

Advisory Co
M. Battaglieri
M. Battaglif
A. Denia
A. Drago
L. Fabbietio
A. Gal
A..
H.
M.
M.
M.

Organized by Jagiellonian University Kraków, Forschungszentrum Jülich, INFN-LNF Frascati, Institute of Nuclear Physics PAS

Organizers: Catalina Curcean

Catalina Curcean
James Ritman
Pitr Salabra Piotr Salabura
Carlo Guardao
Strean Leuloond Stefan Leupold
Joachim Stoth
Antoni SZceurek
Damian Cil Damian Lill

In-medium spectral functions of vector and axial-vector mesons from aFRG flow equations

Lorenz von Smekal

Meson 2021 - 16th International
 Workshop on Meson Physics

Bundesministerium für Bildung und Forschung

Helmholtz
Forschungsakademie Hessen für FAIR under extreme conditions

HFHF

Photons and Dileptons in HIC

T. Galatyuk et al., Physik Journal 17 (2018) no. 10

- from all stages of the collision
- measure temperature in QGP, lifetime of fireball...

Dileptons at SIS18 Energies

- simulate with GiBUU transport model

O. Buss, T. Gaitanos, K. Gallmeister et al. (A. Larionov), Phys. Rept. 512 (2012) 1

Data: HADES collaboration,
PLB 690 (2010) 118 PRC 85 (2012) 054005
EPJA 48 (2012) 64
PRC 95 (2017) 065205
A. Larionov, U. Mosel \& L.v.S., Phys. Rev. C 102 (2020) 064913

Transport Simulations

- Dileptons from GiBUU

Data: HADES Collaboration, Nature Physics 15 (2019) 1040

A. Larionov, U. Mosel \& L.v.S., Phys. Rev. C 102 (2020) 064913

Dilepton Spectra

dilepton rate (local thermal equilibrium):

$$
\frac{d N_{l l}}{d^{4} x d^{4} q}=-\frac{\alpha_{\mathrm{em}}^{2}}{\pi^{3} M^{2}} \frac{1}{3} g_{\mu \nu} \operatorname{Im} \Pi_{\mathrm{em}}^{\mu \nu}(M,|\vec{q}| ; \mu, T)
$$

electromagnetic correlator:

$$
\begin{aligned}
& \Pi_{\mathrm{em}}^{\mu \nu}(q ; \mu, T)= \\
& \quad-i \int d^{4} x e^{i q x} \theta\left(x^{0}\right)\left\langle\left[j_{\mathrm{em}}^{\mu}(x), j_{\mathrm{em}}^{\nu}(0)\right]\right\rangle
\end{aligned}
$$

vector meson dominance
\& quark counting:

$$
\operatorname{Im} \Pi_{\mathrm{em}}^{\mu \nu}(M \leq 1 \mathrm{GeV}) \sim \operatorname{Im} D_{\rho}^{\mu \nu}+\frac{1}{9} \operatorname{Im} D_{\omega}^{\mu \nu}+\frac{2}{9} \operatorname{Im} D_{\phi}^{\mu \nu}
$$

- some theory basics

[courtesy L. Holicki]

Spectral Functions

commutator of interacting fields:

$$
\langle[\phi(x), \phi(0)]\rangle=\int_{0}^{\infty} d m^{2} \rho\left(m^{2}\right) i \Delta\left(x ; m^{2}\right)^{\text {free fields }}
$$

Fourier transform: $\quad \rho(\omega, \vec{p})=\int d^{4} x e^{i p x} i\langle[\phi(x), \phi(0)]\rangle$
spectral function:

$$
\Rightarrow \quad \rho(\omega, \vec{p})=2 \pi i \epsilon(\omega) \theta\left(p^{2}\right) \rho\left(p^{2}\right)
$$

$$
\left.\rho\left(p^{2}\right)=(2 \pi)^{3} \sum_{\psi} \delta^{4}\left(p-q_{\psi}\right)|\langle\Omega| \phi(0)| \psi\right\rangle\left.\right|^{2} \quad, \quad p_{0}>0
$$

free fields (stable pion):
finite lifetime/width

Spectral Functions

two-particle thresholds:

retarded, imaginary part: $\quad \rho\left(p^{2}\right)=-\frac{1}{\pi} \operatorname{Im} D_{R}(p)$
discontinuity at cut of propagator:

$$
D(p)=\int_{0}^{\infty} d m^{2} \rho\left(m^{2}\right) \frac{1}{p^{2}+m^{2}}
$$

Euclidean space:

$$
p^{2}>0
$$

Euclidean data: $\quad D(t, \vec{p}=0)=\int_{0}^{\infty} d m \rho\left(m^{2}\right) \exp \{-m t\}$
(inverse Laplace, try e.g. MEM, but ill-posed numerical problem)

CRC-TR211

Functional RG (Flow) Equations

- compute effective (average) action:

Ch. Wetterich, PLB 301 (1993) 90

- flow of Landau free energy density: (quark-meson model, leading order derivative expansion)

$$
\begin{aligned}
& \partial_{k} \Omega_{k}\left(T, \mu ; \phi^{2}\right)= \\
& \frac{k^{4}}{12 \pi^{2}}\left\{\frac{1}{E_{k}^{\sigma}} \operatorname{coth}\left(\frac{E_{k}^{\sigma}}{2 T}\right)+\frac{3}{E_{k}^{\pi}} \operatorname{coth}\left(\frac{E_{k}^{\pi}}{2 T}\right)\right. \\
&\left.-\frac{2 N_{c} N_{f}}{E_{k}^{q}}\left[\tanh \left(\frac{E_{k}^{q}-\mu}{2 T}\right)+\tanh \left(\frac{E_{k}^{q}+\mu}{2 T}\right)\right]\right\}
\end{aligned}
$$

- include mixing with density fluctuations

Euclidean Mass Parameters

Flow of Euclidean (curvature) masses
including (axial-)vector mesons

- physical pole masses:
chiral restoration at finite T and μ

Ch. Jung \& L.v.S., PRD 100 (2019) 116009

CRC-TR 211 Justus-LEEIGUNIVERSITAT GIESSEN

- quark-meson model, $T=\mu=0$:

$$
\begin{aligned}
p_{0} & =-i(\omega+i \varepsilon) \quad(\text { retarded }) \\
\rho(\omega, \vec{p}) & =-\frac{1}{\pi} \operatorname{Im} D^{R}(\omega, \vec{p})
\end{aligned}
$$

- for $\varepsilon \rightarrow 0$:

$$
\mathrm{k}=1000 \mathrm{MeV}
$$

$\rho\left[\mathrm{MeV}^{-2}\right]$
$=\sigma$
— π

$$
\begin{aligned}
& \partial_{k} \Gamma_{\pi, k}^{(2)} \\
& p_{0}=-i(\omega+i \varepsilon)
\end{aligned}
$$

-2

$\partial_{k} \Gamma_{\pi, k}^{(2)}=$

$\omega[\mathrm{MeV}]$
K. Kamikado, N. Strodthoff, L.v.S. \& J. Wambach, EPJC 74 (2014) 2806

aFRG Flow at Finite Temperature

- analytic continuation not unique:

exploit one-loop structure, 3-dim. regulators

- for $\varepsilon \rightarrow 0$:

1) Use periodicity in external energy $p_{0}=n 2 \pi T$:

$$
n_{B, F}\left(E+i p_{0}\right) \rightarrow n_{B, F}(E)
$$

2) Substitute p_{0} by continuous real frequency:

$$
\Gamma^{(2), R}(\omega)=-\lim _{\epsilon \rightarrow 0} \Gamma^{(2), E}\left(p_{0}=i \omega-\epsilon\right)
$$

$$
\rho(\omega, \vec{p})=-\frac{1}{\pi} \operatorname{Im} D^{R}(\omega, \vec{p})=\frac{1}{\pi} \frac{\operatorname{Im} \Gamma^{(2), R}(\omega, \vec{p})}{\left(\operatorname{Re} \Gamma^{(2), R}(\omega, \vec{p})\right)^{2}+\left(\operatorname{Im} \Gamma^{(2), R}(\omega, \vec{p})\right)^{2}}
$$

quark-meson model:

$$
\mu=0
$$

A. Tripolt, N. Strodthoff, L.v.S. \& J. Wambach, PRD 89 (2014) 34010

CRC-TR 211
 In-Medium Spectral Functions

- quark-meson model:

$T=10 \mathrm{MeV}$

1: $\sigma^{*} \rightarrow \sigma \sigma, 2: \sigma^{*} \rightarrow \pi \pi, 3: \sigma^{*} \rightarrow \bar{\psi} \psi, 4: \pi^{*} \rightarrow \sigma \pi, 5: \pi^{*} \pi \rightarrow \sigma, 6: \pi^{*} \rightarrow \bar{\psi} \psi$
A. Tripolt, N. Strodthoff, L.v.S. \& J. Wambach, PRD 89 (2014) 34010

Finite Momenta

pion SF $\boldsymbol{\rho}(\boldsymbol{\omega}, \overrightarrow{\boldsymbol{p}})$ below T_{c}

sigma meson SF $\boldsymbol{\rho}(\boldsymbol{\omega}, \overrightarrow{\boldsymbol{p}})$ above T_{c}

\leadsto transport coefficients
A. Tripolt, L.v.S. \& J. Wambach, PRD 90 (2014) 074031

Fermionic SFs

- aFRG for fermionic two-point functions
$\Gamma_{k, \psi}^{(2)}(\omega, \vec{p})=\gamma_{0} C_{k}(\omega, \vec{p})+i \vec{\gamma} \cdot \hat{p} A_{k}(\omega, \vec{p})-B_{k}(\omega, \vec{p})$

- spectral functions
$\rho_{k, \psi}(\omega, \vec{p})=\gamma_{0} \rho_{k, \psi}^{(C)}(\omega, \vec{p})+i \vec{\gamma} \cdot \hat{p} \rho_{k, \psi}^{(A)}(\omega, \vec{p})+\rho_{k, \psi}^{(B)}(\omega, \vec{p})$
- describe fermionic excitations at finite T

A. Tripolt, J. Weyrich, L.v.S. \& J. Wambach, PRD 98 (2018) 094002
A. Tripolt, D. Rischke, L.v.S. \& J. Wambach, PRD 101 (2020) 094010
- extended linear-sigma model with quarks:

Ch. Jung, F. Rennecke, A. Tripolt, L.v.S. \& J. Wambach, PRD95 (2017) 036020

- electromagnetic SF from gauging and mixing:
A. Tripolt, Ch. Jung, N. Tanji, L.v.S. \& J. Wambach, NPA 982 (2019) 775
- include fluctuating (axial-)vectors in aFRG flows for SFs:

Ch. Jung \& L.v.S., PRD 100 (2019) 116009

- (axial-)vector SFs in hadronic effective theory for dense nuclear matter:
A. Tripolt, Ch. Jung, L.v.S. \& J. Wambach, arXiv:2105.00861 [hep-ph]

Fluctuating (Axial-) Vectors

\bullet aFRG flows for ρ and a_{1} at finite T and μ :

Ch. Jung \& L.v.S., PRD 100 (2019) 116009

Fluctuating (Axial-)Vectors

- spectral representation of conserved current:

$$
\left\langle T_{\text {cov }} j_{\mu}(x) j_{\nu}(0)\right\rangle=-\mathrm{i} \int_{0}^{\infty} d s \frac{\rho(s)}{s} \int \frac{d^{4} p}{(2 \pi)^{4}} \mathrm{e}^{-\mathrm{i} p x} \frac{p^{2} g_{\mu \nu}-p_{\mu} p_{\nu}}{p^{2}-s+\mathrm{i} \epsilon}
$$

- current-field identity, transverse vector propagator:

$$
D_{\mu \nu}^{T, V}(p)=-\mathrm{i} \frac{Z}{m_{v}^{2}} \frac{p^{2} g_{\mu \nu}-p_{\mu} p_{\nu}}{p^{2}-m_{v}^{2}+\mathrm{i} \epsilon}+\ldots
$$

- Euclidean two-point function, single-particle contribution:

$$
\Gamma_{\mu \nu}^{(2) T}(p)=-\frac{m_{0}^{2}}{p^{4}}\left(p^{2}+m_{v}^{2}\right)\left(p^{2} \delta_{\mu \nu}-p_{\mu} p_{\nu}\right) \quad m_{0, k}^{2}=m_{v, k}^{2} / Z_{k}
$$

- (axial-)vectors from (anti-)selfdual field strengths:

$$
\mathcal{L}_{0}^{\rho}=-\frac{1}{4} \operatorname{tr}\left(\partial_{\mu} \rho_{\mu \nu}\right) \partial_{\sigma} \rho_{\sigma \nu}+\frac{m_{v}^{2}}{8} \operatorname{tr} \rho_{\mu \nu} \rho_{\mu \nu}
$$

CRC-TR 211

Fluctuating (Axial-)Vectors

- (axial-)vectors from (anti-)selfdual field strengths:

$$
\begin{aligned}
\rho_{\mu \nu} & =\vec{\rho}_{\mu \nu}^{+} \cdot \vec{T}_{R}+\vec{\rho}_{\mu \nu}^{-} \cdot \vec{T}_{L} \\
\vec{\rho}_{\mu} & =\frac{1}{2 m_{v}} \operatorname{tr}\left(\partial_{\sigma} \rho_{\sigma \mu} \vec{T}_{V}\right) \\
\vec{a}_{1 \mu} & =\frac{1}{2 m_{v}} \operatorname{tr}\left(\partial_{\sigma} \rho_{\sigma \mu} \vec{T}_{A}\right)
\end{aligned}
$$

- new processes / imaginary parts:

Parity-Doublet Model

- gauged linear-sigma model with $N(939)$ and $\boldsymbol{N}^{*}(1535)$ iso-doublets:

$$
\begin{aligned}
\Gamma_{k}=\int d^{4} x\{ & \bar{N}_{1}\left(\not \partial-\mu_{B} \gamma_{0}+h_{s, 1}\left(\sigma+i \vec{\tau} \cdot \vec{\pi} \gamma^{5}\right)+h_{v, 1}\left(\gamma_{\mu} \vec{\tau} \cdot \vec{\rho}_{\mu}+\gamma_{\mu} \gamma^{5} \vec{\tau} \cdot \vec{a}_{1, \mu}\right)\right) N_{1} \\
& +\bar{N}_{2}\left(\not \partial-\mu_{B} \gamma_{0}+h_{s, 2}\left(\sigma-i \vec{\tau} \cdot \vec{\pi} \gamma^{5}\right)+h_{v, 2}\left(\gamma_{\mu} \vec{\tau} \cdot \vec{\rho}_{\mu}-\gamma_{\mu} \gamma^{5} \vec{\tau} \cdot \vec{a}_{1, \mu}\right) N_{2}+m_{0, N}\right)\left(\bar{N}_{1} \gamma^{5} N_{2}-\bar{N}_{2} \gamma^{5} N_{1}\right) \\
& \left.+U_{k}\left(\phi^{2}\right)-c \sigma+\frac{1}{2}\left(D_{\mu} \phi\right)^{\dagger} D_{\mu} \phi-\frac{1}{4} \operatorname{tr} \partial_{\mu} \rho_{\mu \nu} \partial_{\sigma} \rho_{\sigma \nu}+\frac{m_{v}^{2}}{8} \operatorname{tr} \rho_{\mu \nu} \rho_{\mu \nu}\right\}
\end{aligned}
$$

J. Weyrich, N. Strodthoff \& L.v.S., PRC 92 (2015) 015214
A. Tripolt, Ch. Jung, L.v.S. \& J. Wambach, arXiv:2105.00861 [hep-ph]

Parity-Doublet Model

- mass parameters at finite T and μ :

- (axial-)vector SFs inside nuclear matter:
nuclear liquid-gas CEP

approaching chiral CEP inside dense nuclear matter
A. Tripolt, Ch. Jung, L.v.S. \& J. Wambach, arXiv:2105.00861 [hep-ph]

(Axial-)Vector SFs in Dense NM

- imaginary parts:

near chiral CEP
inside dense nuclear matter
- (axial-)vector SFs:

(Axial-)Vector SFs in Dense NM

- imaginary parts:

near chiral CEP
inside dense nuclear matter
- electromagnetic SF:
convert to thermal dilepton rate
$\frac{d^{8} N_{l \bar{l}}}{d^{4} x d^{4} q}=$
$\frac{\alpha}{12 \pi^{3}}\left(1+\frac{2 m^{2}}{q^{2}}\right)\left(1-\frac{4 m^{2}}{q^{2}}\right)^{1 / 2} q^{2}\left(2 \rho_{T}+\rho_{L}\right) n_{B}\left(q_{0}\right)$

Weldon, PRD 42 (1990) 2385

- RMF mode: replace mean fields by those of PDM

PDM parameters: M. Kim, S. Jeon, Y.-M. Kim, Y. Kim, \& C.-H. Lee, PRC 101 (2020) 064614
A. Larionov, U. Mosel \& L.v.S.,

Phys. Rev. C 102 (2020) 064913

- RMF mode: replace mean fields by those of PDM

Data: Y. Pachmayer, PhD thesis, GU Frankfurt, 2008

A. Larionov, U. Mosel \& L.v.S.,
A. Larionov \& L.v.S., in preparation

Phys. Rev. C 102 (2020) 064913

Parity-Doublet MFT in GiBUU

- RMF mode: replace mean fields by those of PDM

A. Larionov, U. Mosel \& L.v.S.,

Phys. Rev. C 102 (2020) 064913

- Spectral functions from analytically contd. aFRG flows effective theories (chiral, linear)
- Vector and axial-vector SFs at finite T and μ melting-rho scenario
- Electromagnetic spectral function
$U(1)$ gauging, mixing
- Fermionic spectral functions
use for baryonic SFs in dense matter
- (Axial-)Vector SFs in nuclear matter, parity doubling effective hadronic theory with chiral PT
- Parity-doublet chiral MFT in GiBUU enhanced low energy ρ and η signals

Outlook

- parity-doublet model with fluctuating ω and ρ symmetric nuclear and neutron matter
- $\rho-a_{1}$ mixing and signatures of CEP in HIC electromagnetic \rightarrow dilepton rates weak \rightarrow neutron star mergers...
- self-consistent spectral functions

O(4)-model, in preparation

- universal critical SFs from classical-statistical simulations

O(4)-model, S. Schlichting, D. Smith \& Lv.S, NPB 950 (2020) 114868
universal dynamic scaling functions,
S. Schlichting, D. Schweitzer \& Lv.S, NPB 960 (2020) 115165

- Gaussian-state approximation, real-time FRG...

Thank you for your attention!

