Test of the CPT symmetry in positronium annihilations at sub-permil precision using the J-PET tomography device

16th International Workshop on Meson Physics

MESON 2021

May 20th 2021

Aleksander Gajos on behalf of the J-PET Collaboration Jagiellonian University

Foundation for Polish Science European Union European Regional Development Fund

Motivation: discrete symetry tests with o-Ps \rightarrow 3 γ decays

- Discrete symmetries are scarcely tested with leptonic systems
- Prominent results from neutrinos oscillation experiments
 - Dirac phase, δ_{CP} ~3 σ level [T2K, *Nature* 580 (2020) 339]
- Electron EDM < 1.1x10⁻²⁹ [ACME, Nature 562 (2018) 355]
- Positronium the lightest purely leptonic bound state, the only system consisting of charged leptons used for tests of CP and CPT to date

How can we test discrete symmetries in the positronium system?

• Searches for **prohibited positronium annihilations**

(see the talks by Sz. Niedźwiecki, Session A2 and P. Moskal, today's Plenary Session)

 Certain SME-based searches for CPT violation were proposed with **positronium spectroscopy** [Phys. Rev. D92 (2015) 056002]

Searches for non-vanishing symmetry-odd correlations

Testing discrete symmetries with angular correlations in o-Ps \rightarrow 3 γ decays

$$\hat{O}
ight
angle \stackrel{?}{=} 0$$
 for an odd operator
 $\Leftrightarrow C \mathcal{P} \mathcal{T}(\hat{O}) = -1$
 $\Leftrightarrow \mathcal{T}(\hat{O}) = -1$

 $|\vec{k}_1| > |\vec{k}_2| > |\vec{k}_3|$

Using ortho-positronium spin Requires either: • polarization • spin control • spin estimation	operator	С	Р	Т	CP	CPT
	$ec{S}\cdotec{k_1}$	+	_	+	_	_
	$ec{S} \cdot (ec{k_1} imes ec{k_2})$	+	+	—	+	_
	$(ec{S}\cdotec{k_1})(ec{S}\cdot(ec{k_1} imesec{k_2}))$	+	—	_	_	+
	$ec{k_2}\cdotec{\epsilon_1}$	+	_	_	_	+
	$ec{S}\cdotec{\epsilon_1}$	+	+	_	+	_
	$ec{S} \cdot (ec{k}_2 imes ec{\epsilon}_1)$	+	_	+	_	_

[W. Bernreuther *et al.*, *Z. Phys. C41 (1988) 143*] [P. Moskal *et al.*, *Acta Phys. Polon. B47 (2016) 509*]

Using photon polarization

20.05.2021

o-Ps \rightarrow 3 γ operators involving spin

Presently studied with J-PET:

 $ec{S} \cdot (ec{k_1} imes ec{k_2})$ T & CPT-violation sensitive $ec{S} \cdot ec{k_1}$ CP-violation sensitive

$$(\vec{S} \cdot \vec{k_1})(\vec{S} \cdot (\vec{k_1} \times \vec{k_2}))$$

T & CP-violation sensitive but requires o-Ps tensor polarization → not available with the current J-PET approach

Event-by-event spin estimation

Using an extensive-size o-Ps production and annihilation medium

Effective polarization depends on o-Ps \rightarrow 3 γ vertex resolution

Reconstruction of o-Ps ${\rightarrow} 3\gamma$ decays in J-PET

J-PET vs previous measurements

Limiting positron emission direction 1 Mbq β^+ emitter activity 4π detector but low angular resolution

🛞 J-PET

Recording multiple geometrical configurations

e+ spin estimated event-by-event $P_{e+}\approx \frac{\upsilon}{c}\cdot 0.91$

Yamazaki et al. PRL 104 (2010) 083401 $(\vec{S} \cdot \vec{k_1})(\vec{S} \cdot (\vec{k_1} \times \vec{k_2}))$

 $C_{CP} = (1.3 \pm 2.1 \pm 0.6) \times 10^{-3}$

Polarized o-Ps using external B field Inclusive measurement Only certain angular configurations

- Plastic scintillators = fast timing \rightarrow using high β^+ emitter activity (tested up to 10 Mbq)
- Recording all 3 annihilation photons
- Angular resolution at 1° level

o-Ps production in J-PET with an extensive size annihilation chamber

Tomographic images of the chamber obtained using $\gamma\gamma$ annihilations:

- Extensive-size chamber, R=12 cm
- Walls coated with porous silica material enhancing o-Ps formation
- 10 MBq β⁺ emitter (²²Na) placed in the center of the chamber

Identification of o-Ps \rightarrow 3 γ events in J-PET

Rejection of subsequent scatterings in the detector

- Secondary Compton-scattered photons may be recorded by J-PET again
- For each pair of annihilation photon candidates *i* and *j* (*i*,*j*=1,2,3) the following figure is computed:

$$\delta t_{ij} = |d_{ij} - c\Delta t_{ij}| = ||\vec{r}_i - \vec{r}_j| - c(t_i - t_j)|$$

Distribution of the minimum δt_{ij} over all photon pair choices in a events:

before

80

70

60

50

40

30

20

10

Rejection of direct 2y annihilations

- Using angular topology of the event in XY detector plane
- Considering all hypothetical back-to-back 2y pairs (tomographic "Lines Of Response")

Evaluation of the CPT-asymmetric observable

20.05.2021

A. Gajos, MESON 2021

1.0

0.5

0.5

1.0

Results of the CPT test

Summary and further perspectives

- The J-PET detector is capable of exclusive registration of o-Ps \rightarrow 3 γ annihilations
 - Full event recontruction including determination of the annihilaiton point in an extensive-size medium
 - Estimation of o-Ps spin on an event-by-event basis
 - The first image of an extensive-size object otained solely with o-Ps annihilations
- Sub-permil precision of the CPT test reached with the first J-PET measurement
- J-PET aims at the sensitivity of the CP and CPT symmetry tests at the level of 10⁻⁵ with the pending improvements to the setup:

Thank you for your attention!

This work is supported in the framework of the TEAM POIR.04.04.00-00-4204/17 Programme of the Foundation for Polish Science

