Test of the CPT symmetry in positronium annihilations at sub-permil precision using the J-PET tomography device

16 ${ }^{\text {th }}$ International Workshop on Meson Physics
MESOND20211

May $20^{\text {th }} 2021$

Aleksander Gajos on behalf of the J-PET Collaboration Jagiellonian University

Motivation: discrete symetry tests with o-Ps $\rightarrow 3 \gamma$ decays

- Discrete symmetries are scarcely tested with leptonic systems
- Prominent results from neutrinos oscillation experiments
- Dirac phase, $\delta_{\text {Cp }} \sim 3 \sigma$ level [T2K, Nature 580 (2020) 339]
- Electron EDM < 1.1×10^{-29} [ACME, Nature 562 (2018) 355]
- Positronium - the lightest purely leptonic bound state, the only system consisting of charged leptons used for tests of CP and CPT to date

How can we test discrete symmetries in the positronium system?

- Searches for prohibited positronium annihilations
(see the talks by Sz. Niedźwiecki, Session A2
and P. Moskal, today's Plenary Session)
- Certain SME-based searches for CPT violation were proposed with positronium spectroscopy [Phys. Rev. D92 (2015) 056002]
- Searches for non-vanishing symmetry-odd correlations

Testing discrete symmetries with angular correlations in o- $\mathrm{Ps} \rightarrow 3 \gamma$ decays

$$
e^{+} e^{-} \rightarrow \mathrm{o}-\mathrm{Ps} \rightarrow 3 \gamma
$$

$$
\begin{aligned}
\langle\hat{O}\rangle & \stackrel{?}{=} 0 \quad \text { for an odd operator } \\
& \Leftrightarrow \mathcal{C P} \mathcal{T}(\hat{O})=-1 \\
& \Leftrightarrow \mathcal{T}(\hat{O})=-1
\end{aligned}
$$

$$
\left|\vec{k}_{1}\right|>\left|\vec{k}_{2}\right|>\left|\vec{k}_{3}\right|
$$

Using ortho-positronium spin
Requires either:

- polarization
- spin control
- spin estimation

Using photon polarization

operator	C	P	T	CP	CPT
$\vec{S} \cdot \overrightarrow{k_{1}}$	+	-	+	-	-
$\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)$	+	+	-	+	-
$\left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\overrightarrow{S_{2}} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right)$	+	-	-	-	+
$\overrightarrow{k_{2}} \cdot \vec{\epsilon}_{1}$	+	-	-	-	+
$\vec{S} \cdot \vec{\epsilon}_{1}$	+	+	-	+	-
$\vec{S} \cdot\left(\overrightarrow{k_{2}} \times \vec{\epsilon}_{1}\right)$	+	-	+	-	-

[W. Bernreuther et al., Z. Phys. C41 (1988) 143]
[P. Moskal et al., Acta Phys. Polon. B47 (2016) 509]

o-Ps $\rightarrow 3 \gamma$ operators involving spin

Presently studied with J-PET:

$$
\begin{aligned}
& \vec{S} \cdot\left(\overrightarrow{k_{1}}\right.\left.\times \overrightarrow{k_{2}}\right) \quad \text { †\&CPT-violation sensitive } \\
& \vec{S} \cdot \overrightarrow{k_{1}} \quad \text { CP-violation sensitive }
\end{aligned}
$$

$$
\left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right)
$$

$\mathrm{T} \& \mathrm{CP}$-violation sensitive but requires o-Ps tensor polarization \rightarrow not available with the current J-PET approach

Event-by-event spin estimation

Using an extensive-size o-Ps production and annihilation medium

Effective polarization depends on o-Ps $\rightarrow 3 \gamma$ vertex resolution

Reconstruction of o-Ps $\rightarrow 3 \gamma$ decays in J-PET

1. Find the decay plane containing the 3 hits in the J-PET barrel

2. Transform the hit coordinates to a

2D coordinate system in the decay plane

$$
\left(X_{i}, Y_{i}, Z_{i}, T_{i}\right) \rightarrow\left(X_{i}^{\prime}, Y_{i}^{\prime}, 0, T_{i}\right)
$$

3. For each of the recorded γ hits, define a circle of possible origin points of the incident γ assuming o-Ps decay at time t
4. The decay point (x^{\prime}, y^{\prime}) in the decay plane and time t is an intersection of 3 such circles:

$$
\left(T_{i}-t\right)^{2} c^{2}=\left(X_{i}^{\prime}-x^{\prime}\right)^{2}+\left(Y_{i}^{\prime}-y^{\prime}\right)^{2}, \quad i=1,2,3
$$

[A. Gajos et al., NIM A 819 (2016), 54-59]

J-PET vs previous measurements

Limiting positron emission direction $1 \mathrm{Mbq} \beta^{+}$emitter activity
4π detector but low angular resolution

Recording multiple
geometrical configurations
e+ spin estimated
event-by-event

$$
P_{e+} \approx \frac{v}{c} \cdot 0.91
$$

Yamazaki et al.

PRL 104 (2010) 083401

$$
\begin{aligned}
& \left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right) \\
& \mathrm{C}_{\mathrm{CP}}=(1.3 \pm 2.1 \pm 0.6) \times 10^{-3}
\end{aligned}
$$

Polarized o-Ps using external B field Inclusive measurement Only certain angular configurations

- Plastic scintillators $=$ fast timing
\rightarrow using high β^{+}emitter activity (tested up to 10 Mbq)
- Recording all 3 annihilation photons
- Angular resolution at 1° level

o-Ps production in J-PET with an extensive size annihilation chamber

Tomographic images of the chamber obtained using $\gamma \gamma$ annihilations:

- Extensive-size chamber, $\mathrm{R}=12 \mathrm{~cm}$
- Walls coated with porous silica material enhancing o-Ps formation
- $10 \mathrm{MBq} \beta^{+}$emitter (${ }^{22} \mathrm{Na}$) placed in the center of the chamber

Identification of o-Ps $\rightarrow 3 \gamma$ events in J-PET

Using total Time Over Threshold (TOT) of PMT signals from a scintillator strip

o-Ps $\rightarrow 3 \gamma$ annihilation ($\mathrm{E}<511 \mathrm{keV}$)
${ }^{22} \mathrm{Ne}^{*}$ de-excitation
($\mathrm{E}=1274 \mathrm{keV}$)

Rejection of subsequent scatterings in the detector

- Secondary Compton-scattered photons may be recorded by J-PET again
- For each pair of annihilation photon candidates i and j ($i, j=1,2,3$) the following figure is computed:

$$
\delta t_{i j}=\left|d_{i j}-c \Delta t_{i j}\right|=\left|\left|\vec{r}_{i}-\vec{r}_{j}\right|-c\left(t_{i}-t_{j}\right)\right|
$$

Distribution of the minimum $\delta t_{i j}$ over all photon pair choices in a events:

Rejection of direct 2γ annihilations

- Using angular topology of the event in XY detector plane
- Considering all hypothetical back-to-back 2 y pairs (tomographic "Lines Of Response")

Evaluation of the CPT-asymmetric observable

Standard asymmetry:
$A=\frac{N_{+}-N_{-}}{N_{+}+N_{-}} \quad N_{+} \Leftrightarrow \cos \theta>0$

is generalized by the mean value of $\cos \boldsymbol{\theta}$:

$$
\frac{\int N(\cos \theta) \cos \theta}{\int N(\cos \theta)}
$$

J-PET is sensitive to the full range of this operator

Efficiencies evaluated with MC are symmetric in $\cos \boldsymbol{\theta}$

Results of the CPT test

Using 2×10^{6} of identified o-Ps $\rightarrow 3 \gamma$ annihilations
$3 y$ image of the o-Ps production chamber in the tranverse view of the detector

$$
\hat{S} \cdot\left(\vec{k}_{1} \times \vec{k}_{2}\right) /\left|\vec{k}_{1} \times \vec{k}_{2}\right|=\cos \theta
$$

$<\cos \theta>$ statistical uncertainty: 3.3×10^{-4} systematic uncertainty 1.4×10^{-4}

Analyzing power $\mathrm{S}=37.4 \%$ (polarization-dominated)

Summary and further perspectives

- The J-PET detector is capable of exclusive registration of o-Ps $\rightarrow 3 \gamma$ annihilations
- Full event recontruction including determination of the annihilaiton point in an extensive-size medium
- Estimation of o-Ps spin on an event-by-event basis
- The first image of an extensive-size object otained solely with o-Ps annihilations
- Sub-permil precision of the CPT test reached with the first J-PET measurement
- J-PET aims at the sensitivity of the CP and CPT symmetry tests at the level of 10^{-5} with the pending improvements to the setup:

[Symmetry 12 (2020) 8, 1268]

Thank you for your attention!

This work is supported in the framework of the TEAM POIR.04.04.00-00-4204/17 Programme of the Foundation for Polish Science

