RUHR-UNIVERSITÄT BOCHUM

Recent Achievements of BESIII

Marc Pelizäus Ruhr-Universität Bochum (on behalf of the BESIII Collaboration)

MESON 2021 May 17-20, 2021

BESIII Physics Program

Light Hadrons

- Meson and baryon spectroscopy
- Search for exotic hadrons, e.g. glueballs, hybrids, tetraquarks
- Light meson decays ($\eta^{(i)}, \omega$)
- Charmonium Physics
 - X, Y, and Z states
 - Decays and transitions
- Open Charm Physics
 - D meson decays
 - DD mixing
- And many further topics
 - e.g. tau and two-photon physics

Today: Recent highlights from light hadron and (exotic) charmonium spectroscopy

BESIII at **BEPC** II

Symmetric electron-positron collider BEPC II

- Energy range: $\sqrt{s} = 2.0 4.6$ GeV (~5 GeV since summer 2019)
- Design luminosity achieved: $1x10^{33}$ cm⁻²s⁻¹ (at $\psi(3770)$)
- Energy spread: ~5x10⁻⁴
- Operating since March 2008

The **BESIII** Detector

Data Samples

World's largest τ -charm data samples in direct e⁺e⁻ annihilations

Clean environment, complementary to hadron machines

QCD Bound States

Conventional hadrons

Exotic hadrons (other color-neutral configurations)

Candidates for exotic hadrons exist Nature of these states is far from being understood

Glueballs

- Lattice predictions
 - − 0⁺⁺: m ~ 1710 MeV
 - 2⁺⁺: m ~ 2390 MeV
 - 0⁻⁺: m ~ 2560 MeV
- Production in (gluon-rich) radiative J/ψ decays large BFs predicted $\Gamma(J/\psi \rightarrow \gamma G_{0^{++}}) = 3.8(9) \times 10^{-3}$ $\Gamma(J/\psi \rightarrow \gamma G_{2^{++}}) = 1.1(2)(1) \times 10^{-2}$

CLQCD, Phys. Rev. Lett. 110, 021601 (2013) CLQCD, Phys. Rev. Lett. 111, 091601 (2013)

r_o M_G

 Mixing with nearby qq
 states complicates the clear identification

Y. Chen et al., Phys. Rev. D73, 014516 (2006)

Partial Wave Analyses

- Partial Wave Analyses of $J/\psi \rightarrow \gamma \pi^0 \pi^0, \eta \eta, K^0_S K^0_S$
 - many broad and overlapping resonances, many open channels
 - complex structure, parameterization challenging
- Approach: Model Independent Partial Wave Analysis
 - do not parameterize mass-dependent kinematics of the amplitudes

Partial Wave Analysis of $J/\psi \rightarrow \gamma K^0_S K^0_S$

Phys. Rev. D 98, 072003 (2018)

- Only 0⁺⁺ and 2⁺⁺ contribute significantly
- Ambiguities are resolved in a model-dependent fit

Partial Wave Analysis of $J/\psi \rightarrow \gamma K^0_S K^0_S$

Parameterization: 7 contributions $0^{++} K_s^0 K_s^0$ 4 contributions $2^{++} K_s^0 K_s^0$ K*(892) and K₁(1270) in $K_s^0 \gamma$

Resonance	$M ({\rm MeV}/c^2)$	$\Gamma (\text{MeV}/c^2)$	Branching fraction
K*(892)	896	48	$(6.28^{+0.16+0.59}_{-0.17-0.52}) imes 10^{-6}$
$K_1(1270)$	1272	90	$(8.54^{+1.07+2.35}_{-1.20-2.13}) imes 10^{-7}$
$f_0(1370)$	$1350\pm9^{+12}_{-2}$	$231\pm21^{+28}_{-48}$	$(1.07^{+0.08+0.36}_{-0.07-0.34}) \times 10^{-5}$
$f_0(1500)$	1505	109	$(1.59^{+0.16+0.18}_{-0.16-0.56}) \times 10^{-5}$
$f_0(1710)$	$1765\pm2^{+1}_{-1}$	$146\pm 3^{+7}_{-1}$	$(2.00^{+0.03+0.31}_{-0.02-0.10}) \times 10^{-4}$
$f_0(1790)$	$1870\pm7^{+2}_{-3}$	$146 \pm 14^{+7}_{-15}$	$(1.11^{+0.06+0.19}_{-0.06-0.32}) \times 10^{-5}$
$f_0(2200)$	$2184\pm5^{+4}_{-2}$	$364\pm9^{+4}_{-7}$	$(2.72^{+0.08+0.17}_{-0.06-0.47}) imes 10^{-4}$
$f_0(2330)$	$2411\pm10\pm7$	$349 \pm 18^{+23}_{-1}$	$(4.95^{+0.21+0.66}_{-0.21-0.72}) imes 10^{-5}$
$f_2(1270)$	1275	185	$(2.58^{+0.08+0.59}_{-0.09-0.20}) imes 10^{-5}$
$f_2'(1525)$	1516 ± 1	$75\pm1\pm1$	$(7.99^{+0.03+0.69}_{-0.04-0.50}) \times 10^{-5}$
$f_2(2340)$	$2233 \pm 34^{+9}_{-25}$	$507\pm37^{+18}_{-21}$	$(5.54^{+0.34+3.82}_{-0.40-1.49}) \times 10^{-5}$
0 ⁺⁺ PHSP			$(1.85^{+0.05+0.68}_{-0.05-0.26}) \times 10^{-5}$
2 ⁺⁺ PHSP			$(5.73^{+0.99+4.18}_{-1.00-3.74}) \times 10^{-5}$

Phys. Rev. D 98, 072003 (2018)

Partial Wave Analysis of $J/\psi \rightarrow \gamma K^0_S K^0_S/\eta \eta$

Resonance	$M ({\rm MeV}/c^2)$	$\Gamma (\text{MeV}/c^2)$	Branching fraction
K*(892)	896	48	$(6.28^{+0.16+0.59}_{-0.17-0.52}) imes 10^{-6}$
$K_1(1270)$	1272	90	$(8.54^{+1.07+2.35}_{-1.20-2.13}) imes 10^{-7}$
$f_0(1370)$	$1350\pm9^{+12}_{-2}$	$231\pm21^{+28}_{-48}$	$(1.07^{+0.08+0.36}_{-0.07-0.34}) \times 10^{-5}$
$f_0(1500)$	1505	109	$(1.59^{+0.16+0.18}_{-0.16-0.56}) \times 10^{-5}$
$f_0(1710)$	$1765\pm2^{+1}_{-1}$	$146\pm 3^{+7}_{-1}$	$(2.00^{+0.03+0.31}_{-0.02-0.10}) \times 10^{-4}$
$f_0(1790)$	$1870\pm7^{+2}_{-3}$	$146 \pm 14^{+7}_{-15}$	$(1.11^{+0.06+0.19}_{-0.06-0.32}) \times 10^{-5}$
$f_0(2200)$	$2184 \pm 5^{+4}_{-2}$	$364\pm9^{+4}_{-7}$	$(2.72^{+0.08+0.17}_{-0.06-0.47}) \times 10^{-4}$
$f_0(2330)$	$2411\pm10\pm7$	$349 \pm 18^{+23}_{-1}$	$(4.95^{+0.21+0.66}_{-0.21-0.72}) \times 10^{-5}$
$f_2(1270)$	1275	185	$(2.58^{+0.08+0.59}_{-0.09-0.20}) \times 10^{-5}$
$f_2'(1525)$	1516 ± 1	$75\pm1\pm1$	$(7.99^{+0.03+0.69}_{-0.04-0.50}) \times 10^{-5}$
$f_2(2340)$	$2233 \pm 34^{+9}_{-25}$	$507\pm37^{+18}_{-21}$	$(5.54^{+0.34+3.82}_{-0.40-1.49}) imes 10^{-5}$
0 ⁺⁺ PHSP			$(1.85^{+0.05+0.68}_{-0.05-0.26}) \times 10^{-5}$
2 ⁺⁺ PHSP			$(5.73^{+0.99+4.18}_{-1.00-3.74}) \times 10^{-5}$

Resonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$
$f_0(1710)$	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$
$f_0(2100)$	$2081 \pm 13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) imes 10^{-4}$
$f_2'(1525)$	$1513 \pm 5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$
$f_2(1810)$	$1822\substack{+29+66\\-24-57}$	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) imes 10^{-5}$
$f_2(2340)$	$2362^{+31+140}_{-30-63}$	$334^{+62+165}_{-54-100}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$

10x larger BF for $f_0(1710)$ compared to $f_0(1500)$ observed in both channels

Partial Wave Analysis of $J/\psi \rightarrow \gamma \phi \phi$

Phys. Rev. D 93, 112011 (2016)

dominant 0⁻⁺ component

broad 2⁺⁺ component at ~2.3 GeV $f_2(2010)$, $f_2(2300)$ and $f_2(2340)$ previously observed in πN scattering Phys. Lett. B 201, 568 (1988)

Resonance	M (MeV/ c^2)	$\Gamma (\text{MeV}/c^2)$	B.F. (×10 ⁻⁴)
$\eta(2225)$	2216^{+4+21}_{-5-11}	185^{+12+43}_{-14-17}	$(2.40 \pm 0.10^{+2.47}_{-0.18})$
$\eta(2100)$	2050^{+30+75}_{-24-26}	$250^{+36+181}_{-30-164}$	$(3.30\pm0.09^{+0.18}_{-3.04})$
X(2500)	$2470^{+15+101}_{-19-23}$	230_{-35-33}^{+64+56}	$(0.17\pm 0.02^{+0.02}_{-0.08})$
$f_0(2100)$	2101	224	$(0.43 \pm 0.04^{+0.24}_{-0.03})$
$f_2(2010)$	2011	202	$(0.35\pm0.05^{+0.28}_{-0.15})$
$f_2(2300)$	2297	149	$(0.44 \pm 0.07^{+0.09}_{-0.15})$
$f_2(2340)$	2339	319	$(1.91 \pm 0.14^{+0.72}_{-0.73})$
0 ⁻⁺ PHSP			$(2.74\pm0.15^{+0.16}_{-1.48})$

First Observation of $\chi_{cJ} \rightarrow \phi \phi \eta$

Phys. Rev. D 101, 012012 (2020)

Study of $\chi_{cJ} \rightarrow \phi \phi \eta$ produced in $\psi(2S) \rightarrow \gamma \chi_{cJ}$

X(1835)

- Systematic study of X(1835) at BESIII with large statistics
 - previously observed at BES and BESII
- J^{PC} consistent with 0⁻⁺
- observed in $J\!/\psi \to \gamma \pi^+\pi^-\eta', \gamma K^0_{\scriptscriptstyle S}K^0_{\scriptscriptstyle S}\eta$

Resonance	$M({ m MeV}/c^2)$	$\Gamma({ m MeV}/c^2)$
$f_1(1510)$	1522.7 ± 5.0	48 ± 11
X(1835)	1836.5 ± 3.0	190.1 ± 9.0
X(2120)	2122.4 ± 6.7	83 ± 16
X(2370)	2376.3 ± 8.7	83 ± 17

Nature of X(1835) unclear, interpretations include glueball, $p\bar{p}$ bound state, excited η meson

Study of X(2120) and X(2370)

 $J/\psi \to \gamma K^+ K^- \eta'$ $\eta' \to \eta \pi^+ \pi^ \eta' \to \gamma \pi^+ \pi^-$ 200 $J/\psi \rightarrow \gamma K^{+}K^{-}\eta', \eta' \rightarrow \pi^{+}\pi^{-}\eta, \eta \rightarrow \gamma \gamma$ (\mathbf{b}) (a)- $J/\psi \rightarrow \gamma K^{\dagger} K^{\dagger} \eta', \eta' \rightarrow \gamma \rho^{0}, \rho^{0} \rightarrow \pi^{\dagger} \pi^{\dagger}$ 500 Events/(0.01GeV/c²) Chebvchev Events/(0.01GeV/c² Chebvchev Data - Data 150 ---- PHSP ---- PHSP 400 Fit result Fit result ······ Total bkg ····· Total bkg Signal X(2370) Signal X(2370) 300 $J/\psi \rightarrow K^{*+} K^{-} \eta' + c.c$ $J/\psi \rightarrow K^{*+} K^{-} \eta' + c.c.$ 100 n' sideband n' sideband 200 50 100 2.2 2.3 2.4 2.7 2.2 2.4 2.5 2.6 2.7 2.1 2.5 2.6 2.1 2.3 $M_{K^{+}K^{-}\eta^{'}}$ (GeV/c²) $M_{K^*K^-\eta^{\prime}}$ (GeV/c²) $J/\psi \to \gamma K^0_{\rm s} K^0_{\rm s} \eta'$ $\eta' \to \gamma \pi^+ \pi^ \eta' \to \eta \pi^+ \pi^-$ 30 $J/\psi \rightarrow \gamma K^0_{\alpha} K^0_{\beta} \eta', \eta' \rightarrow \pi^+ \pi^- \eta, \eta \rightarrow \gamma \gamma$ (c) $J/\psi \rightarrow \gamma K_{S}^{0}K_{S}^{0}\eta', \eta' \rightarrow \gamma \rho^{0}, \rho^{0} \rightarrow \pi^{+}\pi^{-}$ (**d**)⊧ Events/(0.01GeV/c²) 25 Events/(0.01GeV/c²) Chebychev Chebychev 🗕 Data Data 70 PHSP PHSP Fit result Fit result 20 Total bkg Total bkg Signal X(2370) Signal X(2370) n' sideband η' sideband 15 10 0' 2 2.6 2.7 2.1 2.2 2.4 2.7 2.1 22 2.3 2.4 2.5 2.6 25 $M_{K^0_{\alpha}K^0_{\alpha}n'}$ (GeV/c²) $M_{K_{a}^{0}K_{a}^{0}n'}$ (GeV/c²)

Combined fit to the four data samples

No significant X(2120) observed

First observation (8.3 σ) of $X(2370) \rightarrow K \bar{K} \eta'$

m(X(2370))= 2341.6 \pm 6.5 \pm 5.7 MeV/ c^2 $\Gamma = 117 \pm 10 \pm 8$ MeV

Study of X(2370)

Search for X(2370) in $J/\psi \rightarrow \gamma X(2370) \rightarrow \gamma \eta \eta \eta'$

 $\mathcal{B}(J\!/\!\psi
ightarrow \gamma X)\mathcal{B}(X
ightarrow \eta\eta\eta') < 9.2\cdot 10^{-6}$ (at 90% CL)

does not contradict calculation for X(2370) as 0⁻⁺ glueball:

 $\mathcal{B}_{\eta\eta\eta'}/\mathcal{B}_{K\bar{K}\eta'} \approx 0.075$

W. I. Eshraim, S. Janowski, F. Giacosa, and D. H. Rischke, Phys. Rev. D 87, 054036 (2013) First Observation of $\eta_c \rightarrow \eta \eta \eta'$

 $\mathcal{B}(J/\psi \to \gamma \eta_c) \mathcal{B}(\eta_c \to \eta \eta \eta') = (4.86 \pm 0.63_{\text{stat}} \pm 0.45_{\text{sys}}) \cdot 10^{-5}$

Light Hadron Decays of h_c

- Knowledge on h_c decay modes is still sparse
 - $\mathcal{B}(h_c \to \gamma \eta_c) \approx 0.5$
 - search for decays into light hadrons
- Access via $\psi(2S) \rightarrow \pi^0 h_c$
 - fully reconstruct events and inspect recoil mass of π^0

decay mode	$\mathcal{B}_{h_c}(10^{-3})$
$h_c \rightarrow p \bar{p} \pi^+ \pi^-$ $h \rightarrow \pi^+ \pi^- \pi^0$	$2.89 \pm 0.32 \pm 0.55$ 1 60 + 0 40 + 0 32
$h_c \rightarrow \pi^+ \pi^- \pi^-$ $h_c \rightarrow 2(\pi^+ \pi^-) \pi^0$	$7.44 \pm 0.94 \pm 1.52$
$h_c \rightarrow 3(\pi^+\pi^-)\pi^0$	$4.65 \pm 2.17 \pm 1.08$
$h_c \rightarrow K^+ K^- \pi^+ \pi^-$	< 0.6

Light Hadron Decays of h_c

Charged Charmonium-like States

- BESIII has established isospin triplets of charmonium-like Z_c(3900) and Z_c(4020) seen in $e^+e^- \rightarrow (J/\psi, h_c)\pi\pi$
- $Z_c(3885)$ seen in $e^+e^- \to (D\bar{D}^*)^+\pi^ Z_c(4025)$ seen in $e^+e^- \to (D^*\bar{D}^*)^+\pi^-$
- Nature is unclear: tetraquarks, hadronic molecules, threshold effects, ...?
- Do strange partners exist?

More on exotic charmonium at BESIII in Frank Nerling's talk

Search for strange $c\overline{c}$ -like states

Phys. Rev. Lett. 126, 102001 (2021)

- Study $e^+e^- \to K^+D^-_sD^{*0}, K^+D^{*-}_sD^0$
 - at cms energies of 4.628, 4.641, 4.661, 4.681, and 4.698 GeV
 - total integrated luminosity: 3.7 / fb (~1.6 / fb at 4.681 GeV)
 - 2/3 of the data recorded at 4.681 GeV was blinded
- Partial event reconstruction: $D_s^- \to K^+ K^- \pi^-, K_s^0 K^-$ and K^+
- Identify signal in recoil system

Search for strange $c\overline{c}$ -like states

Phys. Rev. Lett. 126, 102001 (2021)

Signal in the recoil mass in the D^{*0} mass region

 $e^+e^- \to K^+D^-_s D^{*0}, K^+D^{*-}_s D^0$

First Observation of Z_{cs}(3985)

Phys. Rev. Lett. 126, 102001 (2021)

Backgrounds from open charm channels estimated from control data samples

Significant (5.3σ) enhancement at threshold over estimated backgrounds at 4.681 GeV

→ Breit-Wigner parameterization mass $(3985.2^{+2.1}_{-2.0} \pm 1.7)$ MeV/ c^2 width $(13.8^{+8.1}_{-5.2} \pm 4.9)$ MeV

Signals cc̄sū quark content of new Z_{cs}(3985)⁻

Is this connected to the 10x broader $Z_{cs}(4000) \rightarrow J/\psi K^+$ observed by LHCb in B decays?

Z_{cs}(3985) Cross Sections

Phys. Rev. Lett. 126, 102001 (2021)

Summary

- BESIII is successfully operating since 2008 and is collecting large data samples in electron-positron annihilation for the next years
- Excellent laboratory for hadron spectroscopy, complementary to hadron machines
 - light and charm quark mass region
 - low backgrounds
- Light hadrons: Systematic studies of glueball candidates
 - scalar, tensor states, X(1835), and X(2370)
- Conventional charmonium: new decay modes of η_c and h_c
- Exotic charmonium: further exploration of X, Y, states \rightarrow Frank Nerling's talk
 - first observation of $Z_{cs}(3985)$ in $e^+e^- \rightarrow K^+D^-_sD^{*0}, K^+D^{*-}_sD^0$
- Studies in all areas are ongoing with more exciting results to come

ESII e BESIII Collaboration

