ0; ð17Þ

with L% ¼ ð1% γ0Þ=2, while for mψ ¼ hσ0 ¼ 0, we have

ρk;ψðω; p⃗Þ ¼ ρþk;Pðω; p⃗ÞPþγ0 þ ρ−k;Pðω; p⃗ÞP−γ0; ð18Þ

with P% ¼ ð1% γ0γ⃗ · p̂Þ=2. For further details and proper-
ties of these spectral functions, we refer to Appendix A.

III. FRG-IMPROVED ONE-LOOP CALCULATION

It will be instructive to compare the results obtained with
the FRG setup to those from a one-loop calculation. In
order to arrive at a meaningful comparison, we will use the
same parameters and masses in the one-loop calculation as

in the FRG calculation. This in particular entails making
the meson masses in the one-loop calculation momentum
dependent, where the momentum scale is identified
with the FRG scale, as discussed in the following; see
also Ref. [72].
We first write the retarded quark propagator as

GR
ψ ðω; p⃗Þ¼ ½ðωþ iϵþμÞγ0−mψ þ ip⃗ γ⃗−ΣRðω; p⃗Þ'−1;

¼ ½γ0Cðω; p⃗Þþ iγ⃗ p̂Aðω; p⃗Þ−Bðω; p⃗Þ'−1; ð19Þ

whereΣRðω; p⃗Þ is the quark self-energy. The real-time quark
self-energy can be obtained from its Euclidean counterpart
ΣEðiωn; p⃗Þ by analytic continuation iωn→ωþiϵ, where
ωn ¼ ð2nþ 1ÞπT are the fermionic Matsubara frequencies.
In the imaginary-time formalism, we can write the quark
self-energy as

2ΣEðiωn; p⃗Þ

¼ −h2T
X

m

Z
d3q
ð2πÞ3

½Gσðiωm − iωn; q⃗ − p⃗ÞGψ ðiωm; q⃗Þ

þ Gσðiνm; q⃗ÞGψðiνm þ iωn; q⃗þ p⃗Þ
þ 3Gπðiωm − iωn; q⃗ − p⃗Þiγ5Gψ ðiωm; q⃗Þiγ5
þ 3Gπðiνm; q⃗Þiγ5Gψðiνm þ iωn; q⃗þ p⃗Þiγ5'; ð20Þ

where h is the Yukawa coupling and νm ¼ 2mπT are the
bosonic Matsubara frequencies. We note that, in order to
facilitate a comparison, the momentum routing is chosen to
be the same as in the FRG case; see also Fig. 1. This also
gives rise to the overall factor 2 in Eq. (20), since we are
using four instead of the usual two diagrams. The right-hand
side of Eq. (20) contains the free quark and meson
propagators, which are given by

Gψðiωn; p⃗Þ ¼ ½ðiωn þ μÞγ0 þ ip⃗ · γ⃗ −mψ '−1; ð21Þ

Gαðiνn; p⃗Þ ¼ ½ðiνnÞ2 − p⃗2 −m2
αðjp⃗jÞ'−1; ð22Þ

with α ∈ fσ; πg andwhere the mesonmasses are taken to be
momentum dependent. The momentum dependence is here
identified with the scale dependence from the FRG calcu-
lation, i.e.,mαðjp⃗jÞ≡mαðkÞ. The other parameters, such as
the quark mass mψ ¼ hσ, the Yukawa coupling h, the UV
cutoffΛ, and the initial values for the propagator at the cutoff
scale are also taken to be the same as in the FRG calculation,
in order to facilitate a comparison.
With this “FRG-improved” one-loop setup, we can

obtain the quark spectral function from the same expres-
sions as discussed for the FRG case, but with the coef-
ficients X ∈ fA;B;Cg replaced by Xðω; p⃗Þ ¼ XΛðω; p⃗Þþ
ΔXðω; p⃗Þ with
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two functional derivatives of the Wetterich equation,
Eq. (1), with respect to the fermionic fields, which yields

∂kΓ
ð2Þ;E
k;ψ ðpÞ ¼ 1

2
Trð∂kRBðq⃗ − p⃗ÞDϕϕðq − pÞ

× Γð3Þ
ψ̄ψϕDψ̄ψðqÞΓ

ð3Þ
ψ̄ψϕDϕϕðq − pÞ

þ ∂kRFðq⃗þ p⃗ÞDψ̄ψ ðqþ pÞ

× Γð3Þ
ψ̄ψϕDϕϕðqÞΓ

ð3Þ
ψ̄ψϕDψ̄ψðqþ pÞÞ; ð5Þ

see Fig. 1 for a diagrammatic representation. Therein, q ¼
ðq0; q⃗Þ is the internal and p ¼ ðp0; p⃗Þ the external momen-
tum,D ¼ ðΓð2Þ

k þ RkÞ−1 is the full regulated propagator, the
vertex functions Γð3Þ

ψ̄ψϕ are obtained from the ansatz in
Eq. (2), and the remaining trace represents a summation
over all internal indices as well as an integration over
the internal momentum; see Appendix A for explicit
expressions. As in the original studies [36–38,50], we
use three-dimensional regulator functions, which only
regulate spatial momenta but not the energy components,
at the expense of slightly breaking the Euclidean Oð4Þ
symmetry [36]. While in principle also four-dimensional
regulator functions can be used [68,69], the three-
dimensional regulators allow to analytically perform the
integration over the internal energy component, or the
corresponding Matsubara sum at finite temperature, which
significantly simplifies the analytic-continuation procedure
discussed in the following.
In order to obtain the flow equation for the real-time

quark two-point function, we have to perform an analytic
continuation from imaginary to real energies. This analytic
continuation is performed on the level of the flow equations
and is achieved by the following two-step procedure; see
also Refs. [37,38]. First, the periodicity of the bosonic and
fermionic occupation numbers, which appear in the flow
equation upon evaluating the Matsubara summation ana-
lytically, with respect to the Euclidean Matsubara frequen-
cies p0 ¼ i2πnT is exploited,

nB;FðEþ ip0Þ → nB;FðEÞ: ð6Þ

In a second step, p0 is replaced by a continuous real
energy ω,

∂kΓ
ð2Þ;R
k;ψ ðω; p⃗Þ ¼ −lim

ϵ→0
∂kΓ

ð2Þ;E
k;ψ ðp0 ¼ −iðωþ iϵÞ; p⃗Þ: ð7Þ

One should note that the limit ϵ → 0 can be taken
analytically for the imaginary part of the two-point func-
tion, while for the real part we use a small numerical value
ϵ ¼ 1 MeV. This analytic-continuation procedure obeys
the physical Baym-Mermin boundary conditions [70,71],
and the resulting retarded propagator is analytic in the
upper half of the complex-energy plane, as expected.
We now make the following ansatz for the scale-

dependent quark two-point function:

Γð2Þ
k;ψðω; p⃗Þ¼ γ0Ckðω; p⃗Þþ iγ⃗ · p̂Akðω; p⃗Þ−Bkðω; p⃗Þ; ð8Þ

with p̂≡ p⃗=jp⃗j and where the UV initial conditions for the
dressing functions are given by

AΛðω; p⃗Þ ¼ jp⃗j; ð9Þ

BΛðω; p⃗Þ ¼ hσ; ð10Þ

CΛðω; p⃗Þ ¼ ωþ μ: ð11Þ

See also Ref. [50]. The flow equation for the quark two-
point function,

∂kΓ
ð2Þ
k;ψðω; p⃗Þ ¼ γ0∂kCkðω; p⃗Þ þ iγ⃗ · ˆp⃗∂kAkðω; p⃗Þ

− ∂kBkðω; p⃗Þ; ð12Þ

then leads to flow equations for the individual dressing
functions, which are discussed in the appendix. In particu-
lar, the analyticity of the flow of these dressing functions in
the upper half of the complex-energy plane is evident from
these expressions, cf. Eqs. (D1)–(D6), and guarantees that
the correct analytic behavior of the retarded propagator is
maintained in the flow.

FIG. 1. Diagrammatic representation of the flow equation for the quark two-point function (top), cf. Eq. (5), and of the one-loop
expression for the quark self-energy (bottom), cf. Eq. (20). Solid lines represent quark propagators and dashed lines meson propagators.
The crosses represent regulator insertions ∂kRk and the red circles the appropriate vertex functions.
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• aFRG for fermionic two-point functions 

at positive energies. This effect may be due to the nontrivial
structure of the overall spectral function and its dependence
on the temperature. In particular, the close proximity to the
thermal-continuum threshold seems to have a strong
influence on the phonino and the antiphonino branches.

V. SUMMARY AND OUTLOOK

In this work, we have studied quark spectral functions at
finite temperature, finite chemical potential, and finite
spatial momentum in order to identify fermionic excitations
in a hot and dense strongly interacting medium. As an
effective model for the chiral aspects of QCD, we used the
two-flavor quark-meson model. In order to include fluc-
tuations, we employed the FRG approach in the LPA. The
analytic continuation from imaginary to real energies
was performed using the aFRG method, which allows to
obtain analytically continued FRG flow equations for

retarded two-point functions. The particular truncation
scheme is thermodynamically consistent and preserves
chiral symmetry and its explicit versus dynamical breaking
patterns. As a simpler alternative scheme to calculate quark
spectral functions, we also assessed an FRG-improved
one-loop setup, which uses momentum-dependent quasi-
particle masses extracted from the FRG calculation. A
detailed comparison between the full FRG treatment and
the FRG-improved one-loop setup shows quite remark-
able agreement, revealing that the main effect of the
fluctuations included in the FRG calculation can be
reproduced by a suitably modified one-loop calculation.
This offers a simple physical interpretation of the results
and paves the way for systematic improvements in terms
of a loop expansion.
We find that the quark spectral functions exhibit non-

trivial in-medium modifications due to the influence of
various decay and scattering channels. In particular, we
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FIG. 8. The dispersion relations of the identified fermionic excitations as obtained from the FRG-improved one-loop calculation (left)
and the FRG calculation (right) are shown at T ¼ 180 MeV (top) and at T ¼ 300 MeV (bottom) in the chiral limit, i.e., c ¼ 0, at μ ¼ 0;
see text for details.
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one-loop setup, which uses momentum-dependent quasi-
particle masses extracted from the FRG calculation. A
detailed comparison between the full FRG treatment and
the FRG-improved one-loop setup shows quite remark-
able agreement, revealing that the main effect of the
fluctuations included in the FRG calculation can be
reproduced by a suitably modified one-loop calculation.
This offers a simple physical interpretation of the results
and paves the way for systematic improvements in terms
of a loop expansion.
We find that the quark spectral functions exhibit non-

trivial in-medium modifications due to the influence of
various decay and scattering channels. In particular, we
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T = 180 MeV

T = 300 MeVT = 180 MeV
plasmino

quasi-particle ultra-soft

• describe fermionic excitations at finite T 
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• extended linear-sigma model with quarks:

Ch. Jung, F. Rennecke, A. Tripolt, L.v.S. & J. Wambach, PRD95 (2017) 036020

• electromagnetic SF from gauging and mixing:

A. Tripolt, Ch. Jung, N. Tanji, L.v.S. & J. Wambach, NPA 982 (2019) 775

• include fluctuating (axial-)vectors in aFRG flows for SFs:

Ch. Jung & L.v.S., PRD 100 (2019) 116009 

• (axial-)vector SFs in hadronic effective theory for dense nuclear matter:

A. Tripolt, Ch. Jung, L.v.S. & J. Wambach, arXiv:2105.00861 [hep-ph] 
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2

the vacuum in Sec. III B and finally spectral functions at
finite temperature and chemical potential in Sec. III C.
We conclude with a summary in Sec. IV. Technical details
concerning FRG flow equations and the analytic contin-
uation procedure are given in App. B and App. C.

II. THEORETICAL SETUP

A. Massive vector fields and covariant time
ordering

To describe massive vectors by fundamental fields in
an e↵ective theory is knwon to be problematic [39, 40], if
not impossible without Higgs mechanism. In the Proca
formalism the transversality of the corresponding Green
functions is maintained only on-shell which, among other
problems, leads to a pathological ultraviolet behavior.
While this is fixed in the Stueckelberg formalism, one
is then left with spurious massless single-particle con-
tributions to the vector Green functions when restoring
transversality in the Stueckelberg limit. Essentially the
same is true for Nakanishi’s B-field formalism.

There is of course no problem with massive vectors
in Abelian-Higgs or Fradkin-Shenker models, for exam-
ple, or in the Standard Model for that matter. However,
the physical and hence gauge-invariant vectors are then
necessarily described by composite fields [41, 42]. Here
we adopt a somewhat simpler approach to describe fluc-
tuations due to (axial-)vector mesons within our FRG
framework below. It starts from the fairly general point
of view, describing massive vectors as single-particle con-
tributions, which may well be composites, to the corre-
sponding conserved vector-current correlation functions.
In order to understand their spectral representations, on
the other hand, it is important to remember the subtlety
in defining covariant time ordering for vector or higher-
rank tensor field operators [43–46].

Our brief review here follows the discussion in [39] for
the simplest example of the correlation function of a con-
served U(1) current jµ(x). As for any Feynman propaga-
tor, its causal Green function must be covariant while the
naive time-ordered product is not. One therefore defines
covariant time ordering,
⌦
Tcov jµ(x)j⌫(0)

↵
= (1)

✓(x0)
⌦
jµ(x)j⌫(0)

↵
+ ✓(�x

0)
⌦
j⌫(0)jµ(x)

↵
+ ⌧µ⌫(x) ,

which di↵ers from naive time ordering by a seagull term
⌧µ⌫(x) proportional to a delta distribution at x = 0. Such
a seagull term must occur whenever the corresponding
equal-time commutators between di↵erent current com-
ponents contain a Schwinger term [47]. In our example
this is the case for

⌦⇥
j0(x), ji(0)

⇤↵���
x0=0

= i@i�
3(~x)

Z 1

0
ds

⇢(s)

s
, (2)

where ⇢(s) � 0 is the spectral function of the current-
current correlators. Together with the covariance of their

causal Green functions, the requirement that Schwinger
terms are canceled from Ward identities [48] then fixes
the seagull term uniquely, in the present case,

⌧µ⌫(x) = i
�
gµ0g⌫0 � gµ⌫

�
�
4(x)

Z 1

0
ds

⇢(s)

s
, (3)

with metric and other conventions as in [39], where it is
explicitly demonstrated that this leads to a spectral rep-
resentation of the causal Green function, with covariant
time ordering,

⌦
Tcov jµ(x)j⌫(0)

↵
= (4)

� i

Z 1

0
ds

⇢(s)

s

Z
d
4
p

(2⇡)4
e�ipx p

2
gµ⌫ � pµp⌫

p2 � s+ i✏
.

This is manifestly transverse and covariant as it should
be, with a measure given by the semi-positive spectral
density ⇢(s). This is the spectral function of the con-
served U(1) current per charge squared. Assuming a
(minimal) first-order interaction gv jµV

µ of the current
with a vector field Vµ(x), with coupling gv, it is related
to the vector field’s spectral function ⇢v(s) by

g
2
v⇢(s) = s

2
⇢v(s) . (5)

A massive single-particle contribution of strength Z in
⇢v(s), corresponding to a stable vector meson of massmv,
will therefore contribute to the current spectral function
with a term

⇢(s) =
m

4
v

g2v

Z �(s�m
2
v) + . . . . (6)

In order to describe such a possibly composite state by
a single-particle contribution to the vector-meson field
Vµ in the spirit of vector-meson dominance, i.e. with a
current-field identity

jµ(x) =
m

2
v

gv
Vµ(x) , (7)

we therefore need to arrive at a transverse vector-meson
propagator DV

µ⌫ with a single-particle contribution of the
form (here still in Minkowski space),

D
V
µ⌫(p) = �i

Z

m2
v

p
2
gµ⌫ � pµp⌫

p2 �m2
v + i✏

+ . . . . (8)

This is not of the form of a massive Proca propagator,
and it di↵ers by a factor p2/m2

v from the transverse prop-
agator that results in the Stueckelberg limit. In par-
ticular, it does therefore not come along with massless
single-particle contributions. The price, however, is the
poor ultraviolet behavior when viewed as the propaga-
tor of an elementary field. Although we have therefore
obviously not succeeded to describe an o↵-shell vector
meson by an elementary field, this form is still useful
for our e↵ective description of vector-meson fluctuations.
The correct low-energy e↵ective Lagrangian for a mas-
sive transverse propagator of this form, in fact, starts
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density ⇢(s). This is the spectral function of the con-
served U(1) current per charge squared. Assuming a
(minimal) first-order interaction gv jµV
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with a vector field Vµ(x), with coupling gv, it is related
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A massive single-particle contribution of strength Z in
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with a term
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In order to describe such a possibly composite state by
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Vµ in the spirit of vector-meson dominance, i.e. with a
current-field identity

jµ(x) =
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2
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Vµ(x) , (7)

we therefore need to arrive at a transverse vector-meson
propagator DV

µ⌫ with a single-particle contribution of the
form (here still in Minkowski space),
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This is not of the form of a massive Proca propagator,
and it di↵ers by a factor p2/m2

v from the transverse prop-
agator that results in the Stueckelberg limit. In par-
ticular, it does therefore not come along with massless
single-particle contributions. The price, however, is the
poor ultraviolet behavior when viewed as the propaga-
tor of an elementary field. Although we have therefore
obviously not succeeded to describe an o↵-shell vector
meson by an elementary field, this form is still useful
for our e↵ective description of vector-meson fluctuations.
The correct low-energy e↵ective Lagrangian for a mas-
sive transverse propagator of this form, in fact, starts

3

from describing left and right-handed vectors in terms of
(anti-)self-dual field strengths [49] which can then be re-
expressed in terms of conserved 4-vectors to yield prop-
agators of the form in (8) as we describe in App. A.

The introduction of a regulator function Rk(p) to sup-
press fluctuations of momentum modes p < k in the FRG
framework requires to modify Ward identities accord-
ingly [50]. We will therefore use an Ansatz for fluctuat-
ing vector mesons which contains additional longitudinal
terms that vanish with k ! 0 in a way such that a trans-
verse vector-meson propagator of the form as in Eq. (8) is
obtained in the infrared as explained in Sec. II C below.

In order to extract spectral functions from the results
of integrating the analytically continued FRG flow equa-
tions we also need the imaginary parts of the retarded
(axial-)vector propagators. This is slightly subtle for the
same reasons, Schwinger and seagull terms, but the result
will luckily be just as one would naively expect:

The spectral function ⇢v(s) is originally defined from
the commutator of the vector field. Via Eq. (7) this is
essentially the same as that of the currents jµ(x) which,
however, includes the Schwinger term in Eq. (2),

⌦⇥
Vµ(x), V⌫(0)

⇤↵
= �

Z 1

0
ds

s
2
⇢v(s)

m4
v

⇣
gµ⌫+

@µ@⌫

s

⌘
i�(x; s) ,

written in terms of the invariant delta function

i�(x;m2) =

Z
d
4
p

(2⇡)4
✏(p0) 2⇡�(p

2 �m
2) e�ipx

.

As usual, its Fourier transform therefore essentially de-
fines the spectral function. In particular, we obtain here,
Z

d
4
x eipx

⌦⇥
Vµ(x), V⌫(0)

⇤↵
= (9)

� 2⇡✏(p0)✓(p
2)

p
2
⇢v(p2)

m4
v

⇣
p
2
gµ⌫ � pµp⌫

⌘
.

Expressing the invariant delta function by the imaginary
part of the retarded Green function,

i�(x;m2) = �2 Im�R(x;m
2) ,

we can therefore write

✏(p0)✓(p
2) p2⇢v(p

2)
⇣
p
2
gµ⌫ � pµp⌫

⌘
= (10)

1

⇡

Z 1

0
ds s

2
⇢v(s)

⇣
gµ⌫ � pµp⌫

s

⌘
Im

�1

(p0 + i✏)2 � ~p2 � s
.

This is not quite the imaginary part of the retarded prop-
agator corresponding to Eq. (4) yet. However, because
the imaginary part of the Fourier transform of �R(x,m2)
has support only at p

2 = m
2 we can trade powers of p2

for matching powers of s in this spectral integral to write

✏(p0)✓(p
2) ⇢v(p

2)
⇣
gµ⌫ � pµp⌫

p2

⌘
= (11)

� 1

⇡
Im

Z 1

0
ds

⇢v(s)

s

p
2
gµ⌫ � pµp⌫

(p0 + i✏)2 � ~p2 � s
.

This confirms that we can safely extract also a vector
spectral function from the discontinuity along the cut of
the transversally projected vector propagator with spec-
tral representation as in Eq. (4), i.e. for the transverse
part of the full Feynman propagator of the form,

D
T,V
µ⌫ (p) = �i

Z 1

0
ds

⇢v(s)

s

Z
d
4
p

(2⇡)4
e�ipx p

2
gµ⌫ � pµp⌫

p2 � s+ i✏
.

(12)

B. Gauged linear sigma model with quarks and the
FRG

In this section we briefly introduce the e↵ective model
we employ, a detailed discussion of the model is not pur-
pose of this work and we therefore refer to [37] and [32].
Starting point is the linear sigma model with quarks,

often used as e↵ective low-energy model for two-flavor
QCD to study the chiral phase transition. It contains
the isotriplet ~⇡ and the isosinglet � as chiral partners in
the scalar sector which are coupled to quark-antiquark
fields with a Yukawa-type interaction. In these type of
models one has a CEP at low termperture and large
quark chemical potential, dividing a crossover transition
for larger temperatures and a first oder phase transition
for lower temperatures. As the critical mode, the � field
becomes exactly massless at the CEP. Its expectation
value �0 serves as an order parameter for (spontaneous)
chiral symmetry breaking.
In such models vector mesons are usually introduced as

the gauge fields of a local flavor symmetry, first proposed
by Sakurai [51] and later extended to the full chiral group
to introduce the vector and axial-vector isotriplets ~⇢ and
~a1 as the gauge fields of a local chiral symmetry SU(2)L⇥
SU(2)R [52]. This idea of local gauge invariance was
also the origin of the concept of vector meson dominance
(VMD) [8]. Alternatively, one sometimes imposes only a
global chiral symmetry rather than a local one [38, 53].
In this work we employ the gauged linear sigma model

with quarks based on the assumption of VMD within
the framework of the functional renormalization group.
The idea of the FRG is to introduce a momentum scale
k and to integrate out fluctuations with momenta larger
than this scale. To this end one defines the so-called
e↵ective average action �k which interpolates between
the classical action S ⌘ �k!⇤ at some chosen ultraviolet
(UV) cuto↵ scale ⇤ and the full quantum e↵ective action
�k!0 at the infrared (IR) scale k ! 0. Technically this is
archived by implementing a regulator function Rk which
suppresses low-momentum fluctuations. The change of
�k when changing the scale k is described by the so-called
Wetterich equation [54],

@k�k =
1

2
Tr


@kR

�
k

⇣
�(2)
k [�] +R

�
k

⌘�1
�
. (13)

One hence starts with an Ansatz for the e↵ective av-
erage action �k=⇤ at the UV scale and integrates out

• current-field identity, transverse vector propagator:
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FIG. 10: (color online) Spectral functions of the ⇢ (solid blue)
and a1 meson (dashed red) as a function of external frequency
! for T = 0 MeV (dark) and T = 150 MeV (light).

and T = 150 MeV are shown, plotted in linear scales. An
increasing temperature leads to a decreasing of the a1

pole mass, whereas the peak of the ⇢ meson only slightly
shrinks but does not move. This e↵ect gets stronger by
further increasing the temperature until both spectral
functions are fully degenerate.

IV. SUMMARY AND CONCLUSION

In this paper we aimed at computing in-medium vec-
tor and axial-vector meson spectral functions including
fluctuations of these vector mesons within an e↵ective
low-energy theory, extending the study in [32]. As non-
perturbative method we used the functional renormal-
ization group approach which enabled us to perfom the
analytic continuation towards the real-time framework
on the level of the flow equations.

To this end we first discussed how to describe mas-
sive vector mesons by fundamental fields in an e↵ective
theory. In this discussion we used the current-field iden-
tity of the vector meson dominance model to rewrite
the expression for a covariant time-ordered product of
a conserved U(1) current, derived in [39], into the single-
particle contribution for a massive vector field. This ex-
pression was then implemented into the FRG framework
where we had to include longitudinal components to the
vector two-point function which were constructed in a
way that they turn o↵ themselves in the propagator in
the limit k ! 0. Within an e↵ective theory inspired
by the gauged linear sigma model with quarks, we then
studied the RG flow of the Euclidean parameters and
verified the expected ordering of the vector meson mass
parameters m2

v and m
2
0.

Spectral functions of the ⇢ and a1 meson were then
computed at finite temperature and chemical potential,
for the reason of comparability at the same combinations

as in [32]. Qualitatively we observed similar e↵ects, but
in this study we have more possible processes involving
the ⇢ and a1 meson as fluctuating fields which we could
identify in the spectral functions. For increasing temper-
ature we saw the various new capture processes becoming
possible, ⇢⇤ + ⇡ ! a1, a⇤1 + ⇡ ! ⇢ and a

⇤
1 + � ! a1. At

T = 300 MeV both spectral functions got completely de-
generate. As a function of chemical potential towards
the CEP of the model, the a1 spectral functions shows
a dropping of the threshold a

⇤
1 ! � + ⇡ as signature for

the chiral CEP.
All in all we succeeded in describing fluctuations due

to the ⇢ and a1 meson, expressed as single-particle con-
tribution via the related time-ordered product of a con-
served U(1) current. From a phenomenological point of
view, an important next step is to implement not only
single-particle contribution into the flow equations but
an enhanced ansatz which reflects the non-trivial spec-
tral properties of the specific particles, or even a complete
self-consistent solution. This is an important step in or-
der to finally identify signatures for features of the QCD
phase diagram like a CEP in the associated electromag-
netic spectral functions [34] which could give hints also
to actual measured dilepton spectra.
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Appendix A: Massive spin-1 particles from
anti-symmetric rank-2 tensor fields

Gasser and Leutwyler have proposed to describe the ⇢-
meson in terms of an anti-symmetric rank-2 tensor field
⇢µ⌫ when constructing an e↵ective Lagrangian [49] start-
ing with a free kinetic Lagrangian plus mass term of the
form

L⇢
0 = �1

2
(@µ⇢µ⌫)@�⇢�⌫ +

1

4
m

2
v ⇢µ⌫⇢µ⌫ . (A1)

We are considering just a single flavor component without
gauging for simplicity. All we want to point out here is
that this Lagrangien, when the components of ⇢µ⌫ are re-
expressed in terms of a conserved 4-vector field, leads to
a transverse tree-level two-point function for this vector
field in momentum space of the form

�(2)T
µ⌫ (p) = �m

2
v

p4
(p2 +m

2
v)

�
p
2
�µ⌫ � pµp⌫

�
, (A2)
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Euclidean (curvature) mass parameters. Since the setting
used here in wide parts parallels that of Ref. [32] we keep
the discussion brief and refer to this reference as well as
our Appendix B for further details.

We start with solving the flow equation for the e↵ec-
tive potential Uk(�2) which contains scalars and pseudo-
scalars as well as quarks and antiquarks as fluctuating
fields. Because the Euclidean mass parameters of the
(axial-)vector mesons are relatively heavy, of the order of
the UV cuto↵ ⇤ = 1500 MeV, they are expected to con-
tribute very little to the Euclidean flow of the e↵ective
potential and are therefore neglected. The flow equation
for Uk(�2) is then solved with standard procedures by
discretizing its argument in field space, and using the
following simple form of the linear-sigma model in the
symmetric phase at the UV scale ⇤ as initial condition,

Uk=⇤(�
2
i ) = b1 �

2
i + b2 �

4
i . (34)

Storing the k-dependent e↵ective potential, we solve
the flow equations for the vector-meson mass parameters
m

2
v,k and m

2
0,k next, see App. B for more details. With

the parameters listed in Tab. I (Set 1), we obtain follow-
ing values for the chiral order parameter �0 and the Eu-
clidean mass parameters at the IR scale of k = 40 MeV,

�0 = 93.0 MeV , m� = 557.1 MeV ,

m⇡ = 140.4 MeV , m = 300.0 MeV ,

m⇢ = 868.1 MeV , ma1 = 1363.1 MeV ,

m0 = 1294.3 MeV . (35)

Note that the mesonic mass parameters here are not di-
rectly the physical meson masses. They are determined
from the zero-momentum limit of the respective Eu-
clidean two-point functions �(2),E(p). For the (pseudo-)
scalars they agree with the corresponding curvatures in
the ⇡ and � directions of the e↵ective potential in our
thermodynamically consistent and symmetry-preserving
truncation scheme.

FIG. 2: (color online) Flow of the Euclidean mass parameters
in (35) with the RG scale k in the vacuum (parameter Set 1).

Set # b1 [⇤2] b2 c [⇤3] hs = hv g mv,⇤ [⇤]

1 0.381 0.2 0.5401·10�3 3.226 11.3 0.7067

2 11.8 0.684

3 10.5 0.74

TABLE I: Di↵erent UV parameter sets resulting in roughly
the same pole masses, close to the physical ones of ⇢ and a1,
all with the same quark-meson model parameters.

The analogous Euclidean masses of vector and axial-
vector meson, on the other hand, then essentially re-
sult from tuning their coupling g and UV mass parame-
ter mv,⇤ so that the corresponding pole masses m

p
⇢ and

m
p
a1

assume the approximate mass values of the phys-
ical ⇢(770) and the a1(1260) mesons. Since the ⇢ and
a1 are resonances, we estimate their pole masses from
the zeros of the real parts of the respective retarded two-

point functions, �(2),R
⇢/a1

(p), which is a fairly good approx-
imation as long as the widths of the resonances, i.e. the

imaginary parts of �(2),R
⇢/a1

in the resonance region, are
su�ciently small. In our present qualitative study we
are content with this approximation and obtain the pole
masses listed in Tab. II which are all reasonably close to
the physical masses of ⇢ and a1 for our representative UV
parameters of Table I. For a more precise determination
of masses and widths one would have to study the ana-

lytic structure of �(2),R
⇢/a1

and look for the resonance poles
on the unphysical second Riemann sheet, see for example
Refs. [56, 57].

Set # mp
⇢ [MeV] mp

a1
[MeV]

1 776.3 1242.6

2 774.9 1266.2

3 770.2 1258.6

PDG 775.26±0.25 1230±40

TABLE II: Pole masses of (axial-)vector mesons for the pa-
rameter sets of Table I compared to the estimates for ⇢(770)
and a1(1260) from the Review of Particle Properties (2019).

The k-flow of the Euclidean masses and of the mass
parameter m0,k, all evaluated at the k-dependent mini-
mum �

2
0,k of Uk(�2), is plotted in Fig. 2. Starting at the

UV scale where chiral symmetry is restored, the masses
of the chiral partners ⇡-� and ⇢-a1 are degenerate, the
quark mass has its very small bare value. Taking fluc-
tuations into account by successively lowering the scale
k, the mass parameter m0,k immediately splits from its
counterpart mv,k because their flow is not independent
but in fact opposite in sign. In particular, one has

@km
2
0,k

m2
0,k

= �
@km

2
v,k

m2
v,k

, (36)

cf. App. B. Moreover, the relation m
2
0,k � m

2
v,k discussed

in Sec. II C with m
2
0,⇤ = m

2
v,⇤ therefore holds by con-

6

Z
T
k and both to be independent of �k instead, would es-

sentially lead back to the Proca propagator for �k ! 0
in the infrared (i.e. up to the factor ZT

k ). In the present
setup on the other hand, longitudinal and transverse
components start out equally at the ultraviolet cuto↵
scale for k = ⇤ so that the two-point function is alto-
gether proportional to �µ⌫ (as in Feynman gauge). Rel-
ative to the transverse mass, the longitudinal mass be-
comes heavier and heavier and the unphysical longitudi-
nal fluctuations switch themselves o↵ automatically dur-
ing the flow.

Finally, for the transverse part to correctly model the
single-particle contribution to the vector correlator (8),
cf. Eq. (21) with scale dependent mass mv,k and strength
Zk, all we have now left to do, is to set

Z
T
k (p

2) = �Z
�1
k m

2
v,k/p

2 ⌘ �m
2
0,k/p

2
, (27)

with an independent mass parameter m
2
0,k = m

2
v,k/Zk

which for Zk < 1 we expect to be larger than the scale
dependent (pole-)mass of the vecor mesonm

2
v,k, in partic-

ular for k ! 0 in the infrared. We will start the flow with
the boundary condition at the ultraviolet cuto↵ k = ⇤
with Z⇤ = 1, corresponding to the full spectral strength
initially contained in this single-particle contribution.

Note that the somewhat ambiguous details in the treat-
ment of the unphysical longitudinal fluctuations are ir-
relevant here: Just as the vector-meson mass parameter,
the longitudinal mass starts out at a rather large initial
value of about

ml,⇤ = mv,⇤ ⇡ 1GeV (28)

as compared to a UV cuto↵ for which we typically use
⇤ = 1.5 GeV. Because the longitudinal mass

ml,k =
⇤

k
mv,k (29)

increases rapidly with lower k from there on, these lon-
gitudinal fluctuations are strongly suppressed during the
flow. In principle, their suppression can be further con-
trolled by the initial value of the Stueckelberg parameter
�⇤. One then verifies that the results are in fact inde-
pendent of this parameter for su�ciently small �⇤. Our
choice of �⇤ = 1 seems rather natural but is by no means
mandatory, it simply turns out to be su�ciently small for
the parameters used here at least at low temperatures.
For the higher temperatures, e.g. for the results presented
in the next section with T = 100 MeV and above, we in
fact observe that longitudinal fluctuations can occasion-
ally still produce small spurious contributions to capture
processes during the flow, when their initial mass is not
large enough for �⇤ = 1. In such cases we simply reduce
�⇤ further, until we observe no noticeable dependence on
�⇤ any more.

In contrast, we have been very careful in modeling the
transverse fluctuations to correctly describe the single-
particle contributions to the full (axial-)vector correla-
tors, including momentum and field independent wave-
function renormalization in form of the scale-dependent

strength Zk. This treatment of the (axial-)vector fluctu-
ations thus in this sense parallels what has been called
the LPA’ tuncation for the (pseudo-)scalar sector in the
literature.
Choosing a transverse and longitudinal regulator func-

tions of the same form,

R
T,L
µ⌫,k(p) = Z

T,L
k (p2) k2 rk(p)⇧

T,L
µ⌫ (p) , (30)

with a suitable dimensionless regulator function rk(p),
and using (25)–(27) in Eq. (23), the Ansatz for the scale-
depended vector propagator with regulator becomes,

D
E
µ⌫,k(p) ⌘

⇣
�(2),E
k (p) +Rk(p)

⌘�1

µ⌫
(31)

=
�p

2

m2
0,k (p

2 + k2 rk(p) +m2
v,k)

⇧T
µ⌫(p)

� p
2

m2
0,k (p

2 + k2 rk(p) +
⇤2

k2 m
2
v,k)

⇧L
µ⌫(p) .

For k ! 0 we recover Eq. (24), and the transverse part
reduces to the desired single-particle contribution of a
massive vector state as in Eq. (21). The flow of the mass
parameter m

2
0,k = m

2
v,k/Zk is in general di↵erent from

that of the LPA’ vector-meson mass m2
v,k, of course. As

mentioned above, we will assume their initial values to
be the same at the UV cuto↵, with Z⇤ = 1, i.e.

m
2
0,⇤ = m

2
v,⇤ . (32)

Due to the fluctuations in the interacting theory one then
expects Zk < 1 and, with �k = k

2
/⇤2, therefore the

overall ordering

m
2
l,k > m

2
0,k > m

2
v,k , for k < ⇤ . (33)

This behaviour is confirmed explicitly in the numerical
calculations as described in the next section, Sec. III A.
As mentioned above, the LPA’ Ansatz in Eq. (31) is

used to describe the fluctuations due to the single-particle
contributions of massive vectors on the right hand side
of the FRG flow equations in Fig. 1, in our present trun-
cation. The result of the integrated flow on the left hand
side yields the corresponding full two-point functions in-
cluding widths and various thresholds whose transverse
parts will have a spectral representation as in Eq. (12). In
a fully self-consistent calculation one would have to feed
these back into the flow equations, recompute and iterate
until convergence [36]. As in our previous studis [30–32]
here we perform the first step in such an approach, thus
neglecting the fluctuations due to the continuous contri-
butions from the two-point functions inside the flow.

III. NUMERICAL RESULTS

A. Euclidean FRG flow and mass paramters

In this section we discuss the numerical procedure for
solving the flow equations and the resulting flow of the

• Euclidean two-point function, single-particle contribution:
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the vacuum in Sec. III B and finally spectral functions at
finite temperature and chemical potential in Sec. III C.
We conclude with a summary in Sec. IV. Technical details
concerning FRG flow equations and the analytic contin-
uation procedure are given in App. B and App. C.

II. THEORETICAL SETUP

A. Massive vector fields and covariant time
ordering

To describe massive vectors by fundamental fields in
an e↵ective theory is knwon to be problematic [39, 40], if
not impossible without Higgs mechanism. In the Proca
formalism the transversality of the corresponding Green
functions is maintained only on-shell which, among other
problems, leads to a pathological ultraviolet behavior.
While this is fixed in the Stueckelberg formalism, one
is then left with spurious massless single-particle con-
tributions to the vector Green functions when restoring
transversality in the Stueckelberg limit. Essentially the
same is true for Nakanishi’s B-field formalism.

There is of course no problem with massive vectors
in Abelian-Higgs or Fradkin-Shenker models, for exam-
ple, or in the Standard Model for that matter. However,
the physical and hence gauge-invariant vectors are then
necessarily described by composite fields [41, 42]. Here
we adopt a somewhat simpler approach to describe fluc-
tuations due to (axial-)vector mesons within our FRG
framework below. It starts from the fairly general point
of view, describing massive vectors as single-particle con-
tributions, which may well be composites, to the corre-
sponding conserved vector-current correlation functions.
In order to understand their spectral representations, on
the other hand, it is important to remember the subtlety
in defining covariant time ordering for vector or higher-
rank tensor field operators [43–46].

Our brief review here follows the discussion in [39] for
the simplest example of the correlation function of a con-
served U(1) current jµ(x). As for any Feynman propaga-
tor, its causal Green function must be covariant while the
naive time-ordered product is not. One therefore defines
covariant time ordering,
⌦
Tcov jµ(x)j⌫(0)

↵
= (1)

✓(x0)
⌦
jµ(x)j⌫(0)

↵
+ ✓(�x

0)
⌦
j⌫(0)jµ(x)

↵
+ ⌧µ⌫(x) ,

which di↵ers from naive time ordering by a seagull term
⌧µ⌫(x) proportional to a delta distribution at x = 0. Such
a seagull term must occur whenever the corresponding
equal-time commutators between di↵erent current com-
ponents contain a Schwinger term [47]. In our example
this is the case for

⌦⇥
j0(x), ji(0)

⇤↵���
x0=0

= i@i�
3(~x)

Z 1

0
ds

⇢(s)

s
, (2)

where ⇢(s) � 0 is the spectral function of the current-
current correlators. Together with the covariance of their

causal Green functions, the requirement that Schwinger
terms are canceled from Ward identities [48] then fixes
the seagull term uniquely, in the present case,

⌧µ⌫(x) = i
�
gµ0g⌫0 � gµ⌫

�
�
4(x)

Z 1

0
ds

⇢(s)

s
, (3)

with metric and other conventions as in [39], where it is
explicitly demonstrated that this leads to a spectral rep-
resentation of the causal Green function, with covariant
time ordering,

⌦
Tcov jµ(x)j⌫(0)

↵
= (4)

� i

Z 1

0
ds

⇢(s)

s

Z
d
4
p

(2⇡)4
e�ipx p

2
gµ⌫ � pµp⌫

p2 � s+ i✏
.

This is manifestly transverse and covariant as it should
be, with a measure given by the semi-positive spectral
density ⇢(s). This is the spectral function of the con-
served U(1) current per charge squared. Assuming a
(minimal) first-order interaction gv jµV

µ of the current
with a vector field Vµ(x), with coupling gv, it is related
to the vector field’s spectral function ⇢v(s) by

g
2
v⇢(s) = s

2
⇢v(s) . (5)

A massive single-particle contribution of strength Z in
⇢v(s), corresponding to a stable vector meson of massmv,
will therefore contribute to the current spectral function
with a term

⇢(s) =
m

4
v

g2v

Z �(s�m
2
v) + . . . . (6)

In order to describe such a possibly composite state by
a single-particle contribution to the vector-meson field
Vµ in the spirit of vector-meson dominance, i.e. with a
current-field identity

jµ(x) =
m

2
v

gv
Vµ(x) , (7)

we therefore need to arrive at a transverse vector-meson
propagator DV

µ⌫ with a single-particle contribution of the
form (here still in Minkowski space),

D
V
µ⌫(p) = �i

Z

m2
v

p
2
gµ⌫ � pµp⌫

p2 �m2
v + i✏

+ . . . . (8)

This is not of the form of a massive Proca propagator,
and it di↵ers by a factor p2/m2

v from the transverse prop-
agator that results in the Stueckelberg limit. In par-
ticular, it does therefore not come along with massless
single-particle contributions. The price, however, is the
poor ultraviolet behavior when viewed as the propaga-
tor of an elementary field. Although we have therefore
obviously not succeeded to describe an o↵-shell vector
meson by an elementary field, this form is still useful
for our e↵ective description of vector-meson fluctuations.
The correct low-energy e↵ective Lagrangian for a mas-
sive transverse propagator of this form, in fact, starts
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which we defer to a future study. For our first qualitative
study here, we chose m0,N = 800 MeV as a reasonable
compromise as concluded in [40].

At the mean-field level, the inclusion of the ! meson
in the e↵ective action is known to result in a simple shift
of the chemical potential, and is hence e↵ective in ad-
justing the binding energy per nucleon essentially with-
out influence on the strength of the nuclear liquid-gas
transition. That the same mechanism, from a mean-
field gap equation for the ! meson, does not work within
the FRG framework for the order parameter fluctuations
used here, was shown in [40]. The present e↵ective theory
framework for fluctuating vector mesons from [58] can in
principle be extended to include also the repulsive con-
tributions from fluctuating ! mesons in the flow for the
e↵ective potential and hence the thermodynamic grand
potential to improve this situation. This requires further
technical developments, however, and is therefore left for
future work. Another issue is the slope of the first-order
lines at low temperatures. As pointed out in [70], from a
Clausius-Clapeyron relation, a positive slope dTc/dµc of
the first-order line implies a negative jump in the entropy
density when going from the gaseous to the liquid phase.
While this by itself is not necessarily unphysical at finite
temperature, when the magnitude of the jump gets too
large it leads to negative entropy densities on the liquid
side of the transition line which then certainly is unphys-
ical. The inclusion of a scale-dependent gap equation
for a mean-field description of the ! meson was recently

FIG. 2: Phase diagram of the parity doublet model repre-
sented as a contour plot of �0(µB , T ) with darker colors indi-
cating smaller values, as shown in the legend bar. We observe
two distinct first-order phase transitions at low temperatures
which end in a critical point at (µB ⇡ 896 MeV, T ⇡ 10 MeV)
and at (µB ⇡ 925 MeV, T ⇡ 33 MeV), respectively.

shown to be able to remedy the analogous unphysical ef-
fect in the quark-meson model [67]. It might therefore
be reasonable to expect that it will also be a↵ected when
the !-meson fluctuations are properly included within
our FRG framework for a more realistic description of
the thermodynamics of nuclear matter from the PDM in
the future, as discussed above.

D. Vector and Axial-Vector Meson Propagators
and Masses

We now turn to the calculation of the Euclidean vector
meson masses, which will use the scale-dependent e↵ec-
tive potential as input. In Ref. [58] it was shown that the
vector-meson part of the e↵ective action in Eq. (1),

L⇢
0 = �1

4
tr (@µ⇢µ⌫)@�⇢�⌫ +

m
2
v

8
tr ⇢µ⌫⇢µ⌫ , (14)

with Eqs. (3) and (4) corresponds to tree-level two-point
functions for free (axial-)vector mesons with mass mv of
the form,

�(2)
µ⌫ (p) = �m

2
v

p4
(p2 +m

2
v)

�
p
2
�µ⌫ � pµp⌫

�
. (15)

It was furthermore explicitly verified that this form, upon
analytic continuation, in the interacting theory correctly
describes that of the corresponding single-particle con-
tributions to the spectral representations of the propa-
gators of massive (axial-)vector fields which are related
to the analogous current-current correlation functions by
current-field identities [58].
For the inclusion of (axial-)vector fluctuations of this

form within the FRG we also follow the strategy of
Ref. [58] and temporarily add artificial longitudinal terms
in order to be able to invert the correlation functions.
This then leads to an ansatz for the scale-dependent
(axial-)vector propagators which reads as follows,

Dµ⌫,k(p) ⌘
⇣
�(2)
k (p) +Rk(p)

⌘�1

µ⌫
(16)

=
�p

2

m2
0,k

1

(p2(1 + r(y)) +m2
v,k)

⇧T
µ⌫(p)

+
�p

2

m2
0,k

1

(p2(1 + r(y)) + ⇠
⇤2

k2 m
2
v,k)

⇧L
µ⌫(p),

(17)

with a regulator shape function r(y) and y = p
2
/k

2 as
defined in App. A, the transverse and longitudinal pro-
jection operators,

⇧T
µ⌫(p) = �µ⌫ � pµp⌫/p

2
, (18)

⇧L
µ⌫(p) = �µ⌫ �⇧T

µ⌫(p) = pµp⌫/p
2
, (19)

and a scale-dependent mass parameter m2
0,k ⌘ Z

�1
k m

2
v,k

which di↵ers from the running vector-meson pole mass
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In this work we choose the scalar- and vector-couplings
to be the same, i.e. h1 ⌘ hs,1 = hv,1 and h2 ⌘ hs,2 = hv,2,
as also done in [55]. The mesonic fields are combined in
�
2 = �

2 + ~⇡
2, Uk(�2) is the O(4) symmetric e↵ective

potential, and c� is an explicit chiral-symmetry-breaking
term that stems from the bosonization of the current-
quark mass term of the QCD action. This ansatz rep-
resents the leading order in a derivative expansion, also
called local potential approximation (LPA) [73, 74].

Right and left-handed vector mesons are first intro-
duced as (anti-)selfdual field strengths ⇢̃

±
µ⌫ = ±⇢

±
µ⌫ ac-

cording to the (1, 0) and (0, 1) representations for massive
spin-1 particles,

⇢µ⌫ = ⇢
+
µ⌫ + ⇢

�
µ⌫ = ~⇢

+
µ⌫ · ~TR + ~⇢

�
µ⌫ · ~TL . (2)

The conserved isovector vector ~⇢µ and axialvector ~a1µ

meson fields are then obtained from these field strengths
as

~⇢µ =
1

2mv
tr
�
@�⇢�µ

~TV

�
, (3)

~a1µ =
1

2mv
tr
�
@�⇢�µ

~TA

�
, (4)

where ~TV = ~TR + ~TL and ~TA = ~TR � ~TL.
The interactions of the vector field Vµ with the scalar-

and pseudoscalar mesons then result from the minimal
coupling prescription, with Dµ = @µ + igVµ. The vector
mesons are given in the adjoint representation of O(4)
by Vµ = ~⇢

µ ~T + ~a
µ
1
~T
5, with the usual so(4) matrices Ti,

cf. e.g. [55]. Finally, the ⇡�a1 mixing term ��⇡a1 re-
sults from a redefinition of the a1-field which is necessary
to ensure diagonal meson propagators for non-vanishing
expectation values of the sigma field, see App. A for the
explicit expression and additional information.

B. Flow of the E↵ective Potential and Numerical
Implementation

The ansatz for the e↵ective average action �k formu-
lated in Eq. (1) is now used in the Wetterich equation

[72] which defines the ‘flow’ of �k and is given by

@k�k =
1

2
STr


@kRk

⇣
�(2)
k +Rk

⌘�1
�
, (5)

where Rk is a regulator function that suppresses momen-

tum modes with momenta smaller than k, �(2)
k is the sec-

ond functional derivative with respect to the fields, and
the supertrace runs over field space, all internal indices,
and also includes an integration over internal momenta.
At the ultraviolet (UV) scale k = ⇤, �k is essentially
given by the bare action. By solving the Wetterich equa-
tion and lowering the scale k the e↵ects of quantum and
thermal fluctuations are gradually included until the full
e↵ective action � = �k=0 is obtained in the limit k ! 0.
The regulator function Rk has to be chosen appropri-

ately for di↵erent types of fields [75]. In this work we use
three-dimensional regulator functions that only regulate
spatial momenta but not the energy components, at the
expense of slightly breaking the Euclidean O(4) symme-
try [57]. While in principle also four-dimensional regula-
tor functions can be used [76, 77], the three-dimensional
regulators allow to analytically perform the integration
over the internal energy component, or the correspond-
ing Matsubara sum at finite temperature, as included in
the supertace of Eq. (5). This in turn allows to apply the
aFRG analytic continuation procedure as necessary for
the calculation of the real-time two-point functions and
spectral functions in the following. Explicit expressions
for the di↵erent regulator functions are given in App. A.

When inserting the ansatz (1) into the Wetterich equa-
tion (5), one obtains the flow equation for the e↵ective
potential,

@kUk =
k
4

12⇡2

n1 + 2nB(E�,k)

E�,k
+

3(1 + 2nB(E⇡,k))

E⇡,k
+

4Nf

EN1,kEN2,k

h
� (EN1,k + EN2,k) + EN2,knF (EN1,k � µB)

+ EN1,knF (EN2,k � µB) + EN2,knF (EN1,k + µB) + EN1,knF (EN2,k + µB)
io

. (6)

Therein, we introduced the number of flavors Nf = 2, the
bosonic and fermionic occupation numbers, nB and nF ,
as given explicitly in App. A, and the scale-dependent
particle energies for the sigma meson, the pion as well

as for the nucleon and its party partner. The e↵ective
quasi-particle energies are defined as

E↵,k ⌘
q
k2 +m2

↵,k, ↵ 2 {⇡,�, N1, N2} , (7)
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quasi-particle energies are defined as
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ω ≥ mα þmβ, and a capture process for ωþmα ≤ mβ

which requiresmβ > mα in addition. We have therefore not
listed here the capture processes ρ" þ a1 → π, a"1 þ ρ → π
and a"1 þ a1 → σ where this never occurs, while it does
happen that mσ < mπ very close to the critical end point as
seen in Fig. 8.
In the vacuum only the decay processes contribute,

cf. Fig. 3, and thus the starting thresholds are given by
the decays into the light (pseudo)scalar mesons in both
spectral functions. Here, essentially the only new feature as
compared to the previous study in [14] is the decay a1 →
ρþ π as discussed in the previous subsection. Since the
decays into quark-antiquark pairs yield rather large con-
tributions, cf. Ref. [14], both spectral function always
broaden in all T and μ cases for ω ≥ 2mψ. However, with
increasing temperature (from top to bottom in the left
column of Fig. 9) we see that the various capture processes
start to contribute, giving rise to an increase in both spectral
functions especially at low external frequencies, where in
the a1 spectral function the van Hove peak appears that was
already observed in [14]. At T ¼ 300 MeV the masses of
the chiral partners are degenerate and the quarks become
the lightest degrees of freedom leading to broad and fully
degenerate spectral functions of ρ and a1 mesons as
expected in the chirally restored phase.
The most noticeable differences with respect to the

previous results in [14] are the new capture processes
involving vector mesons, i.e., ρ" þ π → a1, a"1 þ π → ρ
and a"1 þ σ → a1 which fill up the gap between capture and
decay processes when only the light (pseudo)scalars are
involved. This is demonstrated in Figs. 10 and 11 where we
plot the individual imaginary parts of the ρ and the a1 two-
point function separately that altogether contribute to their
spectral functions at T ¼ 150 MeV as an example.
Turning on the chemical potential (as done in the right

column of Fig. 9), when the low-temperature system at

T ¼ 10 MeV eventually starts to react, beyond
μ ≃ 290 MeV, we observe modifications in the a1-meson
spectral function close to the critical end point located at
μCEP ≈ 298 MeV. While the ρ-meson spectral function
remains qualitatively unchanged, the dropping threshold
for a"1 → π þ σ and the related peak in the a1 spectral
function are due to the dropping sigma mass in this critical
region and can thus serve as a signature for the CEP. As
compared to the previous study in [14] this signal got
somewhat washed out by the additionally possible proc-
esses, unfortunately, but the fact that it is robust enough to
still be visible seems at least encouraging for further
studies. At large μ we again observe the full degeneracy
of both spectral functions with gradual chiral symmetry
restoration inside the high-density phase.
To summarize, the modifications in the thermal medium

are once more exemplified in Fig. 12 where the spectral

FIG. 10. Imaginary parts of the retarded two-point function of
the ρ meson for every process separately as a function of external
frequency ω at T ¼ 150 MeV (evaluated at fixed IR minimum
σ ¼ σ0 with the parameters of set 2).

FIG. 11. Imaginary parts of the retarded two-point function of
the a1 meson for every process separately as a function of external
frequency ω at T ¼ 150 MeV (evaluated at fixed IR minimum
σ ¼ σ0 with parameters of set 2).

FIG. 12. Spectral functions of the ρ (solid blue) and a1 meson
(dashed red) as a function of external frequency ω for T ¼
0 MeV (dark) and T ¼ 150 MeV (light).
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partners of the nucleons in a chirally invariant way, lead-
ing to parity-doublet models.

For an FRG treatment of the PDM we need an ansatz
for the corresponding e↵ective average action �k, the cen-
tral object in the FRG approach formulated by Wetterich
[61], where k is the renormalization-group scale. In this

work we will use the following ansatz for the e↵ective av-
erage action of the PDM, extended by vector and axial-
vector mesons, thus combining the FRG framework for
the PDM presented in [40] and the strategy to include
massive spin-1 (axial-)vector mesons presented in [58],

�k =

Z
d
4
x

n
N̄1

�
/@ � µB�0 + hs,1(� + i~⌧ · ~⇡�5) + hv,1(�µ~⌧ · ~⇢µ + �µ�
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N2 +m0,N
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5
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N1

�

+ Uk(�
2)� c� +

1

2
(Dµ�)

†
Dµ�� 1

4
tr @µ⇢µ⌫@�⇢�⌫ +

m
2
v

8
tr ⇢µ⌫⇢µ⌫

o
+��⇡a1 . (1)

The nucleon fields N1 and N2 are defined to have oppo-
site parity and respectively represent the iso-doublet of
nucleons, (p, n), and their parity partners, to which we
assign the N⇤(1535). The chirally-invariant bare nucleon
mass is given by m0,N ; µB denotes the baryon chemi-
cal potential, and the h’s label the various Yukawa cou-
plings between mesons and baryons. In this work we
choose the scalar and vector-couplings to be the same,
i.e. hs,1 = hv,1 and hs,2 = hv,2, as also done in [57, 58].
The scalar and pseudo-scalar meson fields are combined
in �

2 = �
2 + ~⇡

2, Uk(�2) is the O(4) symmetric e↵ec-
tive potential, and the term c� provides the explicit
chiral-symmetry breaking that arises from the small but
finite current masses of the light quarks in perturba-
tive QCD. This ansatz represents the leading order in
a derivative expansion, also called local potential ap-
proximation (LPA) [62, 63]. To describe the dynamics
of massive vector and axial-vector fields and their cou-
plings in an e↵ective theory [58], right and left-handed
vector mesons are first introduced as (anti-)selfdual field
strengths ⇢̃

±
µ⌫ = ±⇢

±
µ⌫ which transform according to the

(1, 0) and (0, 1) representations of the Euclidean O(4) re-
placing the proper orthochronous Lorentz group for mas-
sive spin-1 particles, with (1, 0) $ (0, 1) under parity,

⇢µ⌫ = ⇢
+
µ⌫ + ⇢

�
µ⌫ = ~⇢

+
µ⌫ · ~TR + ~⇢

�
µ⌫ · ~TL . (2)

Here, ~TR and ~TL denote the so(4) Lie algebra matrices,
cf. e.g. [57] for explicit expressions and conventions, of the
generators of the chiral SU(2)L ⇥ SU(2)R in the adjoint
representation.1

The iso-triplet vector ~⇢µ and axial-vector ~a1µ fields
with common mass mv are then obtained from these field

1 With SU(2)L⇥SU(2)R ⇠ SO(4) for all mesonic representations.

strengths as

~⇢µ =
1

2mv
tr
�
@�⇢�µ

~TV

�
, (3)

~a1µ =
1

2mv
tr
�
@�⇢�µ

~TA

�
, (4)

where ~TV = ~TR + ~TL and ~TA = ~TR � ~TL.
The interactions of the (axial-)vector fields, combined

in the so(4) matrix Vµ = ~⇢
µ ~TV + ~a

µ
1
~TA, with the SO(4)

vector of scalar and pseudo-scalar � and ~⇡ mesons are
determined from minimal coupling with Dµ = @µ+ igVµ.
Finally, the ⇡� a1 mixing term ��⇡a1 results from a
redefinition of the a1-field which is necessary to ensure
diagonal meson propagators for non-vanishing expecta-
tion values of the sigma field, see App. A for the explicit
expression and additional information.

B. Flow of the E↵ective Potential and Numerical
Implementation

The ansatz for the e↵ective average action �k formu-
lated in Eq. (1) is now used in the Wetterich equation
[61] which defines the ‘flow’ of �k and is given by

@k�k =
1

2
STr


@kRk

⇣
�(2)
k +Rk

⌘�1
�
, (5)

where Rk is a regulator function that suppresses momen-

tum modes with momenta smaller than k, �(2)
k is the

second functional derivative with respect to the fields,
and the supertrace runs over all internal indices, over
bosonic and fermionic field space, in momentum space
including an integration over internal momenta or ther-
mal Matsubara sums as well as the fermionic minus signs
and factors of two. At the ultraviolet (UV) scale k = ⇤,
�k is essentially given by the bare action. By solving the
Wetterich equation and lowering the scale k the e↵ects of
quantum and thermal fluctuations are gradually included
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which we defer to a future study. For our first qualitative
study here, we chose m0,N = 800 MeV as a reasonable
compromise as concluded in [40].

At the mean-field level, the inclusion of the ! meson
in the e↵ective action is known to result in a simple shift
of the chemical potential, and is hence e↵ective in ad-
justing the binding energy per nucleon essentially with-
out influence on the strength of the nuclear liquid-gas
transition. That the same mechanism, from a mean-
field gap equation for the ! meson, does not work within
the FRG framework for the order parameter fluctuations
used here, was shown in [40]. The present e↵ective theory
framework for fluctuating vector mesons from [58] can in
principle be extended to include also the repulsive con-
tributions from fluctuating ! mesons in the flow for the
e↵ective potential and hence the thermodynamic grand
potential to improve this situation. This requires further
technical developments, however, and is therefore left for
future work. Another issue is the slope of the first-order
lines at low temperatures. As pointed out in [70], from a
Clausius-Clapeyron relation, a positive slope dTc/dµc of
the first-order line implies a negative jump in the entropy
density when going from the gaseous to the liquid phase.
While this by itself is not necessarily unphysical at finite
temperature, when the magnitude of the jump gets too
large it leads to negative entropy densities on the liquid
side of the transition line which then certainly is unphys-
ical. The inclusion of a scale-dependent gap equation
for a mean-field description of the ! meson was recently

FIG. 2: Phase diagram of the parity doublet model repre-
sented as a contour plot of �0(µB , T ) with darker colors indi-
cating smaller values, as shown in the legend bar. We observe
two distinct first-order phase transitions at low temperatures
which end in a critical point at (µB ⇡ 896 MeV, T ⇡ 10 MeV)
and at (µB ⇡ 925 MeV, T ⇡ 33 MeV), respectively.

shown to be able to remedy the analogous unphysical ef-
fect in the quark-meson model [67]. It might therefore
be reasonable to expect that it will also be a↵ected when
the !-meson fluctuations are properly included within
our FRG framework for a more realistic description of
the thermodynamics of nuclear matter from the PDM in
the future, as discussed above.

D. Vector and Axial-Vector Meson Propagators
and Masses

We now turn to the calculation of the Euclidean vector
meson masses, which will use the scale-dependent e↵ec-
tive potential as input. In Ref. [58] it was shown that the
vector-meson part of the e↵ective action in Eq. (1),

L⇢
0 = �1

4
tr (@µ⇢µ⌫)@�⇢�⌫ +

m
2
v

8
tr ⇢µ⌫⇢µ⌫ , (14)

with Eqs. (3) and (4) corresponds to tree-level two-point
functions for free (axial-)vector mesons with mass mv of
the form,
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2
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2
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p
2
�µ⌫ � pµp⌫

�
. (15)

It was furthermore explicitly verified that this form, upon
analytic continuation, in the interacting theory correctly
describes that of the corresponding single-particle con-
tributions to the spectral representations of the propa-
gators of massive (axial-)vector fields which are related
to the analogous current-current correlation functions by
current-field identities [58].
For the inclusion of (axial-)vector fluctuations of this

form within the FRG we also follow the strategy of
Ref. [58] and temporarily add artificial longitudinal terms
in order to be able to invert the correlation functions.
This then leads to an ansatz for the scale-dependent
(axial-)vector propagators which reads as follows,
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which we defer to a future study. For our first qualitative
study here, we chose m0,N = 800 MeV as a reasonable
compromise as concluded in [40].

At the mean-field level, the inclusion of the ! meson
in the e↵ective action is known to result in a simple shift
of the chemical potential, and is hence e↵ective in ad-
justing the binding energy per nucleon essentially with-
out influence on the strength of the nuclear liquid-gas
transition. That the same mechanism, from a mean-
field gap equation for the ! meson, does not work within
the FRG framework for the order parameter fluctuations
used here, was shown in [40]. The present e↵ective theory
framework for fluctuating vector mesons from [58] can in
principle be extended to include also the repulsive con-
tributions from fluctuating ! mesons in the flow for the
e↵ective potential and hence the thermodynamic grand
potential to improve this situation. This requires further
technical developments, however, and is therefore left for
future work. Another issue is the slope of the first-order
lines at low temperatures. As pointed out in [70], from a
Clausius-Clapeyron relation, a positive slope dTc/dµc of
the first-order line implies a negative jump in the entropy
density when going from the gaseous to the liquid phase.
While this by itself is not necessarily unphysical at finite
temperature, when the magnitude of the jump gets too
large it leads to negative entropy densities on the liquid
side of the transition line which then certainly is unphys-
ical. The inclusion of a scale-dependent gap equation
for a mean-field description of the ! meson was recently

FIG. 2: Phase diagram of the parity doublet model repre-
sented as a contour plot of �0(µB , T ) with darker colors indi-
cating smaller values, as shown in the legend bar. We observe
two distinct first-order phase transitions at low temperatures
which end in a critical point at (µB ⇡ 896 MeV, T ⇡ 10 MeV)
and at (µB ⇡ 925 MeV, T ⇡ 33 MeV), respectively.

shown to be able to remedy the analogous unphysical ef-
fect in the quark-meson model [67]. It might therefore
be reasonable to expect that it will also be a↵ected when
the !-meson fluctuations are properly included within
our FRG framework for a more realistic description of
the thermodynamics of nuclear matter from the PDM in
the future, as discussed above.

D. Vector and Axial-Vector Meson Propagators
and Masses

We now turn to the calculation of the Euclidean vector
meson masses, which will use the scale-dependent e↵ec-
tive potential as input. In Ref. [58] it was shown that the
vector-meson part of the e↵ective action in Eq. (1),
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with Eqs. (3) and (4) corresponds to tree-level two-point
functions for free (axial-)vector mesons with mass mv of
the form,
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It was furthermore explicitly verified that this form, upon
analytic continuation, in the interacting theory correctly
describes that of the corresponding single-particle con-
tributions to the spectral representations of the propa-
gators of massive (axial-)vector fields which are related
to the analogous current-current correlation functions by
current-field identities [58].
For the inclusion of (axial-)vector fluctuations of this

form within the FRG we also follow the strategy of
Ref. [58] and temporarily add artificial longitudinal terms
in order to be able to invert the correlation functions.
This then leads to an ansatz for the scale-dependent
(axial-)vector propagators which reads as follows,
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b1 [⇤2] b2 b3 [⇤�2] c [⇤3] m0,N hs,1 hs,2 f⇡ ⌘ �0 m⇡ m� mN1 mN2

[MeV] = hv,1 = hv,2 [MeV] [MeV] [MeV] [MeV] [MeV]

0.395189 -4.66855 52.3117 1.74303·10�3 800 6.94073 13.3493 92.8 137 474 938 1533

TABLE I: Parameters used for the e↵ective potential at the UV cuto↵ ⇤ = 1 GeV, the bare nucleon mass and the Yukawa
couplings, as well as the resulting values for pion decay constant and Euclidean particle mass parameters in the IR.

sulting values for f⇡, the pion mass m⇡, the sigma mass
m�, the nucleon mass mN1 , and the mass of its parity
partner mN2 are also given in Tab I. For the UV cuto↵
we use ⇤ = 1000 MeV and for the IR scale kIR = 40 MeV.

As usual in O(N)-Yukawa models, the symmetry
breaking is generated from the fermionic fluctuations,
where the fermionic minus sign acts like a negative in-
dex of refraction to drive the expectation value of the
scalar order-parameter field away from its symmetric
minimum. Although the fermionic fluctuations arise
here from baryons with a sizable bare mass of m0,N =
800 MeV, a UV cuto↵ of ⇤ = 1 GeV turns out to be
just large enough to generate the right amount of sym-
metry breaking starting from an e↵ective potential with
only the symmetric minimum for our choice of UV pa-
rameters. This mechanism of dynamical chiral symmetry
breaking by the baryonic fluctuations is demonstrated in
Fig. 1. Starting from the UV cuto↵ ⇤ the mass of the
nucleons first decreases while that of the 1/2� baryons in-
creases. Incidentally, the chiral symmetry breaking scale
at k� ⇠ 850 MeV here coincides with the scale mN2 ⇠ k

at which the heavier 1/2� baryons decouple. The nucleon
mass starts increasing at this point so that the fermionic
fluctuations eventually cease to dominate the flow. A sec-
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FIG. 1: RG-scale dependence of the Euclidean particle masses
in the vacuum. We observe strong e↵ects from spontaneous
chiral symmetry breaking between RG scales of k ⇡ 900 MeV
and k ⇡ 600 MeV. The scale-dependent masses shown here
serve as input for the calculation of the ⇢ and a1 spectral
functions and determine the locations of the thresholds cor-
responding to the various decay channels.

ond scale around k ⇠ 600 MeV then emerges below which
the mesonic fluctuations eventually dominate. They tend
to act symmetry restoring and this thus explains why the
breaking pattern is not monotonously increasing with the
flow towards the infrared where it levels at the desired
physical values as it would in a purely mesonic model.
The fact that this can be achieved in this way, with

no clear separation of scales between the initial fermion
mass of m0,N = 0.8 GeV and the UV cuto↵ scale ⇤ =
1 GeV might be surprising at first. It is reassuring for
our e↵ective hadronic theory which would otherwise start
to lose credibility, if either considerably higher UV cuto↵
scales where needed or the fermionic fluctuations were
irrelevant in the first place.

C. Phase diagram

In order to obtain the phase diagram of the PDM for
the specified parameters we solve the flow equation for
the e↵ective potential at di↵erent combinations of tem-
perature and baryon chemical potential, and plot the chi-
ral order parameter, i.e. the value of �0(µB , T ) at the
global minimum of the e↵ective potential in the IR. The
resulting phase diagram in the regime of high chemical
potentials and comparatively low temperatures, as rele-
vant for nuclear matter, is shown in Fig. 2.
As also found in [40], we observe two distinct phase

transitions. The phase transition at lower chemical po-
tentials represents the liquid-gas transition of nuclear
matter while the second phase transition at higher chem-
ical potentials inside dense nuclear matter can in the
chiral limit be identified as the chiral phase transition.
Both phase transitions consist of a first-order line at low
temperatures connected to a critical endpoint (CEP).
With our current parameters these CEPs are located at
(µB ⇡ 896 MeV, T ⇡ 10 MeV) and (µB ⇡ 925 MeV,
T ⇡ 33 MeV), respectively.
The position and the strength of the liquid-gas tran-

sition strongly depend on the bare nucleon mass m0,N .
The larger the value of m0,N the more does the location
of the discontinuity move towards larger µB while at the
same time the strength of the transition gets weaker re-
sulting in a larger in-medium condensate and hence a
smaller nucleon sigma term. Obtaining phenomenolog-
ically acceptable values for the binding energy per nu-
cleon, the nuclear saturation density, and the correct in-
medium condensate all at the same time is known not
to be possible within the present FRG setup [40]. This
will require the proper inclusion of fluctuating ! mesons

Euclidean mass parameters
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ρ
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π
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which we defer to a future study. For our first qualitative
study here, we chose m0,N = 800 MeV as a reasonable
compromise as concluded in [40].

At the mean-field level, the inclusion of the ! meson
in the e↵ective action is known to result in a simple shift
of the chemical potential, and is hence e↵ective in ad-
justing the binding energy per nucleon essentially with-
out influence on the strength of the nuclear liquid-gas
transition. That the same mechanism, from a mean-
field gap equation for the ! meson, does not work within
the FRG framework for the order parameter fluctuations
used here, was shown in [40]. The present e↵ective theory
framework for fluctuating vector mesons from [58] can in
principle be extended to include also the repulsive con-
tributions from fluctuating ! mesons in the flow for the
e↵ective potential and hence the thermodynamic grand
potential to improve this situation. This requires further
technical developments, however, and is therefore left for
future work. Another issue is the slope of the first-order
lines at low temperatures. As pointed out in [70], from a
Clausius-Clapeyron relation, a positive slope dTc/dµc of
the first-order line implies a negative jump in the entropy
density when going from the gaseous to the liquid phase.
While this by itself is not necessarily unphysical at finite
temperature, when the magnitude of the jump gets too
large it leads to negative entropy densities on the liquid
side of the transition line which then certainly is unphys-
ical. The inclusion of a scale-dependent gap equation
for a mean-field description of the ! meson was recently

FIG. 2: Phase diagram of the parity doublet model repre-
sented as a contour plot of �0(µB , T ) with darker colors indi-
cating smaller values, as shown in the legend bar. We observe
two distinct first-order phase transitions at low temperatures
which end in a critical point at (µB ⇡ 896 MeV, T ⇡ 10 MeV)
and at (µB ⇡ 925 MeV, T ⇡ 33 MeV), respectively.

shown to be able to remedy the analogous unphysical ef-
fect in the quark-meson model [67]. It might therefore
be reasonable to expect that it will also be a↵ected when
the !-meson fluctuations are properly included within
our FRG framework for a more realistic description of
the thermodynamics of nuclear matter from the PDM in
the future, as discussed above.

D. Vector and Axial-Vector Meson Propagators
and Masses

We now turn to the calculation of the Euclidean vector
meson masses, which will use the scale-dependent e↵ec-
tive potential as input. In Ref. [58] it was shown that the
vector-meson part of the e↵ective action in Eq. (1),
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with Eqs. (3) and (4) corresponds to tree-level two-point
functions for free (axial-)vector mesons with mass mv of
the form,

�(2)
µ⌫ (p) = �m

2
v

p4
(p2 +m

2
v)

�
p
2
�µ⌫ � pµp⌫

�
. (15)

It was furthermore explicitly verified that this form, upon
analytic continuation, in the interacting theory correctly
describes that of the corresponding single-particle con-
tributions to the spectral representations of the propa-
gators of massive (axial-)vector fields which are related
to the analogous current-current correlation functions by
current-field identities [58].
For the inclusion of (axial-)vector fluctuations of this

form within the FRG we also follow the strategy of
Ref. [58] and temporarily add artificial longitudinal terms
in order to be able to invert the correlation functions.
This then leads to an ansatz for the scale-dependent
(axial-)vector propagators which reads as follows,
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with a regulator shape function r(y) and y = p
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defined in App. A, the transverse and longitudinal pro-
jection operators,
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FIG. 4: Euclidean particle masses as a function of baryon-chemical potential, µB , at fixed temperatures of T = 10 MeV (left)
and T = 33 MeV (right). Left: We observe the e↵ects of the liquid-gas CEP at µB ⇡ 896 MeV, where the sigma mass decreases
rapidly, followed by the discontinuities generated by the first-order phase transition at higher chemical potentials. Right: The
liquid-gas CEP still a↵ects the behavior of the masses in a crossover from low to high density at µB ⇡ 890 MeV while the chiral
CEP gives rise to strong modifications at µB ⇡ 925 MeV. At both temperatures chiral symmetry is restored to a large extent
for chemical potentials beyond the second phase transition, giving rise to degenerate masses of chiral partners.

These parameters are chosen such as to obtain phe-
nomenological values for the ⇢ and the a1 pole mass, as
discussed in the following.

Our results for the flow of the Euclidean masses of
the pion, the sigma meson, the ⇢ and the a1, as well
as for the nucleon and its parity partner in the vacuum
are shown in Fig. 1. Here we evaluate the masses at the
scale-dependent minimum of the potential and not at the
fixed IR minimum in order to show the e↵ects of chiral
symmetry breaking more clearly. Starting at the UV
scale where chiral symmetry is restored, the masses of the
chiral partners ⇡��, ⇢�a1, and N1�N2 are degenerate.
Taking fluctuations into account by lowering the scale k,
we observe the e↵ects of chiral symmetry breaking with
the masses splitting up. At the IR scale these Euclidean
mass parameters then arrive at the values for (pseudo)-
scalar mesons and nucleons listed in Tab. I, together with
m⇢ ⇡ 820 MeV and ma1 ⇡ 1140 MeV for the vector and
axial-vector mesons. Note that these mass parameters
do not represent the physical masses of the ⇢ and the a1

which are in turn given by the pole masses obtained from
their aFRG flows and result with these parameters to be
m

p
⇢ ⇡ 780 MeV and m

p
a1

⇡ 1240 MeV, see below.
We now turn to the dependence of the Euclidean par-

ticle masses on temperature and chemical potential. In
Fig. 4 we show these masses at temperatures of T =
10 MeV and T = 33 MeV, i.e. at the temperatures of the
two CEPs, as a function of baryon chemical potential µB .
We find that the masses are almost constant for a wide
range of chemical potentials at these low temperatures, as
expected from the Silver Blaze property [71]. Very close
to the CEP at µB ⇡ 896 MeV and T ⇡ 10 MeV, however,
we observe drastic changes in the masses. In particular
the sigma mass strongly decreases at this second-order

phase transition. In principle, the sigma meson should
become exactly massless here, since it is connected to
the critical long-range correlations in the density fluctu-
ations.
At T = 10 MeV and chemical potentials larger than

the critical value of the liquid-gas CEP, one then en-
counters the discontinuous behavior generated by a first-
order transition. At even lower temperatures this sec-
ond, chiral, phase transition is stronger than the nuclear
liquid-gas transition, in that the chiral condensate and
the masses change by a larger amount, cf. also Fig. 2.
We also note that chiral symmetry becomes almost com-
pletely restored here, as evident from the fact that the
masses of the chiral partners become almost degenerate.
At T ⇡ 33 MeV we only see smooth changes of the masses
at chemical potentials near µB ⇡ 896 MeV while near the
second CEP at µB ⇡ 925 MeV we again observe strong
but continuous changes, as expected. These masses and
their scale-dependence will serve as input for the calcula-
tion of the vector-meson spectral functions discussed in
the following.

III. VECTOR AND AXIAL-VECTOR MESON
SPECTRAL FUNCTIONS IN NUCLEAR

MATTER

A. Analytic continuation and real-time two-point
functions

So far, we have been working in Euclidean space-
time. In order to calculate real-time quantities like re-
tarded two-point functions and spectral functions we
will now perform an analytical continuation of the flow
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FIG. 8: Spectral functions of the ⇢ and the a1 meson at di↵erent temperatures and chemical potentials. The spectral functions
show complicated in-medium modifications due to the various decay and capture processes in the thermal medium. In particular
near the CEP of the nuclear liquid-gas transition (top right) and in a regime approaching the chiral CEP (bottom right) we
observe strong modifications. At T = 10 MeV and µB = 896 MeV one sees the appearance of an additional peak structure in
the a1 spectral function at ! ⇡ 1350 MeV which stems from the a⇤

1 ! a1 + � process, with the � meson encoding the critical
behavior. At higher temperatures of T = 33 MeV the e↵ects from capture processes become more pronounced, e.g. from the
a⇤
1 +N1 ! N2 process at ! ⇡ 500 MeV (bottom left). At higher chemical potential (bottom right) we observe additional peak

structures arising, this time also in the ⇢ spectral function, as well as a progressing degeneration of the spectral functions due
to the restoration of chiral symmetry. See text for details.

the a1 spectral functions become increasingly degenerate
due to the progressing restoration of chiral symmetry. In
fact, one can show analytically that the flow equations of
the ⇢ and the a1 two-point functions become degenerate
in the limit �0 ! 0.

The most relevant low-energy processes at T = 33 MeV
and µB = 924 MeV, near the chiral CEP, are shown in
Fig. 9 where the di↵erent contributions to the imaginary
parts of the ⇢ and a1 two-point functions are plotted up
to 1 GeV (higher energies become increasingly di�cult
to compute as manifest in unphysical sign changes that
can occur for higher energies in this critical region). Al-
though we can clearly identify the potential signature of
criticality in the process a⇤1+� ! ⇡ as mentioned above,
the strength of this signal in the a1 two-point function

below 100 MeV turns out to be very weak. The by far
dominant low energy features in both two-point functions
here are the contributions from the nucleon capture pro-
cesses ⇢⇤ +N1 ! N2 and a

⇤
1 +N1 ! N2. These baryon-

resonance formation processes give rise to rather strong
peaks in the energy range around ! ⇡ 250 MeV where
there are no competing processes otherwise.

Finally, the critical low-energy behavior of the corre-
sponding ⇢ and a1 spectral functions at µB = 924 MeV
and T = 33 MeV, very close to the chiral CEP, is shown
in Fig. 10.2

2 The spurious sign changes in the imaginary parts of the two-point
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FIG. 8: Spectral functions of the ⇢ and the a1 meson at di↵erent temperatures and chemical potentials. The spectral functions
show complicated in-medium modifications due to the various decay and capture processes in the thermal medium. In particular
near the CEP of the nuclear liquid-gas transition (top right) and in a regime approaching the chiral CEP (bottom right) we
observe strong modifications. At T = 10 MeV and µB = 896 MeV one sees the appearance of an additional peak structure in
the a1 spectral function at ! ⇡ 1350 MeV which stems from the a⇤

1 ! a1 + � process, with the � meson encoding the critical
behavior. At higher temperatures of T = 33 MeV the e↵ects from capture processes become more pronounced, e.g. from the
a⇤
1 +N1 ! N2 process at ! ⇡ 500 MeV (bottom left). At higher chemical potential (bottom right) we observe additional peak

structures arising, this time also in the ⇢ spectral function, as well as a progressing degeneration of the spectral functions due
to the restoration of chiral symmetry. See text for details.

the a1 spectral functions become increasingly degenerate
due to the progressing restoration of chiral symmetry. In
fact, one can show analytically that the flow equations of
the ⇢ and the a1 two-point functions become degenerate
in the limit �0 ! 0.

The most relevant low-energy processes at T = 33 MeV
and µB = 924 MeV, near the chiral CEP, are shown in
Fig. 9 where the di↵erent contributions to the imaginary
parts of the ⇢ and a1 two-point functions are plotted up
to 1 GeV (higher energies become increasingly di�cult
to compute as manifest in unphysical sign changes that
can occur for higher energies in this critical region). Al-
though we can clearly identify the potential signature of
criticality in the process a⇤1+� ! ⇡ as mentioned above,
the strength of this signal in the a1 two-point function

below 100 MeV turns out to be very weak. The by far
dominant low energy features in both two-point functions
here are the contributions from the nucleon capture pro-
cesses ⇢⇤ +N1 ! N2 and a

⇤
1 +N1 ! N2. These baryon-

resonance formation processes give rise to rather strong
peaks in the energy range around ! ⇡ 250 MeV where
there are no competing processes otherwise.

Finally, the critical low-energy behavior of the corre-
sponding ⇢ and a1 spectral functions at µB = 924 MeV
and T = 33 MeV, very close to the chiral CEP, is shown
in Fig. 10.2
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FIG. 9: Imaginary part of the ⇢ (left) and the a1 (right) two-point functions at T = 33 MeV and µB = 924 MeV, close to
the chiral CEP. Here, a particularly small value of ✏ = 0.01 MeV was needed in order to be able to resolve weak low-energy
contributions from capture processes such as the critical a⇤

1 + � ! ⇡. As before, the separate components are extracted from
the di↵erent loops shown in Fig. 3.

Of all contributions to the imaginary parts discussed
above, the most prominent medium modifications of the
critical spectral functions are the baryon-resonance for-
mation processes ⇢

⇤ + N1 ! N2 and a
⇤
1 + N1 ! N2

which give rise to pronounced low-energy peaks around
! ⇡ 250 MeV, below all other thresholds. The occur-
rence of these peaks is a unique prediction of the baryonic
mirror assignment and its observation through enhanced
dilepton pair production in the vicinity the chiral CEP
would be an important confirmation of this picture of
mass generation in QCD. The critical capture process
a
⇤
1 + � ! ⇡ at even lower energies turns out by far too

weak to be potentially significant. It is about six orders
of magnitude lower than the baryonic capture process in
the a1 spectral function in Fig. 10. Other than that we
observe only a small mass shift and broadening in the
⇢ spectral function with considerably stronger medium
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• RMF mode: replace mean fields by those of PDM 

A. Larionov, U. Mosel & L.v.S.,  
Phys. Rev. C 102 (2020) 064913

A. Larionov & L.v.S., in preparation

preliminary

PDMRMF
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• Vector and axial-vector SFs at finite T and µ

melting-rho scenario     

use for baryonic SFs in dense matter

• Fermionic spectral functions

effective theories (chiral, linear)
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• Spectral functions from analytically contd. aFRG flows 
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• Electromagnetic spectral function

U(1) gauging, mixing

• (Axial-)Vector SFs in nuclear matter, parity doubling

effective hadronic theory with chiral PT 

• Parity-doublet chiral MFT in GiBUU

enhanced low energy ρ and η signals

ρ
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FIG. 9: Imaginary part of the ⇢ (left) and the a1 (right) two-point functions at T = 33 MeV and µB = 924 MeV, close to
the chiral CEP. Here, a particularly small value of ✏ = 0.01 MeV was needed in order to be able to resolve weak low-energy
contributions from capture processes such as the critical a⇤

1 + � ! ⇡. As before, the separate components are extracted from
the di↵erent loops shown in Fig. 3.

Of all contributions to the imaginary parts discussed
above, the most prominent medium modifications of the
critical spectral functions are the baryon-resonance for-
mation processes ⇢

⇤ + N1 ! N2 and a
⇤
1 + N1 ! N2

which give rise to pronounced low-energy peaks around
! ⇡ 250 MeV, below all other thresholds. The occur-
rence of these peaks is a unique prediction of the baryonic
mirror assignment and its observation through enhanced
dilepton pair production in the vicinity the chiral CEP
would be an important confirmation of this picture of
mass generation in QCD. The critical capture process
a
⇤
1 + � ! ⇡ at even lower energies turns out by far too

weak to be potentially significant. It is about six orders
of magnitude lower than the baryonic capture process in
the a1 spectral function in Fig. 10. Other than that we
observe only a small mass shift and broadening in the
⇢ spectral function with considerably stronger medium
modifications near the quasi-particle peak in the a1, in-
dicating the emerging restoration of chiral symmetry on
the level of the eventually complete degeneration of the
spectral functions of the chiral partners ⇢ and a1 at high
density.

IV. SUMMARY AND OUTLOOK

In the work presented here we discuss results on vec-
tor and axial-vector meson spectral functions at finite

functions near criticality, as mentioned above, lead to positiv-
ity violations in the spectral functions at higher energies, above
1 GeV. Whether these are related to thermodynamic instabilities
observed in dense regions of the phase diagram with fluctuations
[70] remains to be investigated.
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FIG. 10: Critical spectral functions of the ⇢ and the a1 me-
son at T = 33 MeV and µB = 924 MeV, close to the chi-
ral CEP. The most prominent low-energy contributions to
both spectral functions arise from baryon-resonance forma-
tion ⇢/a1 + N1 ! N2 which gives rise to prominent peaks
around ! ⇡ 250 MeV where the critical spectral functions
have basically no support otherwise.

temperature and baryon-chemical potential, in order to
assess the impact of chiral symmetry restoration in dense,
low-temperature nuclear matter on the redistribution
of spectral strength in both channels. As low-energy
e↵ective theory we use a chiral baryon-meson model,
namely a parity-doublet model, which contains pions,
sigma mesons, ⇢ and a1 mesons as well as nucleons and
their parity partners chosen to be the N

⇤(1535). Choos-
ing hadronic degrees of freedom avoids unphysical quark-
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Thank you for your attention!

• parity-doublet model with fluctuating ω and ρ
symmetric nuclear and neutron matter  

• ρ-a1 mixing and signatures of CEP in HIC

electromagnetic ➞ dilepton rates  
weak ➞ neutron star mergers…     

• self-consistent spectral functions

O(4)-model, in preparation   
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• Gaussian-state approximation, real-time FRG… 

• universal critical SFs from classical-statistical simulations

O(4)-model, S. Schlichting, D. Smith & Lv.S,  
NPB 950 (2020) 114868

universal  dynamic scaling functions,  
S. Schlichting, D. Schweitzer & Lv.S, NPB 960 (2020) 115165
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