

K_L-Facility

strange hadron spectroscopy with a secondary K_{Long} beam

arXiv:2008.08215v3 KLF proposal 2020

Mikhail Bashkanov

Outlook

- K_L FACILITY IN A NUTSHELL
- WHY KAON BEAM?
- WHY STRANGENESS?
- BARYON SECTOR
 - Missing resonances
 - Exotic states (cusps, dynamically generated resonances, hadronic molecules)
- MESON SECTOR
- STANDARD MODEL AND BEYOND

KLF, step 1 (CEBAF)

JLAB

Electron Beam:

- 12 GeV
- 5µA
- 64 ns bunch spacing

KLF, step 2 (Compact Photon source)

CPS:

- 10% RL copper radiator
- 60kW heat
- ~100t shielding
- Brightest manmade source of photons of these energies

KLF, step 3 (K_L production target)

K_L production target:

- 40 cm Be
- 6kW heat
- ~12t shielding
- $10^4 10^5$ Kaons per second

GlueX:

- 4pi coverage
- Both neutral and charged particles
- Nice PID
- *K_L* energy reconstruction from ToF

UNIVERSITY

KLF properties

- Intense K_L beam $\sim 10^4$ kaons/s on a target
 - Broad momentum range
 - Controlled by Flux Monitor
 - Excellent W reconstruction
 - Time-of-flight
 - Final state
- Proton and neutron target
 - Approved 100 days *LH*₂ target
 - Approved 100 days *LD*₂ target
- Low background level
- Exclusive final states

Why Strange beams?

¹⁰**Baryon summary table, PDG**

Number of 3- and 4-

star Resonances

Baryon	2004	2020
N*	15	21
Δ	10	12
Λ	14	14
Σ	10	9*
[1]	6	6
Ω	2	2

р	$1/2^{+}$	****	<i>∆</i> (1232)	$3/2^{+}$	****	Σ^+	$1/2^{+}$	****	Ξ^0	$1/2^{+}$	****	Λ_c^+	$1/2^{+}$	****
п	$1/2^{+}$	****	$\Delta(1600)$	$3/2^{+}$	***	Σ^0	$1/2^{+}$	****	Ξ-	$1/2^{+}$	****	$A_{c}(2595)^{+}$	$1/2^{-}$	***
N(1440)	$1/2^{+}$	****	$\Delta(1620)$	$1/2^{-}$	****	Σ^{-}	$1/2^{+}$	****	Ξ(1530)	3/2+	****	$A_{c}(2625)^{+}$	$3/2^{-}$	***
N(1520)	$3/2^{-}$	****	$\Delta(1700)$	$3/2^{-}$	****	$\Sigma(1385)$	$3/2^{+}$	****	$\Xi(1620)$		*	$A_{c}(2765)^{+}$		*
N(1535)	$1/2^{-}$	****	$\Delta(1750)$	$1/2^{+}$	*	$\Sigma(1480)$		*	$\Xi(1690)$		***	$\Lambda_{c}(2880)^{+}$	$5/2^{+}$	***
N(1650)	$1/2^{-}$	****	$\Delta(1900)$	$1/2^{-}$	**	$\Sigma(1560)$		**	Ξ(1820)	$3/2^{-}$	***	$\Lambda_{c}(2940)^{+}$		***
N(1675)	$5/2^{-}$	****	$\Delta(1905)$	$5/2^{+}$	****	$\Sigma(1580)$	$3/2^{-}$	*	Ξ(1950)		***	$\Sigma_{c}(2455)$	$1/2^{+}$	****
N(1680)	$5/2^{+}$	****	<i>∆</i> (1910)	$1/2^{+}$	****	$\Sigma(1620)$	$1/2^{-}$	*	Ξ(2030)	$\geq \frac{5}{2}$?	***	$\Sigma_c(2520)$	3/2+	***
N(1685)		*	$\Delta(1920)$	$3/2^{+}$	***	$\Sigma(1660)$	$1/2^{+}$	***	$\Xi(2120)$	-	*	$\Sigma_c(2800)$		***
N(1700)	$3/2^{-}$	***	$\Delta(1930)$	$5/2^{-}$	***	$\Sigma(1670)$	$3/2^{-}$	****	Ξ(2250)		**	Ξ_{c}^{+}	$1/2^{+}$	***
N(1710)	$1/2^{+}$	***	$\Delta(1940)$	$3/2^{-}$	**	$\Sigma(1690)$		**	Ξ(2370)		**	<u>=</u> 0	$1/2^{+}$	***
N(1720)	$3/2^{+}$	****	$\Delta(1950)$	$7/2^{+}$	****	$\Sigma(1730)$	$3/2^{+}$	*	$\Xi(2500)$		*	='+	$1/2^{+}$	***
N(1860)	$5/2^{+}$	**	$\Delta(2000)$	$5/2^{+}$	**	$\Sigma(1750)$	$1/2^{-}$	***				='0	$1/2^{+}$	***
N(1875)	$3/2^{-}$	***	$\Delta(2150)$	$1/2^{-}$	*	$\Sigma(1770)$	$1/2^{+}$	*	Ω^{-}	3/2+	****	= c = (2645)	3/2+	***
N(1880)	$1/2^{+}$	**	$\Delta(2200)$	$7/2^{-}$	*	$\Sigma(1775)$	$5/2^{-}$	****	$\Omega(2250)^{-}$		***	$=_{2}(2790)$	1/2-	***
N(1895)	$1/2^{-}$	**	$\Delta(2300)$	9/2+	**	Σ(1840)	$3/2^{+}$	*	$\Omega(2380)^{-}$		**	$=_{c}(2815)$	3/2-	***
N(1900)	$3/2^{+}$	***	$\Delta(2350)$	$5/2^{-}$	*	$\Sigma(1880)$	$1/2^{+}$	**	$\Omega(2470)^{-}$		**	= (2930)	5/2	*
N(1990)	$7/2^{+}$	**	$\Delta(2390)$	$7/2^{+}$	*	$\Sigma(1900)$	$1/2^{-}$	*				$=_{c}(2980)$		***
N(2000)	$5/2^{+}$	**	$\Delta(2400)$	$9/2^{-}$	**	$\Sigma(1915)$	$5/2^{+}$	****				= 2(2000) = 2(3055)		**
N(2040)	$3/2^{+}$	*	$\Delta(2420)$	$11/2^{+}$	****	$\Sigma(1940)$	$3/2^{+}$	*				= (3080)		***
N(2060)	$5/2^{-}$	**	$\Delta(2750)$	$13/2^{-}$	**	Σ(1940)	3/2-	***				$=_{c}(3000)$ $=_{c}(3123)$		*
N(2100)	$1/2^{+}$	*	<i>∆</i> (2950)	$15/2^{+}$	**	$\Sigma(2000)$	$1/2^{-}$	*				00	$1/2^{+}$	***
N(2120)	$3/2^{-}$	**				Σ(2030)	$7/2^{+}$	****				$O_{1}^{1}(2770)^{0}$	3/2+	***
N(2190)	$7/2^{-}$	****	Λ	$1/2^{+}$	****	Σ (2070)	$5/2^{+}$	*				322(2110)	5/2	
N(2220)	$9/2^{+}$	****	A(1405)	$1/2^{-}$	****	$\Sigma(2080)$	$3/2^{+}$	**				<u>=</u> +		*
N(2250)	9/2-	****	A(1520)	$3/2^{-}$	****	Σ(2100)	7/2-	*				- cc		
N(2300)	$1/2^{+}$	**	A(1600)	$1/2^{+}$	***	Σ(2250)		***				∧ 0	$1/2^{+}$	***
N(2570)	$5/2^{-}$	**	A(1670)	$1/2^{-}$	****	Σ(2455)		**				$\Lambda_{\rm b}(5912)^0$	1/2-	***
N(2600)	$11/2^{-}$	***	A(1690)	$3/2^{-}$	****	$\Sigma(2620)$		**				$A_{\rm b}(5920)^0$	3/2-	***
N(2700)	$13/2^{+}$	**	Λ(1710)	$1/2^{+}$	*	Σ(3000)		*				Σ_{L}	$1/2^+$	***
			$\Lambda(1800)$	$1/2^{-}$	***	Σ(3170)		*				Σ^*	$3/2^+$	***
			Л(1810)	$1/2^{+}$	***							=0 =-	1/2+	***
			A(1820)	$5/2^{+}$	****							= b, -b =, (5945)0	3/2+	***
			A(1830)	$5/2^{-}$	****							-6(3943)	1/2+	***
			$\Lambda(1890)$	$3/2^{+}$	****							32.9	1/2	
			A(2000)		*									
			A(2020)	$7/2^{+}$	*									
			A(2050)	$3/2^{-}$	*									
			Λ(2100)	$7/2^{-}$	****									
			Λ(2110)	$5/2^{+}$	***									
			A(2325)	$3/2^{-}$	*									
			A(2350)	9/2+	***									

A(2585)

**

 $\Sigma(2250)$ was downgraded

Hyperons

Octet: N^* , Λ^* , Σ^* , Ξ^* Decuplet: Δ^* , Σ^* , Ξ^* , Ω^*

	LQCD* ($M < 2 M_\Omega$)	"Observed", PDG
N^*	62	21
Δ^*	38	12
Λ^*	71	14
Σ*	66	9
Ξ*	73	6
$\mathbf{\Omega}^{*}$	36	2

*R.G. Edwards et al, Phys.Rev.D 87 (2013) 5, 054506

Theory limitations

Good

Kaon beam brings one unit of strangeness:

- No associated kaons for Λ^* , Σ^* production
- 1 associated kaon for Ξ^*
- 2 associated kaons for Ω^*

Acceptable

Simplified, model dependent analysis only

Strange beams?

Direct Σ^{\ast} production

Direct Σ^{\ast} production

Associated production

Sigma factory

 $K_L p \to K_s p$ $K_L p \to \pi^+ \Lambda$ $K_L p \to K^+ \Xi^0$ $K_L p \to \pi^0 \Sigma^+$ $K_L p \to \eta \Sigma^+$ $K_L p \to \omega \Sigma^+$ $K_L p \to \eta' \Sigma^+$

2 Body Final state Pure Σ^* channels Self-polarising observables

 $K_L p \to K^+ n$

Non-resonant background

Strategies: bottom \rightarrow up vs top \rightarrow down

from I. Strakovsky

Excited Ξ^* in associated production

Ξ^{*} discovery potential UNIVERSITY K^+ KL K-Ξ* n $K_L n \rightarrow K^+ \Xi^{*-} \rightarrow K^+ \Lambda K^-$ Λ $K_L n \rightarrow K^+ X i^- \rightarrow K^+ K^- \Lambda$ $Br(\Xi^* \to \overline{K} \Lambda) \bullet \sigma [\mu b]$ 10 100 days experiment E*(1820) 10⁻¹ 2.5 3.5 2 3 W [GeV/c²]

Associated production

Direct formation

- Interference effects
- $\Lambda \Sigma$ mixing
- Model-independent PWA
- Different background

Why Strangeness?

Molecules and cusps

- Many thresholds
 - Cusps
 - Molecules
 - Dynamic resonances
- $\Lambda(1670)$, $\overline{K}N$ vs $\pi\Sigma$ vs $\eta\Lambda$
- Σ(1620)

 $\Xi(1620)$

 $\Xi\pi,\Lambda\overline{K},\Sigma\overline{K},\Xi\eta$

A. Ramos, E. Oset , C. Bennhold

Strangeness is a key

- Many thresholds
 - Cusps
 - Molecules
 - Dynamic resonances

Light quark sector:

- + high statistics
- + easy to produce
- too broad
- too many interferences

Strange sector:

- + high statistics
- + easy to produce with K_L
- + perfect width
- + decent spacing

Heavy quark sector:

- low statistics
- hard to produce
- too narrow

Strangeness is a key

- Many thresholds
 - Cusps
 - Molecules
 - Dynamic resonances

 $\Lambda(1405) \leftrightarrow \pi \Sigma / \overline{K} N$ -molecule

 $P(4450) \leftrightarrow \overline{D}^*\Sigma_c$ -molecule

Early Universe

26

Strange mesons

Kappa mystery

Kappa mystery

SLAC

 $K^-\pi^+ \to K^-\pi^+$

 $au o K \pi \nu_{ au}$

KLF

KLF spectroscopy

Standard Model and Beyond

CP in K_L UNIVERSITY π^{-} π^+ K^0 \overline{K}^0 v_e $\begin{array}{c} K^0 \rightarrow \pi^- e^+ \nu_e \\ \overline{K^0} \rightarrow \pi^+ e^- \overline{\nu_e} \end{array} \end{array}$ $\frac{1}{\sqrt{2(1+|\epsilon|^2)}} \left((1+\epsilon)K^0 - (1-\epsilon)\overline{K^0} \right)$ K_L

 $|\epsilon| \sim 6.6 \cdot 10^{-3} \rightarrow CP$ is violated !

Rare decays

- Physics beyond SM
 - Rare final state
 - Precise calculations

K_L beta-decay

 $M(K_L) = 497.611 \, MeV$ $M(K^{+/-}) = 493.696 \, MeV$ $M(e^{+/-}) = 0.511 \, MeV$ Available Phase Space **3.4 MeV**

$K_L \to K^+ e^- \overline{\nu_e} \\ K_L \to K^- e^+ \nu_e$

BUT!!!

- In flight decay (boosted)
- Can build dedicated detector
- $Br(K^0 \to K^{\pm} e^{\mp} \nu) \sim 10^{-9}$ (N.N. Shishov, Yad. Phyz. 82, 86, (2019))
- ~50 decays per beamtime

Conclusion

- Proposal for a new KL beam facility has been approved by JLab PAC
- Cross section and Polarisation measurements
 - New $\Lambda^*, \Sigma^*, \Xi^*$ states
 - Up to 1 new particle per week of beamtime
- Technical design/prototyping/construction

New collaborators welcome!!!

More information at https://wiki.jlab.org/klproject 34

UNIVERSITY 07 mk