Heavy Quark Masses (from QCD Sum Rules) and their impact on the muon g-2

Pere Masjuan Universitat Autònoma de Barcelona (masjuan@ifae.es)

Work ongoing in collaboration with Jens Erler and Hubert Spiesberger Eur. Phys. J. C (2017) 77:99, 2021.XXXX

19th of May, 2021

Outline

- Motivation and Introduction
- \bullet Using Sum Rules to extract m_Q
 - overview
 - our proposal for *charm* and *bottom*
- Impact on the muon g-2
- Conclusions and outlook

Motivation: why precise mq?

$$\begin{split} & \text{Higgs decay} \quad \sim \overline{m_b} (M_H)^2 \\ & \Gamma(B \to X_u l \nu) \sim G_F^2 m_b^5 |V_{ub}|^2 \\ & \Gamma(B \to X_c l \nu) \sim G_F^2 m_b^5 f(m_c^2/m_b^2) |V_{cb}|^2 \\ & B \to K(^*) \ell \ell \\ & B \to D(^*) \ell \nu \end{split} \text{ (pQCD contributions on FFs depend on m_q)} \end{split}$$

Yukawa unification

[Baer et al '00]

 $\frac{\delta m_b}{m_b} \sim \frac{\delta m_t}{m_t}$

if
$$\delta m_t \sim 1 \text{GeV} \Rightarrow \delta m_b \sim 25 \text{MeV}$$

MESON2021, 19th of May, 2021

Motivation: why precise mq?

Y-spectroscopy

$$m(\Upsilon(1S)) = 2M_b - C\alpha^2 M_b + \cdots$$

Lattice QCD

$$M_{H^{(*)}} = m_h + \overline{\Lambda} + \frac{\mu_\pi^2}{2m_h} - d_{H^{(*)}} \frac{\mu_G^2(m_h)}{2m_h} + \mathcal{O}\left(m_h^{-2}\right)$$

QCD Sum Rules

$$\int \frac{\mathrm{d}s}{s^{n+1}} R_q(s) \sim \left(\frac{1}{m_q}\right)^{2n}$$

Motivation: why precise mQ?

Snapshot from PDG

VALUE (GeV)	DOCUMENT ID	TECN
1.27 ± 0.02	OUR EVALUATION	
1.266 ± 0.006	1 NARISON 2020	THEO
$1.290 \begin{array}{c} +0.077 \\ -0.053 \end{array}$	2 ABRAMOWICZ 2018	HERA
1.273 ± 0.010	3 BAZAVOV 2018	LATT
1.2737 ± 0.0077	4 LYTLE 2018	LATT
1.223 ± 0.033	5 PESET 2018	THEO
1.279 ± 0.008	6 CHETYRKIN 2017	THEO
1.272 ± 0.008	7 ERLER 2017	THEO
1.246 ± 0.023	8 KIYO 2016	THEO
1.288 ± 0.020	9 DEHNADI 2015	THEO
1.348 ± 0.046	10 CARRASCO 2014	LATT
$1.24 \pm 0.03 \stackrel{+0.03}{_{-0.07}}$	11 ALEKHIN 2013	THEO
1.159 ± 0.075	12 SAMOYLOV 2013	NOMD
1.278 ± 0.009	13 BODENSTEIN 2011	THEO
$1.28 \begin{array}{c} +0.07 \\ -0.06 \end{array}$	14 LASCHKA 2011	THEO
$1.196 \pm 0.059 \pm 0.050$	15 AUBERT 2010A	BABR
1.25 ± 0.04	16 SIGNER 2009	THEO

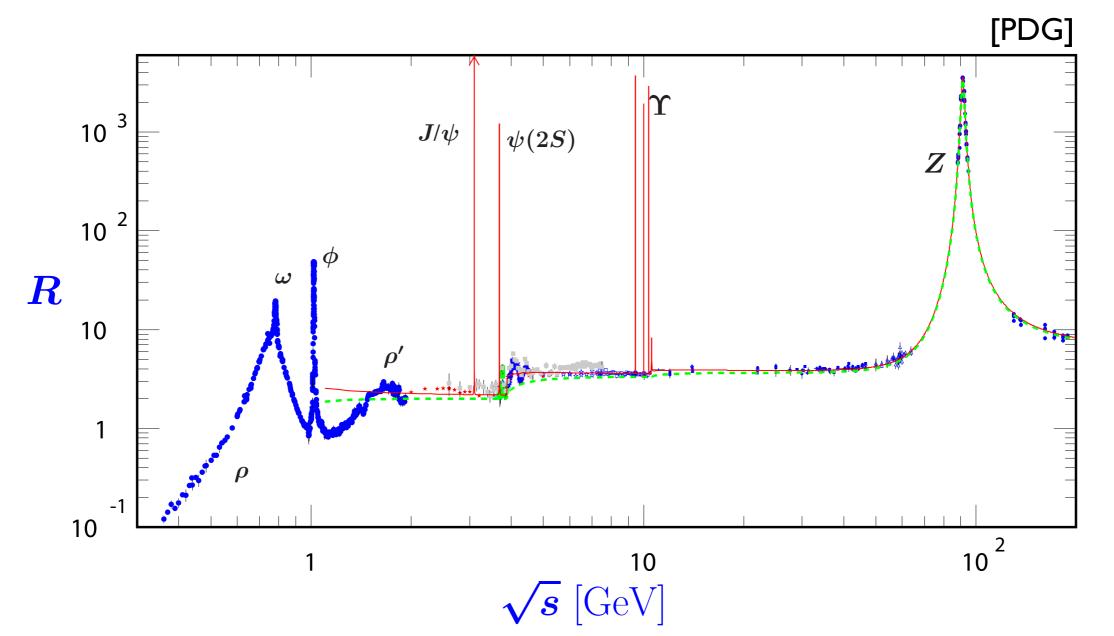
Motivation: why precise mq?

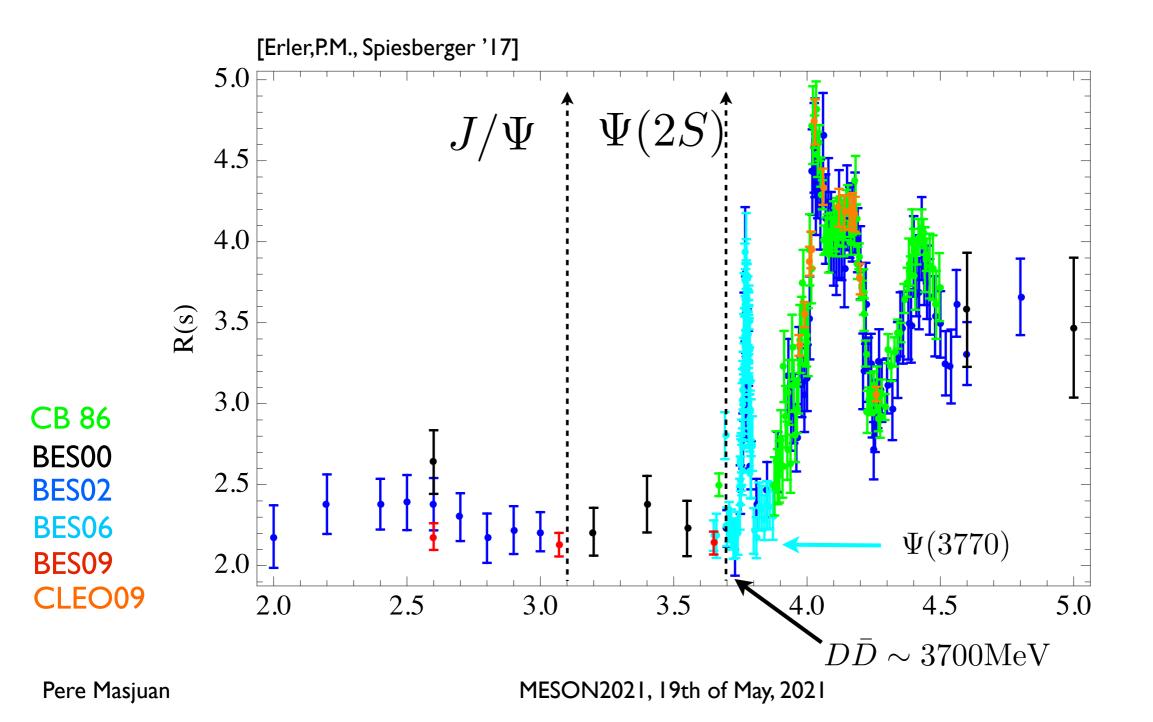
Snapshot from PDG

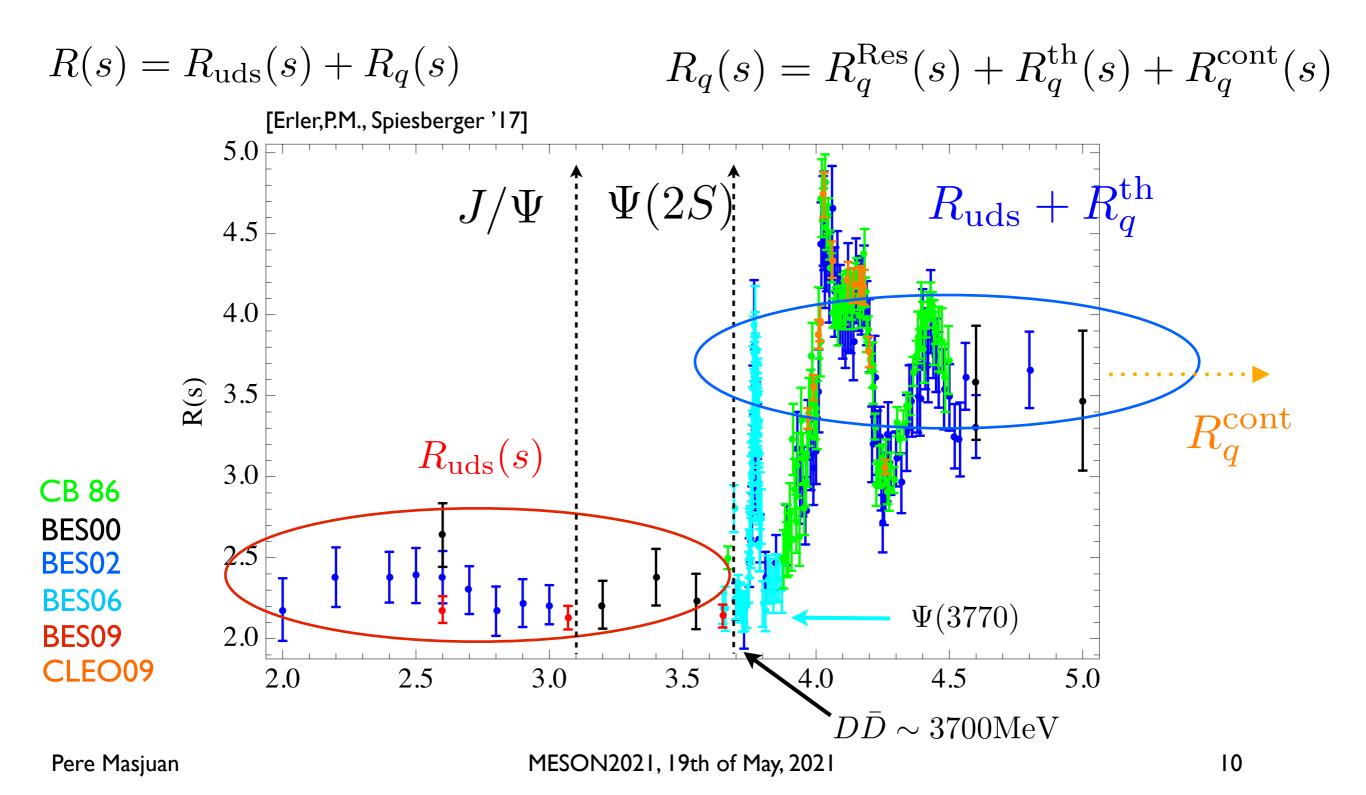
VALUE (GeV)	DOCUMENT ID	TECN
$4.18_{-0.02}^{+0.03}$	OUR EVALUATION of $\overline{\text{MS}}$ Mass.	
4.197 ±0.008	1 NARISON 2020	THEO
$4.049 \begin{array}{c} +0.138 \\ -0.118 \end{array}$	2 ABRAMOWICZ 2018	HERA
4.195 ±0.014	3 BAZAVOV 2018	LATT
4.186 ±0.037	4 PESET 2018	THEO
4.197 ±0.022	5 KIYO 2016	THEO
4.183 ±0.037	6 ALBERTI 2015	THEO
$4.203 \begin{array}{c} +0.016 \\ -0.034 \end{array}$	7 BENEKE 2015	THEO
4.196 ±0.023	8 COLQUHOUN 2015	LATT
4.176 ±0.023	9 DEHNADI 2015	THEO
4.21 ± 0.11	10 BERNARDONI 2014	LATT
$4.169 \pm 0.002 \pm 0.008$	11 PENIN 2014	THEO
4.166 ±0.043	12 LEE 2013O	LATT
4.247 ± 0.034	13 LUCHA 2013	THEO
4.171 ±0.009	14 BODENSTEIN 2012	THEO
4.29 ± 0.14	15 DIMOPOULOS 2012	LATT
$4.18 \begin{array}{c} +0.05 \\ -0.04 \end{array}$	16 LASCHKA 2011	THEO
$4.186 \pm 0.044 \pm 0.015$	17 AUBERT 2010A	BABR
4.163 ±0.016	18 CHETYRKIN 2009	THEO
4.243 ± 0.049	19 SCHWANDA 2008	BELL

 $\sigma(e^+e^- \to \mu^+\mu^-) = 4\pi\alpha_{\rm em}(s)^2/3s$

$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$







Using the optical theorem:

$$R(s) = 12\pi \text{Im}[\Pi(s+i\epsilon)]$$

 $\Pi_q(s)$ is the correlator of two heavy-quark vector currents which can be calculated in pQCD order by order and satisfies a Dispersion Relation:

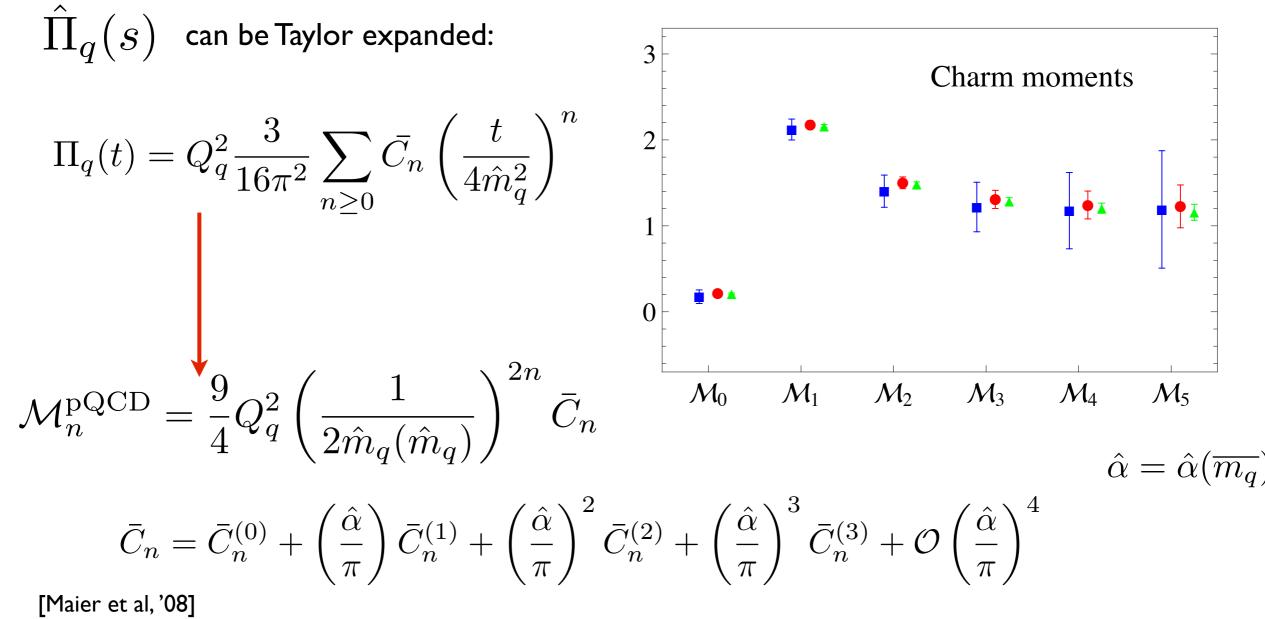
For $t \rightarrow 0$

$$\mathcal{M}_{n} := \left. \frac{12\pi^{2}}{n!} \frac{d^{n}}{dt^{n}} \hat{\Pi}_{q}(t) \right|_{t=0} = \int_{4m_{q}^{2}}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R_{q}(s)$$

[SVZ,'79]

$$\hat{\Pi}_q(s)$$
 can be Taylor expanded:

$$\Pi_q(t) = Q_q^2 \frac{3}{16\pi^2} \sum_{n \ge 0} \bar{C}_n \left(\frac{t}{4\hat{m}_q^2}\right)^n$$



[Maier et al, '08] [Chetyrkin, Steinhauser'06] [Melnikov, Ritberger'03]

[Kiyo et al '09] [Hoang et al '09] [Greynat et al '09]

Pere Masjuan

MESON2021, 19th of May, 2021

13

Sum Rules:

$$\mathcal{M}_n = \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R_q(s)$$
$$\mathcal{M}_n^{\mathrm{pQCD}} = \frac{9}{4} Q_q^2 \left(\frac{1}{2\hat{m}_q(\hat{m}_q)}\right)^{2n} \bar{C}_n$$

L.h.s. from theory

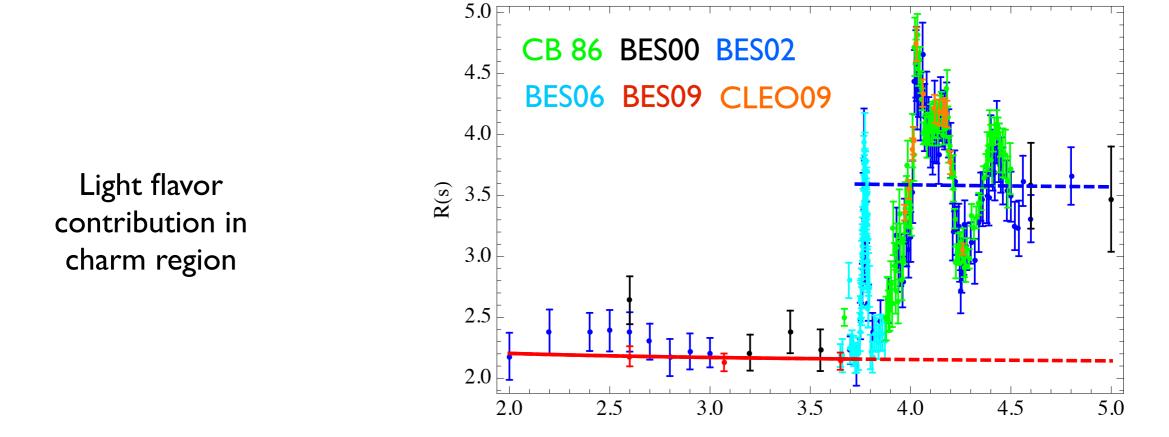
$$R_{q}(s) = R_{q}^{\text{Res}}(s) + R_{q}^{\text{th}}(s) + R_{q}^{\text{cont}}(s)$$

Pere Masjuan

$$\begin{split} R_{q}(s) &= R_{q}^{\text{Res}}(s) + R_{q}^{\text{th}}(s) + R_{q}^{\text{cont}}(s) & & & \\ R_{q}^{\text{Res}}(s) &= \frac{9\pi M_{R}\Gamma_{R}^{e}}{\alpha_{\text{em}}^{2}(M_{R})}\delta(s - M_{R}^{2}) & & & \\ R_{q}^{\text{res}}(s) &= \frac{9\pi M_{R}\Gamma_{R}^{e}}{\alpha_{\text{em}}^{2}(M_{R})}\delta(s - M_{R}^{2}) & & & \\ R_{q}^{\text{th}}(s) &= R_{q}(s) - R_{\text{background}} & (2M_{D} \leq \sqrt{s} \leq 4.8\text{GeV}) \\ R_{q}^{\text{cont}}(s) & & \\ \text{calculated using pQCD} & & & \\ (\sqrt{s} \geq 4.8\text{GeV}) & & & \\ \end{array}$$

MESON2021, 19th of May, 2021

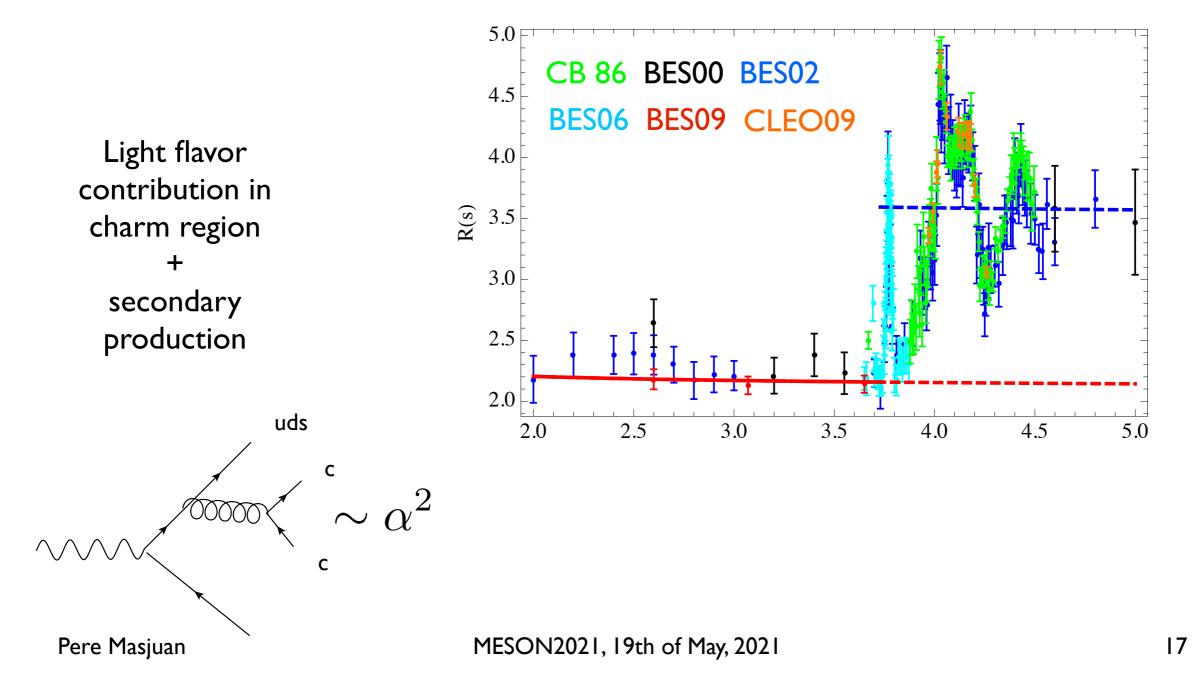
$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$



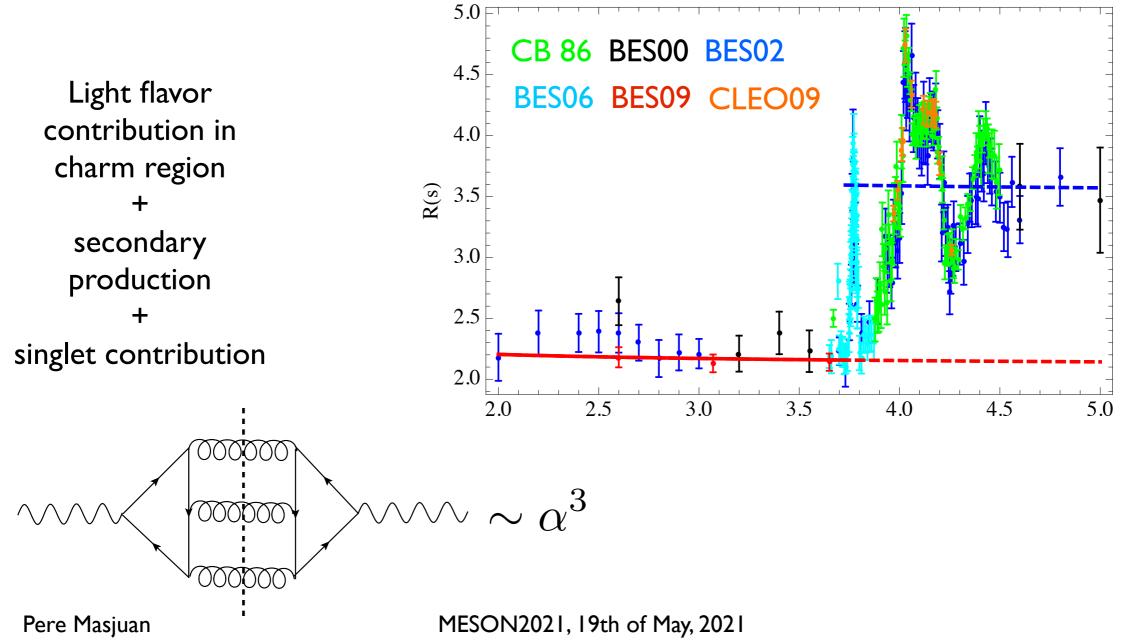
Using pQCD below threshold, calculate R, and extrapolate

MESON2021, 19th of May, 2021

$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$



$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$



18

$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$

5.0 F CB 86 BES00 BES02 Light flavor 4.5 contribution in BES06 BES09 CLEO09 charm region 4.0 + (s) 3.5 secondary production 3.0 ╋ singlet contribution 2.5 +2.0 2loop QED 3.0 2.5 3.5 2.0

5.0

4.0

4.5

Non-perturbative effects

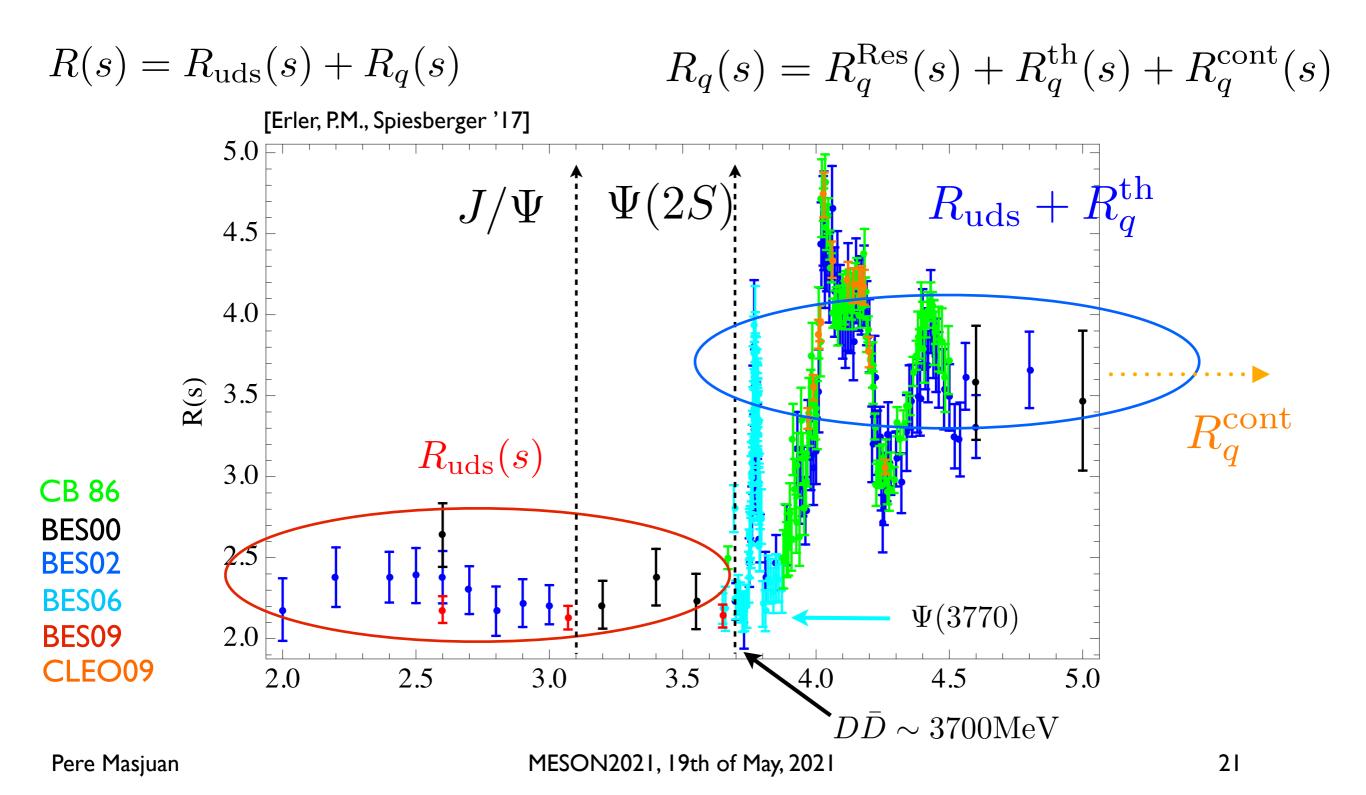
Non-perturbative effects due to gluon condensates to the moments are:

[Chetyrkin et al '12]

$$\mathcal{M}_{n}^{\text{nonp}}(\mu^{2}) = \frac{12\pi^{2}Q_{q}^{2}}{(4\hat{m}_{q}^{2})^{n+2}} \text{Cond}\,a_{n}\left(1 + \frac{\alpha_{s}(\hat{m}_{q}^{2})}{\pi}b_{n}\right)$$

 a_n , b_n are numbers, and Cond = $\langle \frac{\alpha_s}{\pi} G^2 \rangle = (5 \pm 5) \cdot 10^{-3} \text{GeV}^4$ [Dominguez et al 'I4] from fits to tau data

$$\frac{\mathcal{M}_n^{\text{nonp}}(\hat{m}_c)}{\mathcal{M}_n^{\text{th}}} \sim 0.5\% - 2\% \longrightarrow \Delta \hat{m}_c(\hat{m}_c) \sim 2\text{MeV} - 8\text{MeV}$$



Our approach is different

- We try to avoid *local* duality: consider *global* duality
- Then, we do *not use experimental data* on threshold region, only resonances below threshold
 - Experimental data in threshold used for error estimation
- How you do it then? Use two different moment equations to determine the continuum requiring self-consistency:
 - extract the quark mass

Charm

Our approach

For a global duality:

 $\hat{\Pi}_q(s)$ in \overline{MS}

$$12\pi^2 \frac{\hat{\Pi}_q(0) - \hat{\Pi}_q(-t)}{t} = \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s} \frac{R_q(s)}{s+t}$$

 $t \to \infty$ define the \mathcal{M}_0

[Erler, Luo '03]

Our approach

For a global duality:

 $\hat{\Pi}_q(s)$ in \overline{MS}

$$12\pi^2 \frac{\hat{\Pi}_q(0) - \hat{\Pi}_q(-t)}{t} = \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s} \frac{R_q(s)}{s+t}$$

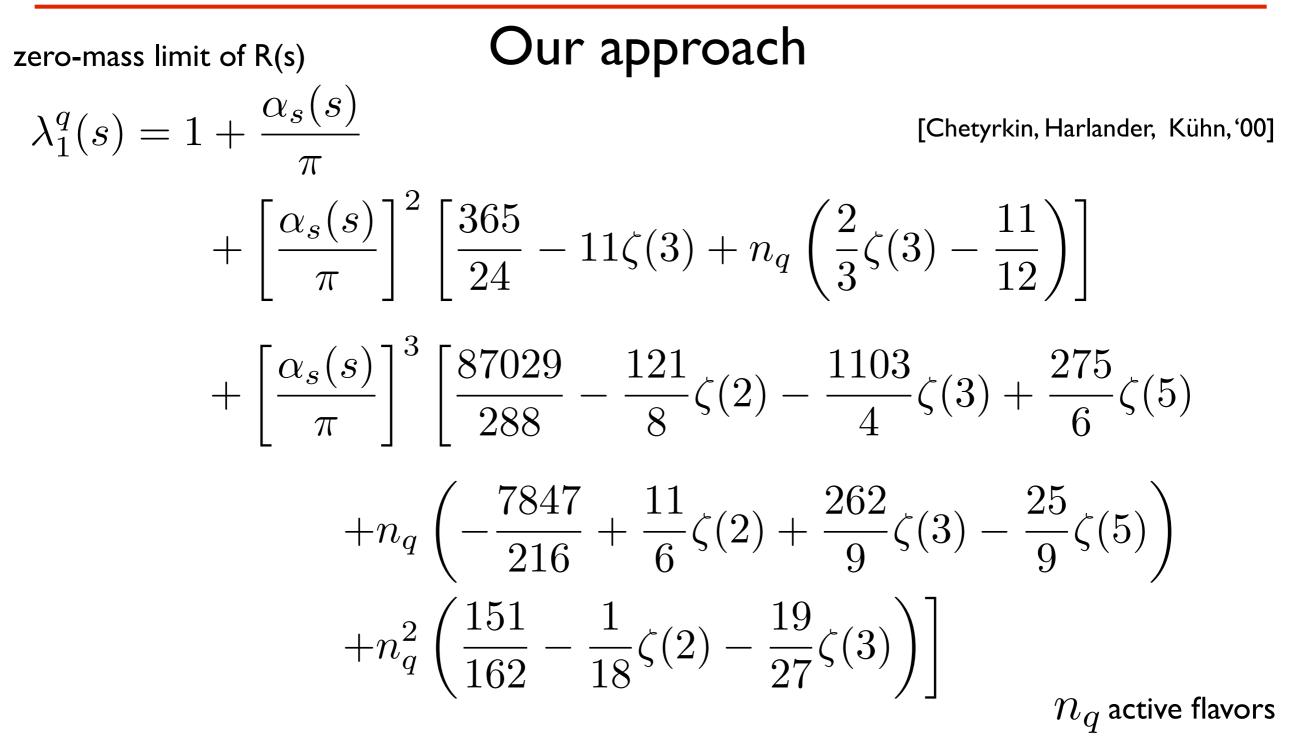
 $t \to \infty$ define the \mathcal{M}_0 (but has a divergent part)

[Erler, Luo '03]

$$\lim_{t \to \infty} \hat{\Pi}_q(-t) \sim \log(t) \quad \longleftrightarrow \quad \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s} R_q(s) \sim \log(\infty)$$

Fortunately, divergence given by the zero-mass limit of R(s), can be easily subtracted [Chetyrkin, Harlander, Kühn, '00]

MESON2021, 19th of May, 2021



MESON2021, 19th of May, 2021

Our approach

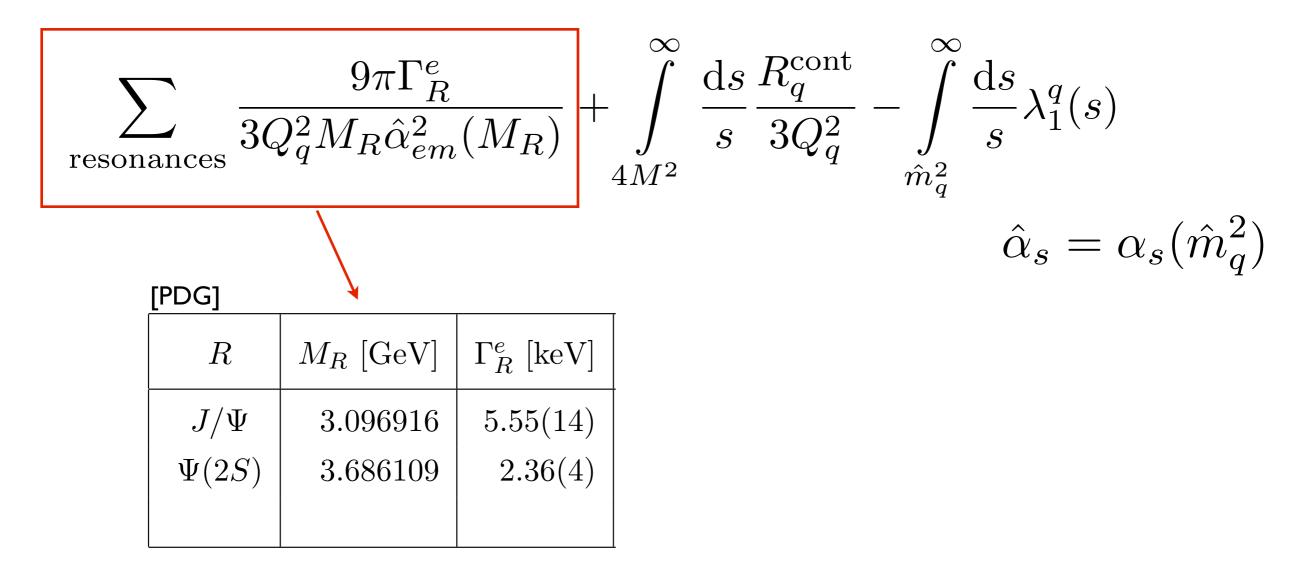
Zeroth Sum Rule:

 $\sum_{\text{sonances}} \frac{9\pi\Gamma_R^e}{3Q_q^2 M_R \hat{\alpha}_{em}^2(M_R)} + \int_{4M^2} \frac{\mathrm{d}s}{s} \frac{R_q^{\text{cont}}}{3Q_q^2} - \int_{\hat{m}^2} \frac{\mathrm{d}s}{s} \lambda_1^q(s)$ resonances $= -\frac{5}{3} + \frac{\hat{\alpha}_s}{\pi} \left[4\zeta(3) - \frac{7}{2} \right]$ $\hat{\alpha}_s = \alpha_s(\hat{m}_a^2)$ $+\left(\frac{\hat{\alpha}_s}{\pi}\right)^2 \left[\frac{2429}{48}\zeta(3) - \frac{25}{3}\zeta(5) - \frac{2543}{48} + n_q\left(\frac{677}{216} - \frac{19}{9}\zeta(3)\right)\right]$ $+\left(\frac{\hat{\alpha}_s}{\pi}\right)^3 \left[-9.86 + 0.40 \, n_q - 0.01 \, n_q^2\right]$ $= -1.667 + 1.308 \frac{\hat{\alpha}_s}{\pi} + 1.595 \left(\frac{\hat{\alpha}_s}{\pi}\right)^2 - 8.427 \left(\frac{\hat{\alpha}_s}{\pi}\right)^3$

27

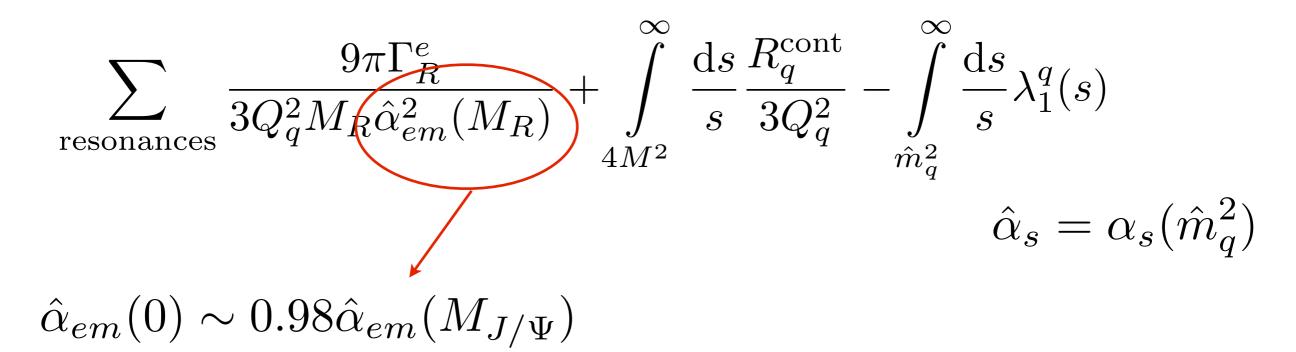
Our approach

Zeroth Sum Rule:



Our approach

Zeroth Sum Rule:



 $\Delta \hat{\alpha}_{em} \to \Delta m_c \sim 12 \text{MeV}$

Our approach: ansatz

Zeroth Sum Rule: invoke global quark-hadron duality

[Erler, Luo '03]

$$R_q^{\text{cont}}(s) = 3Q_q^2 \lambda_1^q(s) \sqrt{1 - \frac{4\,\hat{m}_q^2(2M)}{s'}} \left[1 + \lambda_3^q \frac{2\,\hat{m}_q^2(2M)}{s'}\right]$$

Simpler version of analytic reconstruction [Greynat, PM, Peris'12]

 $s' = s + 4(\hat{m}_q^2(2M) - M^2)$

Two parameters to determine: $m_q\,,\lambda_3^q$

Our approach: ansatz

Zeroth Sum Rule: invoke global quark-hadron duality

[Erler, Luo '03]

 $s' = s + 4(\hat{m}_q^2(2M) - M^2)$

$$R_q^{\text{cont}}(s) = 3Q_q^2 \lambda_1^q(s) \sqrt{1 - \frac{4\,\hat{m}_q^2(2M)}{s'}} \left[1 + \lambda_3^q \frac{2\,\hat{m}_q^2(2M)}{s'}\right]$$

Simpler version of analytic reconstruction [Greynat, PM, Peris'12]

Two parameters to determine: $m_q\,,\lambda_3^q$

We need two equations: zeroth moment + nth moment

$$\frac{9}{4}Q_q^2 \left(\frac{1}{2\hat{m}_q(\hat{m}_q)}\right)^{2n} \bar{C}_n = \sum_{\text{resonances}} \frac{9\pi\Gamma_R^e}{M_R^{2n+1}\hat{\alpha}_{em}^2(M_R)} + \int_{4M^2}^{\infty} \frac{\mathrm{d}s}{s^{n+1}}R_q(s)$$

$$n \ge 1$$

MESON2021, 19th of May, 2021

Our approach: ansatz

Zeroth Sum Rule: invoke global quark-hadron duality

[Erler, Luo '03]

$$R_q^{\text{cont}}(s) = 3Q_q^2 \lambda_1^q(s) \sqrt{1 - \frac{4\,\hat{m}_q^2(2M)}{s'}} \left[1 + \lambda_3^q \frac{2\,\hat{m}_q^2(2M)}{s'}\right]$$

Simpler version of analytic reconstruction [Greynat, PM, Peris'12]

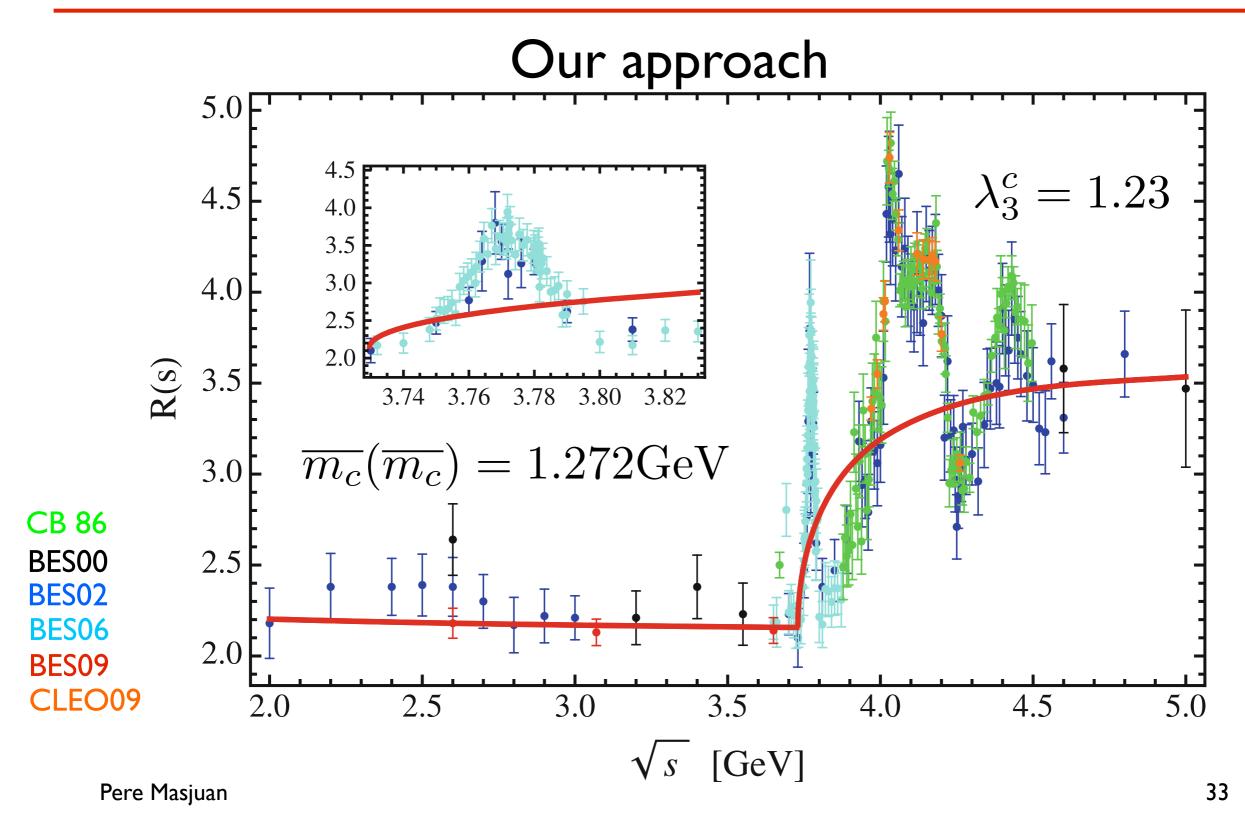
 $s' = s + 4(\hat{m}_q^2(2M) - M^2)$

Two parameters to determine: $m_q\,,\lambda_3^q$

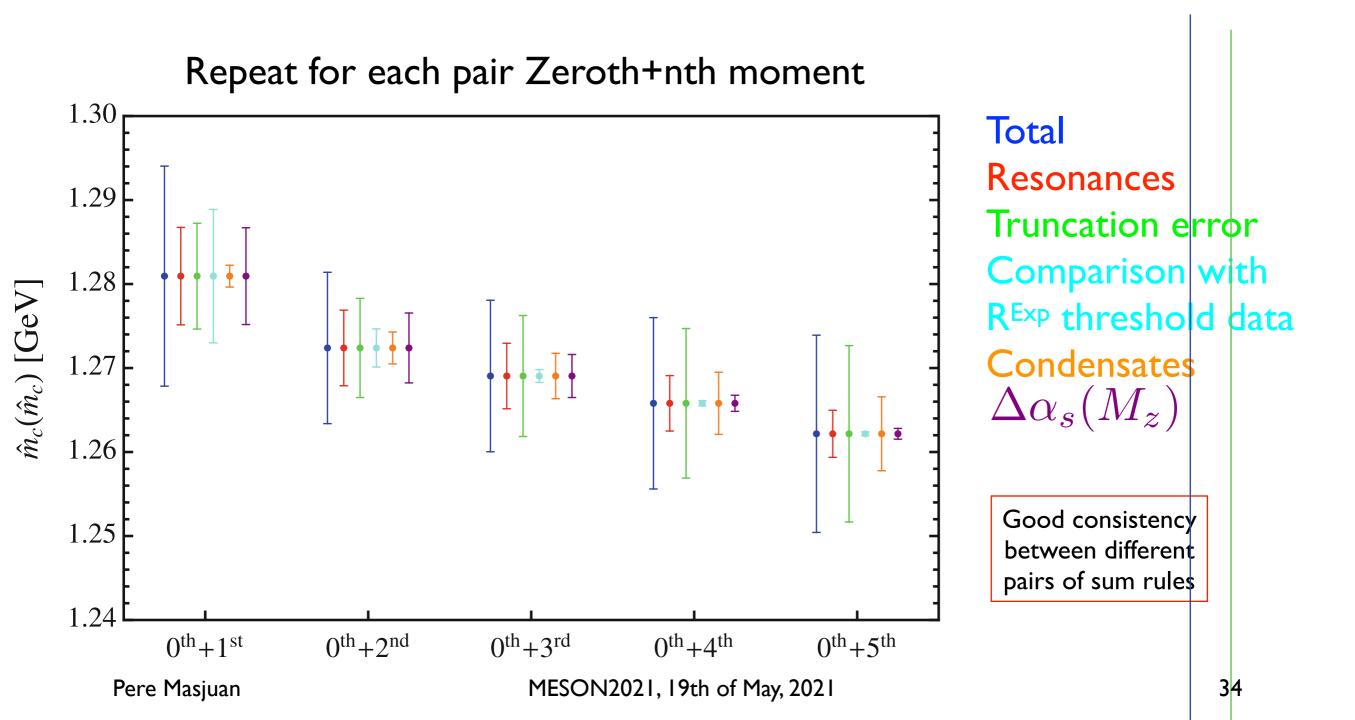
We use Zeroth + 2nd moments (no experimental data on R(s) so far)

we require selfconsistency among the 2 moments

n	Resonances	Continuum	Total	Theory
0	1.231 (24)	-3.229(+28)(43)(1)	-1.999(56)	Input (11)
1	1.184 (24)	0.966(+11)(17)(4)	2.150(33)	2.169(16)
2	1.161 (25)	0.336(+5)(8)(9)	1.497(28)	Input (25)
3	1.157 (26)	0.165(+3)(4)(16)	1.322(31)	1.301(39)
4	1.167 (27)	0.103(+2)(2)(26)	1.270(38)	1.220(60)
5	1.188 (28)	0.080(+1)(1)(38)	1.268(47)	1.175(95)

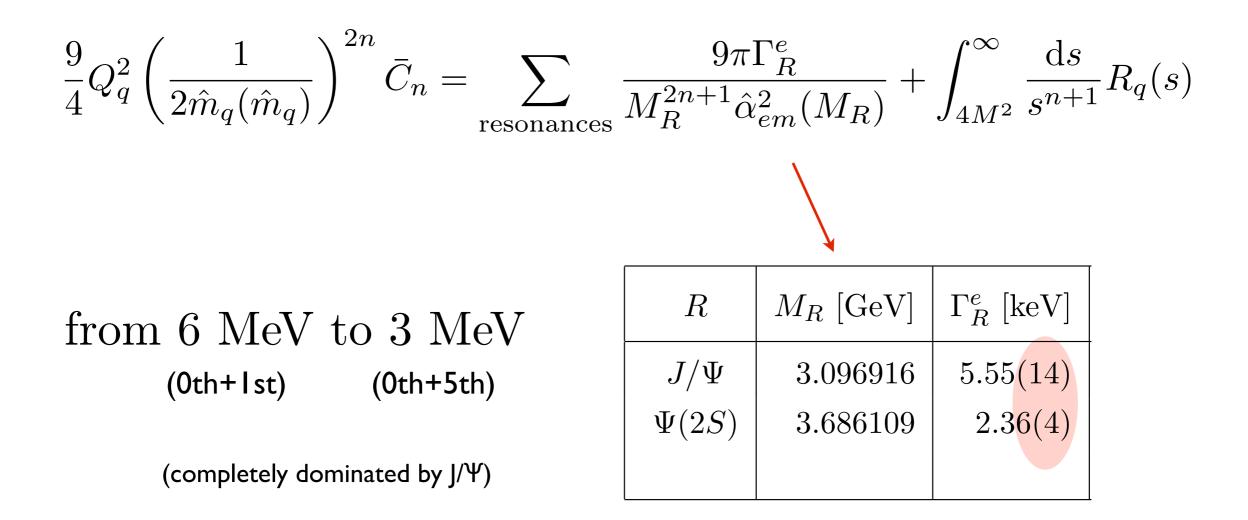


Our approach



Our approach: error budget

Resonances:



Our approach: error budget

Truncation Error (theory error):

$\mathcal{M}_n^{\mathrm{pQCD}} = \frac{9}{4} Q_q^2 \left(\frac{1}{2\hat{m}_q(\hat{m}_q)}\right)^{2n} \bar{C}_n$	
$\bar{C}_n = \bar{C}_n^{(0)} + \left(\frac{\hat{\alpha}}{\pi}\right)\bar{C}_n^{(1)} + \left(\frac{\hat{\alpha}}{\pi}\right)^2\bar{C}_n^{(2)} + \left(\frac{\hat{\alpha}}{\pi}\right)^3\bar{C}_n^{(3)} + \mathcal{O}\left(\frac{\hat{\alpha}}{\pi}\right)^4$	
(use the largest group th. factor in the next uncalculated pert. order) [Erler, Luo '03]	
$\Delta \mathcal{M}_n^{(4)} = \pm N_C C_F C_A^3 Q_q^2 \left[\frac{\hat{\alpha}_s(\hat{m}_q)}{\pi} \right]^4 \left(\frac{1}{2\hat{m}_q(\hat{m}_q)} \right)^{2n}$	

Example known orders

n	$rac{\Delta \mathcal{M}_n^{(2)}}{\left \mathcal{M}_n^{(2)} ight }$	$rac{\Delta \mathcal{M}_n^{(3)}}{\left \mathcal{M}_n^{(3)}\right }$
0	1.88	3.03
1	2.14	2.84
2	1.92	4.58
3	3.25	5.63
4	6.70	4.30
5	19.18	3.62

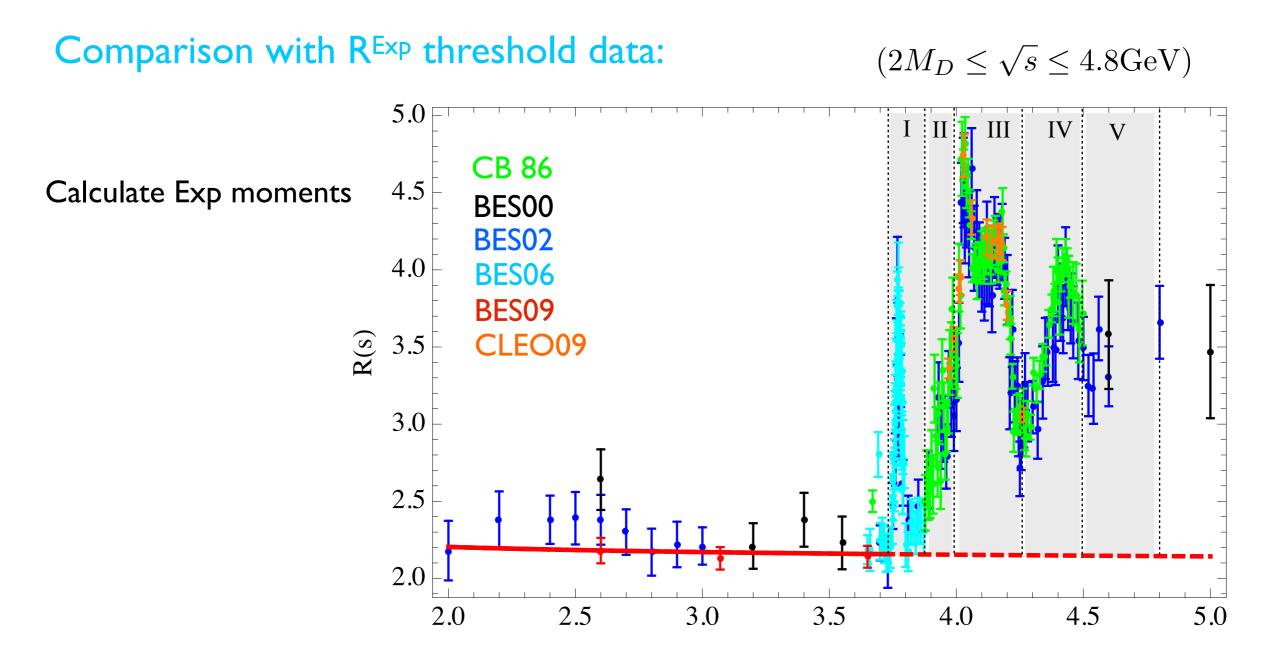
from 5 MeV to 10 MeV (0th+1st) (0th+5th)

More conservative than varying the renorm. scale within a factor of 4

Pere Masjuan

MESON2021, 19th of May, 2021

Our approach: error budget



Our approach: error budget

Comparison with R^{Exp} threshold data:

Collab.	п	$[2M_{D^0}, 3.872]$	[3.872, 3.97]	[3.97, 4.26]	[4.26, 4.496]	[4.496, 4.8]
CB86	0	_	0.0339(22)(24)	0.2456(25)(172)	0.1543(27)(108)	_
	1	_	0.0220(14)(15)	0.1459(16)(102)	0.0801(14)(56)	_
	2	_	0.0143(9)(10)	0.0868 (9)(61)	0.0416(7)(29)	_
BES02	0	0.0334(24)(17)	0.0362(29)(18)	0.2362(41)(118)	0.1399(38)(70)	0.1705(63)(85)
	1	0.0232(17)(12)	0.0235(19)(12)	0.1401(24)(70)	0.0726(20)(36)	0.0788(30)(39)
	2	0.0161(12)(8)	0.0152(13)(8)	0.0832(15)(42)	0.0378(10)(19)	0.0365(14)(18)
BES06	0	0.0311(16)(15)	_	_	_	_
	1	0.0217(11)(11)	_	_	_	_
	2	0.0151(8)(7)	_	_	_	_
CLEO09	0	_	_	0.2591(22)(52)	_	_
	1	_	_	0.1539(13)(31)	_	_
	2	_	_	0.0915(8)(18)	_	_
Total	0	0.0319(14)(11)	0.0350(18)(15)	0.2545(18)(46)	0.1448(27)(59)	0.1705(63)(85)
	1	0.0222(9)(8)	0.0227(12)(10)	0.1511(11)(27)	0.0752(14)(31)	0.0788(30)(39)
	2	0.0155(6)(6)	0.0147(8)(6)	0.0899(6)(16)	0.0391(7)(16)	0.0365(14)(18)

Our approach: error budget

Comparison with R^{Exp} threshold data:

$$\int_{(2M_{D^0})^2}^{(4.8\,\text{GeV})^2} \frac{\mathrm{d}s}{s} R_c^{\text{cont}}(s) \Big|_{\hat{m}_c = 1.272\,\text{GeV}} = \mathcal{M}_0^{\text{Data}} = 0.6367(195) \longrightarrow \lambda_3^{\text{c,exp}} = 1.34(17)$$

$$(2M_D \le \sqrt{s} \le 4.8 \text{GeV})$$

Error induced to Quark mass:

I)
$$\lambda_3^c = 1.23 \rightarrow \lambda_3^{c,exp} = 1.34$$

from + 6.4 MeV to + 0.2 MeV

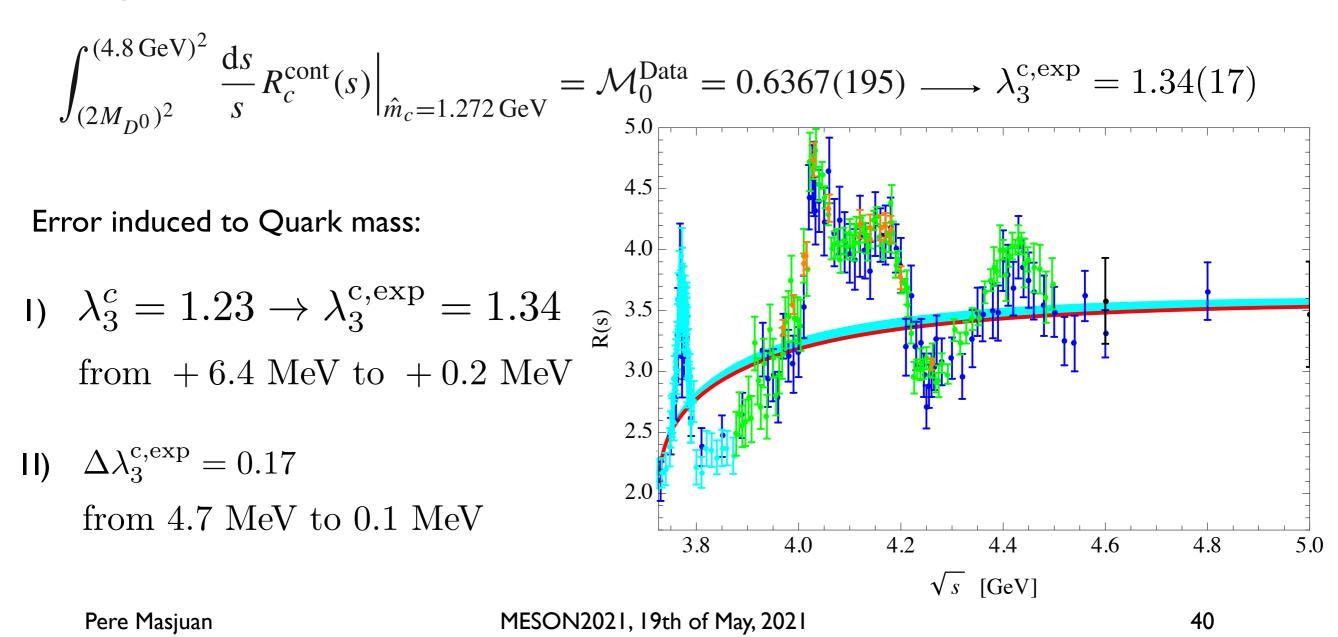
II) $\Delta \lambda_3^{\mathrm{c,exp}} = 0.17$

from 4.7 MeV to 0.1 MeV

n	Data	$\lambda_3^c = 1.34(17)$	$\lambda_{3}^{c} = 1.23$
0	0.6367(195)	0.6367(195)	0.6239
1	0.3500(102)	0.3509(111)	0.3436
2	0.1957(54)	0.1970(65)	0.1928
3	0.1111(29)	0.1127(38)	0.1102
4	0.0641(16)	0.0657(23)	0.0642
5	0.0375(9)	0.0389(14)	0.0380

Our approach: error budget

Comparison with R^{Exp} threshold data:



Our approach: error budget

Condensates:

Non-perturbative effects due to gluon condensates to the moments are: [Chetyrkin et al '12]

$$\mathcal{M}_{n}^{\text{nonp}}(\mu^{2}) = \frac{12\pi^{2}Q_{q}^{2}}{(4\hat{m}_{q}^{2})^{n+2}} \text{Cond} a_{n} \left(1 + \frac{\alpha_{s}(\hat{m}_{q}^{2})}{\pi}b_{n}\right)$$

 a_n, b_n are numbers, and $\text{Cond} = \langle \frac{\alpha_s}{\pi} G^2 \rangle = (5 \pm 5) \cdot 10^{-3} \text{GeV}^4$ [Dominguez et al '14]

$$\Delta \langle \frac{\alpha_s}{\pi} G^2 \rangle = 5 \cdot 10^{-3} \text{GeV}^4 \quad \longrightarrow \quad$$

from 1 MeV to 4 MeV (0th+1st) (0th+5th)

(but this is only the first condensate)

$$\Delta \overline{m_c}(\overline{m_c})[\text{MeV}] = -0.5 \cdot 10^3 \frac{\text{MeV}}{\text{GeV}^4} \Delta \langle \frac{\alpha_s}{\pi} G^2 \rangle$$

Pere Masjuan

Our approach: error budget

$$\Delta lpha_s(M_z) \qquad \qquad lpha_s(M_z) = 0.1182(16) \qquad \qquad {
m from PDG16}$$

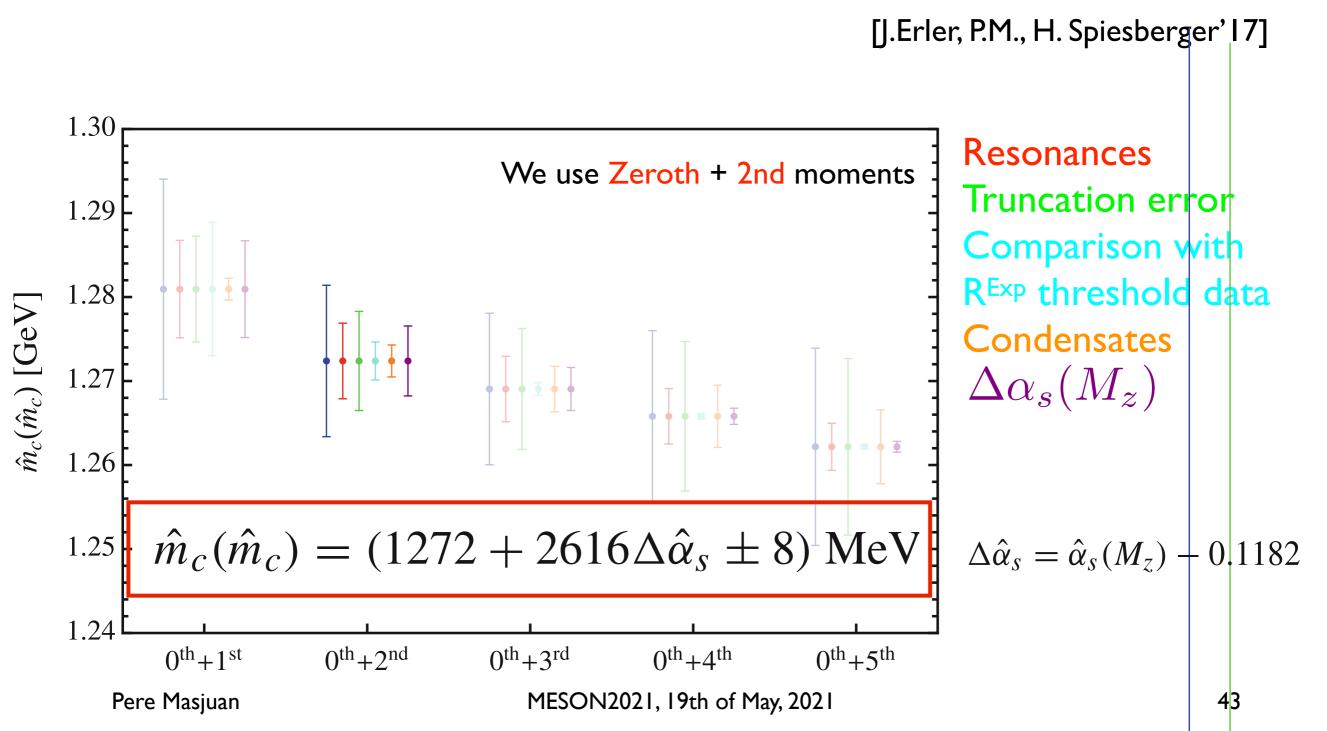
$\Delta \alpha_s(M_z) = 0.0016 \quad \longrightarrow \quad \text{from 6 MeV to 1 MeV}$

Parametric error:

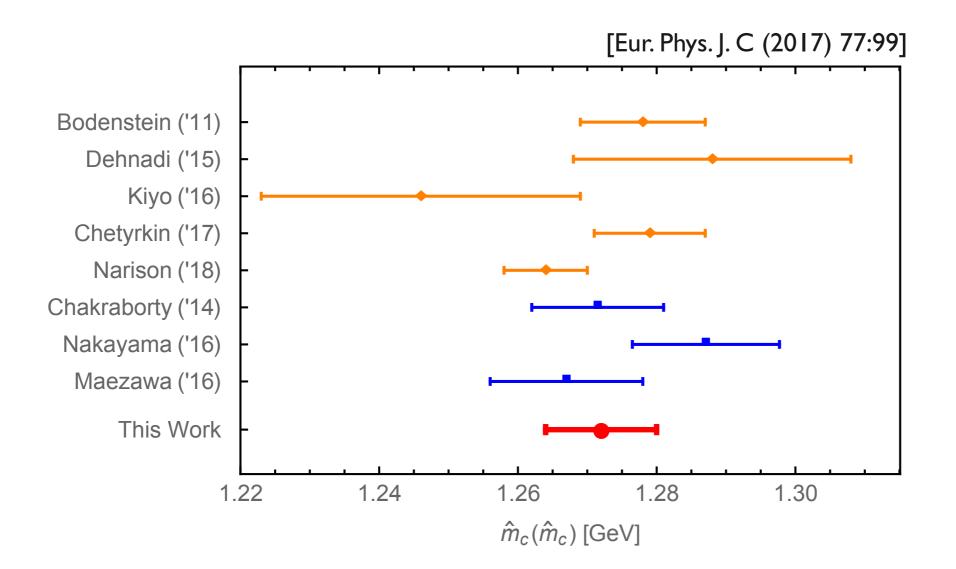
(0th+1st)
$$\Delta \overline{m_c}(\overline{m_c})[\text{MeV}] = 3.6 \cdot 10^3 \Delta \alpha_s(M_z)$$

(0th+5th) $\Delta \overline{m_c}(\overline{m_c})[\text{MeV}] = -0.4 \cdot 10^3 \Delta \alpha_s(M_z)$

Our approach: final result



results for the charm quark mass



Bottom

Bottom case

Procedure: the same as in the charm case

Main differences:

- Data from Babar '09 and Belle '15 for $R_b(s) = \sigma_b(s) / \sigma_{\mu\mu}^0$
- Condensates negligible
- Add systematically the $\Upsilon(4S), \Upsilon(5S), \Upsilon(6S)$

Bottom case

Procedure: the same as in the charm case

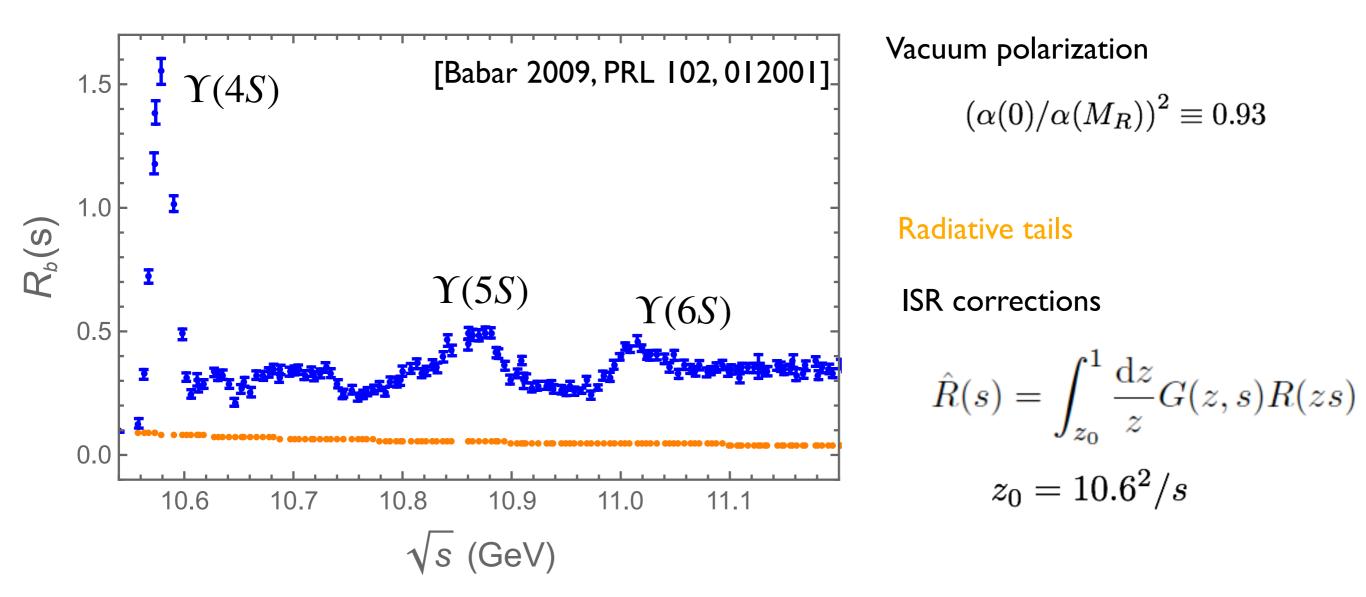
$$R_{q}(s) = R_{q}^{\text{res}}(s) + R_{q}^{\text{cont}}(s).$$

$$R_{q}(s) = R_{q}^{\text{res}}(s) + R_{q}^{\text{cont}}(s).$$

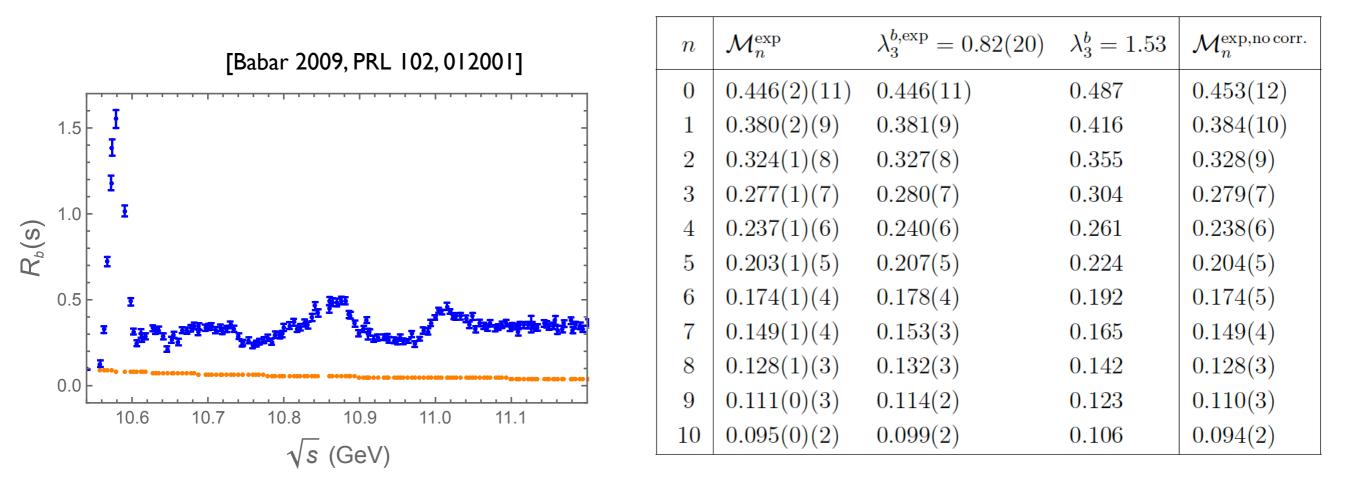
$$R_{q}^{\text{cont}}(s) = 3Q_{q}^{2}\lambda_{1}^{q}(s)\sqrt{1 - \frac{4\,\hat{m}_{q}^{2}(2M)}{s'}} \left[1 + \lambda_{3}^{q}\left(\frac{2\,\hat{m}_{q}^{2}(2M)}{s'}\right)\right]$$

R	$M_R \; [\text{GeV}]$	Γ_R	$\Gamma^e_R \; [\mathrm{keV}]$	$\alpha_{\rm em}^2(0)/\alpha_{\rm em}^2(M_R)$
$\Upsilon(1S)$	9.46030	54.02(1.25) keV	1.340(18)	0.931308
$\Upsilon(2S)$	10.02326	31.98(2.63) keV	0.612(11)	0.930113
$\Upsilon(3S)$	10.3552	20.32(1.85) keV	0.443(8)	0.929450
$\Upsilon(4S)$	10.5794	$20.5(2.5) { m MeV}$	0.272(29)	0.929009
$\Upsilon(5S)$	10.8852	37 (4) MeV	0.31(7)	0.928415
$\Upsilon(6S)$	11.000	24 (7) MeV	0.130(30)	0.928195

Pere Masjuan



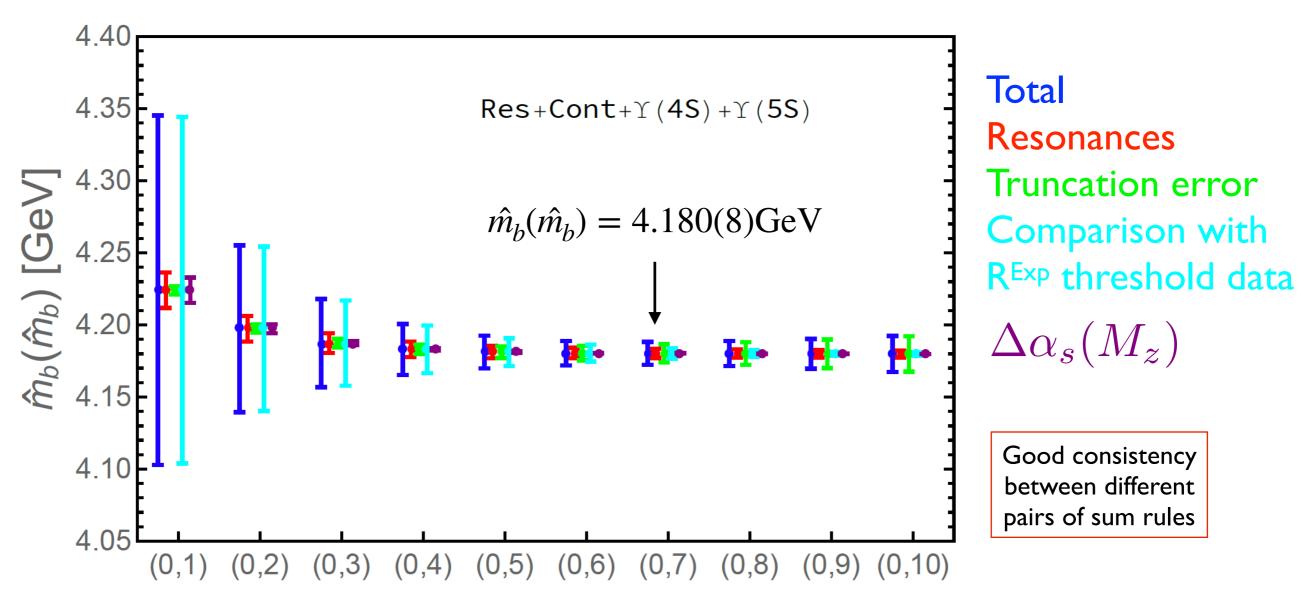
Experimental moments



(Belle '15 data used as a crosscheck)

Pere Masjuan

Our approach



MESON2021, 19th of May, 2021

Pere Masjuan

50

Our approach

Explore systematically $R_b(s) = R_b^{\text{res}}(s) + R_b^{\text{cont}}(s) + R_b^{\text{res,Gamma}}(s)$

	$\hat{m}_b(\hat{m}_b)$ [MeV]	Pair of moments
Only resonances below threshold	$4186.7 - 39.5 \Delta \hat{\alpha}_s \pm 12.7$	$(\mathcal{M}_0,\mathcal{M}_9)$
$+ \Upsilon(4S)$	$4183.8 - 68.0 \Delta \hat{\alpha}_s \pm 9.7$	$(\mathcal{M}_0,\mathcal{M}_8)$
$+ \Upsilon(4S) + \Upsilon(5S)$	$4180.2 - 108.5 \Delta \hat{\alpha}_s \pm 7.9$	$(\mathcal{M}_0,\mathcal{M}_7)$
$+\Upsilon(4S)+\Upsilon(5S)+\Upsilon(6S)$	$4178.9 - 64.0 \Delta \hat{\alpha}_s \pm 9.7$	$(\mathcal{M}_0,\mathcal{M}_8)$

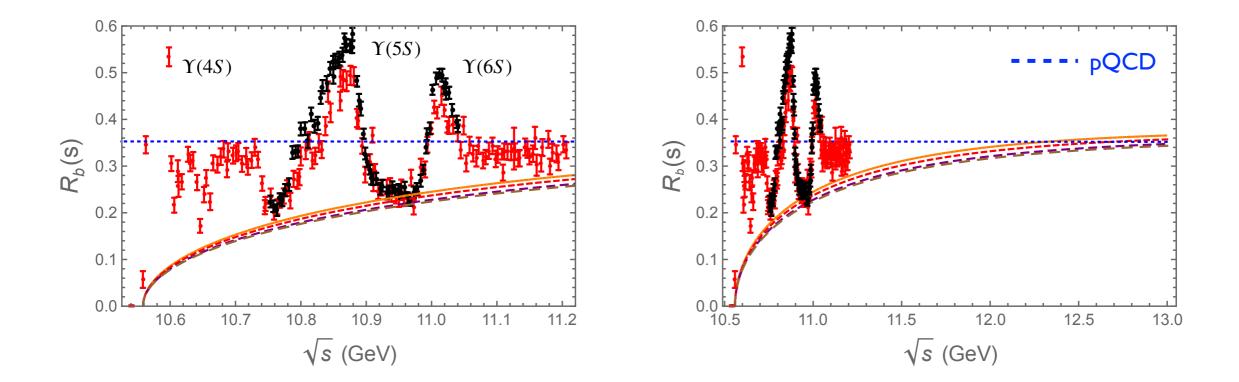
$$R_b^{\text{res,Gamma}}(s) = \sum_{R=\Upsilon(4S),\Upsilon(5S)} \frac{9\pi}{\alpha_{\text{em}}^2(M_R)} \frac{\Gamma_R^e}{M_R} \text{Gamma}(s - 4M_B^2 | \alpha, \beta)$$

$$\alpha = 1 + \frac{2}{\sqrt[3]{\pi}} \frac{(M_R^2 - 4M_B^2)^2}{\Gamma_R^2 M_R^2} \qquad \qquad \beta = \frac{\alpha - 1}{M_R^2 - 4M_B^2}$$

Pere Masjuan

Our approach

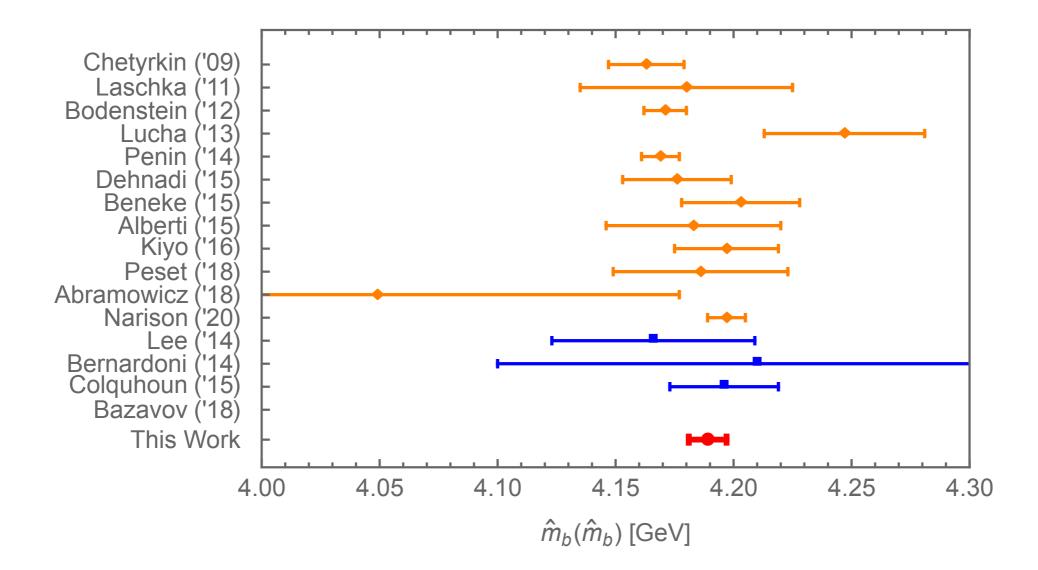
Data beyond 11.2 GeV will help reducing error: pQCD reaching at 13 GeV



 $R_b(s) = R_b^{\text{res}}(s) + R_b^{\text{cont}}(s) + R_b^{\text{res},\text{Gamma}}(s)$

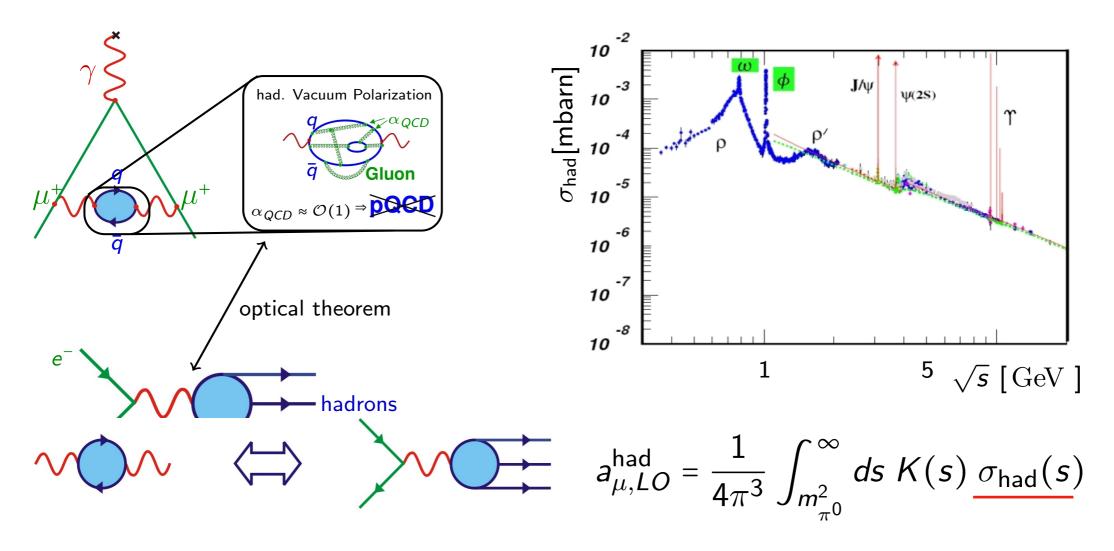
Our approach

Repeat for each pair Zeroth+nth moment



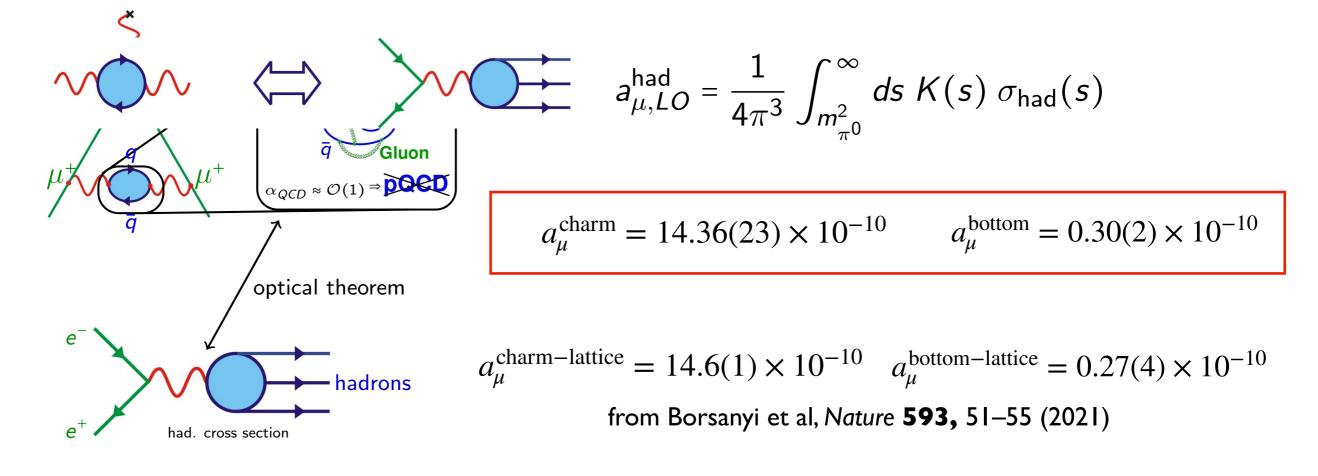
Heavy-quark contribution to $(g-2)_{\mu}$

Hadronic Vacuum Polarization: largest \checkmark \checkmark \checkmark \checkmark \checkmark Flavor decomposition may help, specially to compare with lattice QCD estimates



Heavy-quark contribution to $(g-2)_{\mu}$

Hadronic Vacuum Polarization: largest source of uncertainty in $(g-2)_{\mu}$ Flavor decomposition may help, specially to compare with lattice QCD estimates

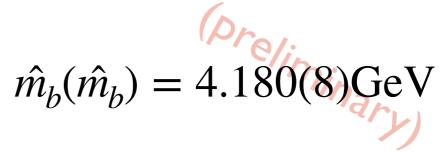


	central value	total error	resonances	$\Delta\lambda_3$	$\Delta \alpha_s$	Condensates	Truncation
a_{μ}^{charm}	1.436	0.023	0.012	0.018	0.005	0.001	0.004
$a_{\mu}^{ m bottom}$	2.978	0.171	0.012	0.170	0.005		0.004

Conclusions and Outlook

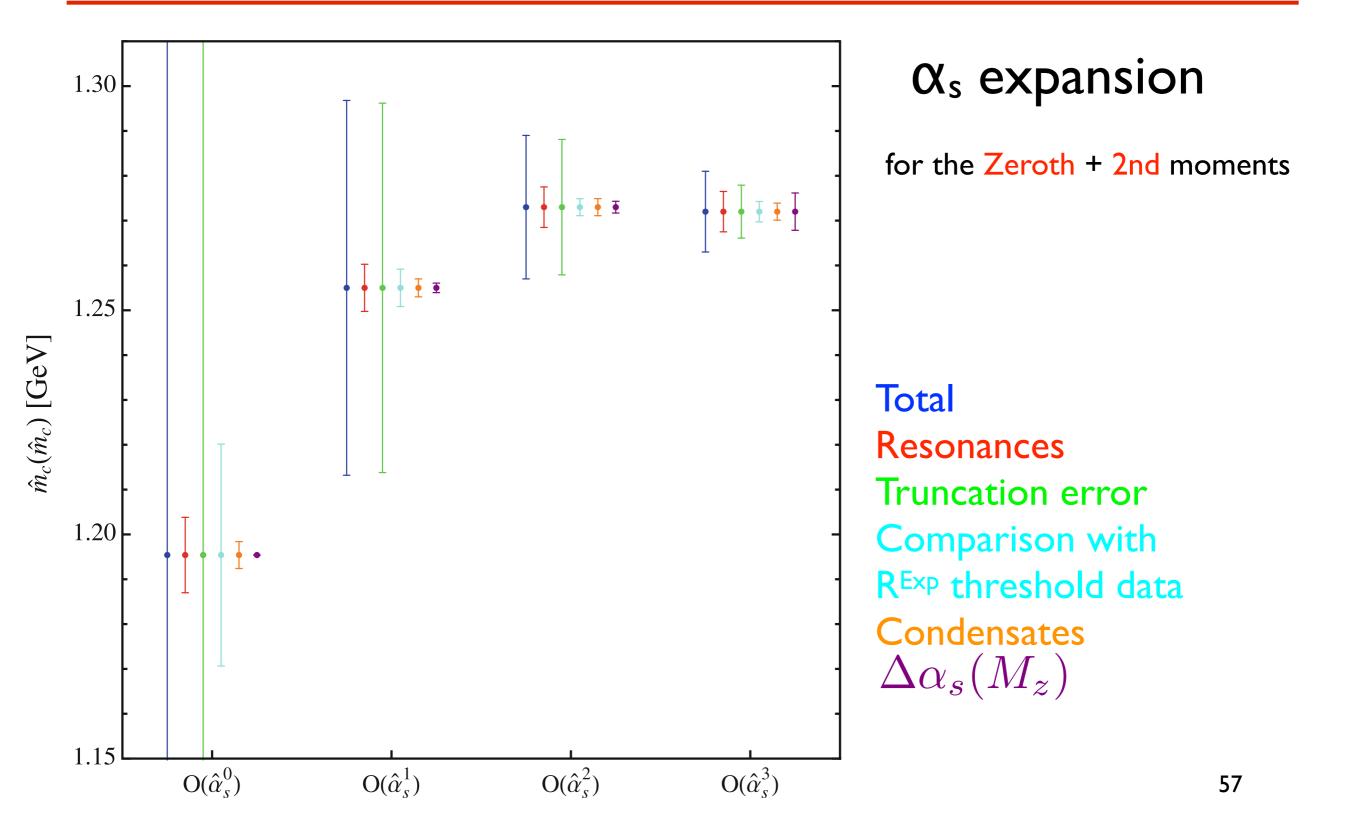
• Using SR technique + zeroth moment (very sensitive to the continuum) + data on charm resonances below threshold + continuum exploiting self-consistency among different moments:

$$\hat{m}_c(\hat{m}_c) = 1.272(9) \text{GeV}$$

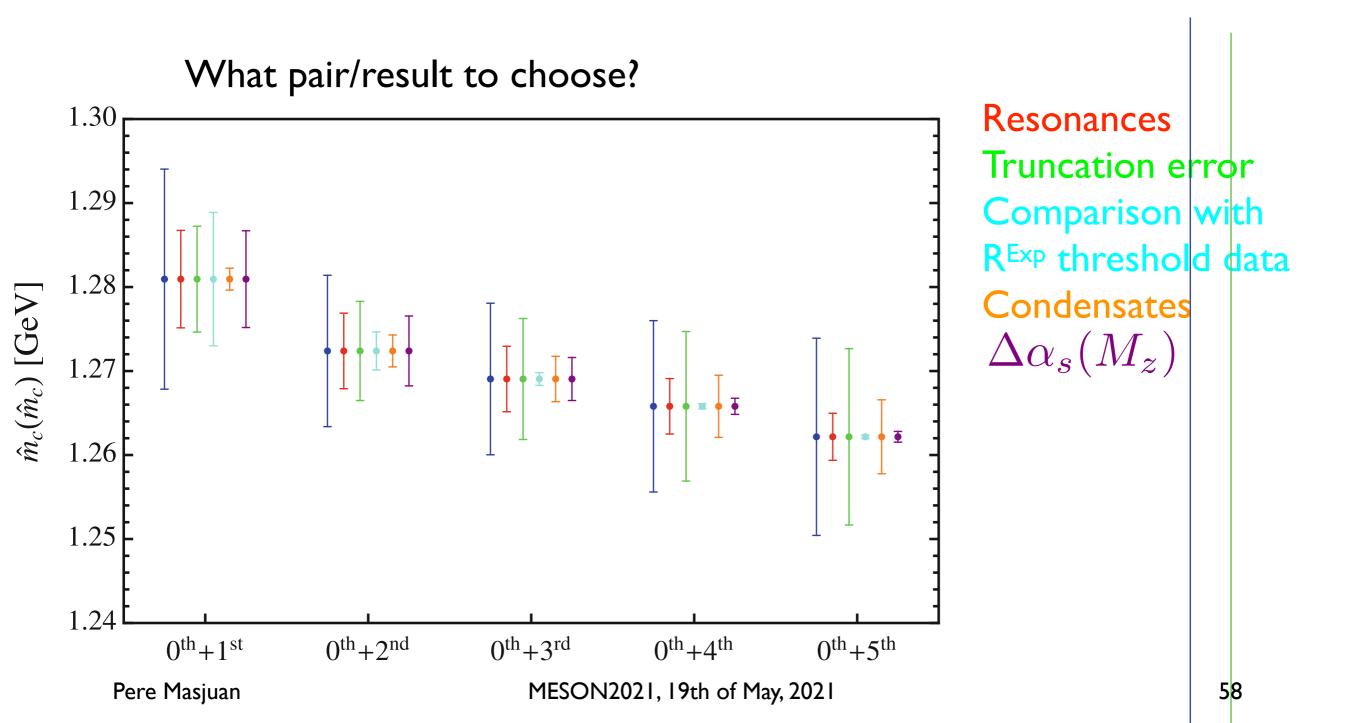


- •Error sources are understood: seems a clear roadmap for improvements
- Impact on (g-2)_µ from heavy quarks: $a_{\mu}^{\text{charm+bottom}} = 14.66(23) \times 10^{-10}$

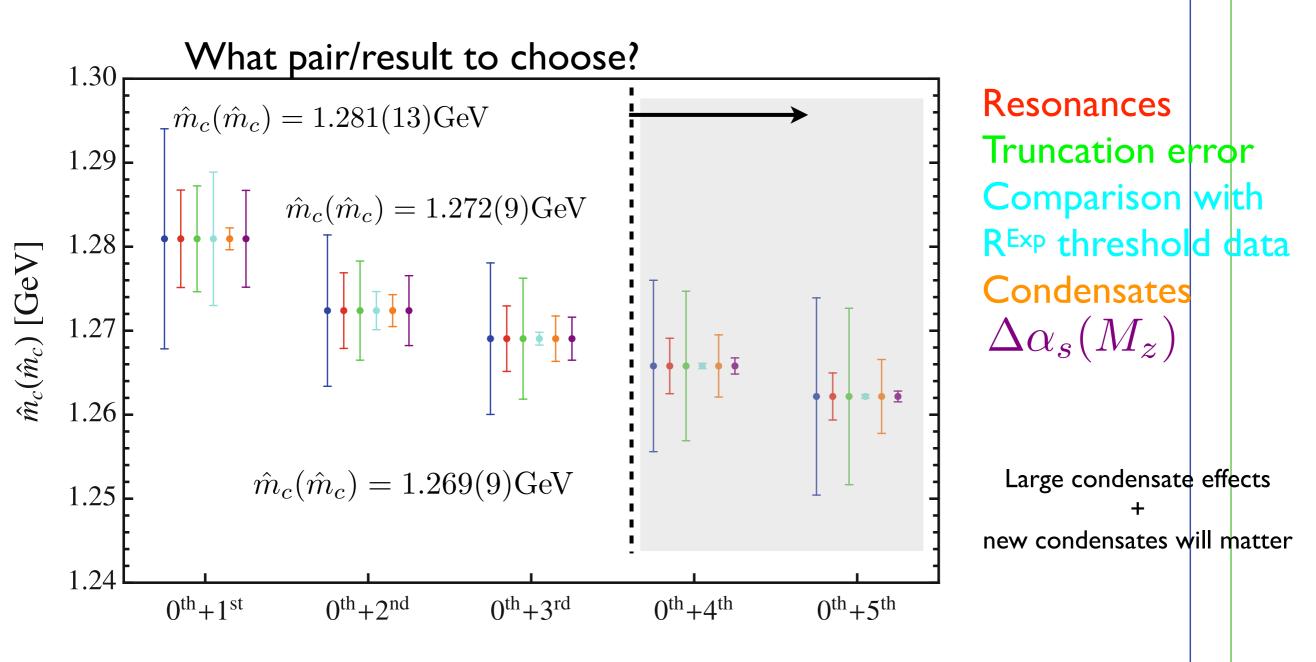
Thanks!



Our approach



Our approach



Pere Masjuan

Our approach: more than two moments?

Define a χ^2 function:

$$\chi^{2} = \frac{1}{2} \sum_{n,m} \left(\mathcal{M}_{n} - \mathcal{M}_{n}^{pQCD} \right) \left(\mathcal{C}^{-1} \right)^{nm} \left(\mathcal{M}_{m} - \mathcal{M}_{m}^{pQCD} \right) + \chi_{c}^{2}$$
$$\mathcal{C} = \frac{1}{2} \sum_{n,m} \rho^{Abs(n-m)} \Delta \mathcal{M}_{n}^{(4)} \Delta \mathcal{M}_{m}^{(4)} \qquad \rho \text{ a correlation parameter}$$

$$\chi_c^2 = \left(\frac{\Gamma_{J/\Psi(1S)}^e - \Gamma_{J/\Psi(1S)}^{e,\exp}}{\Delta\Gamma_{J/\Psi(1S)}^e}\right)^2 + \left(\frac{\Gamma_{\Psi(2S)}^e - \Gamma_{\Psi(2S)}^{e,\exp}}{\Delta\Gamma_{\Psi(2S)}^e}\right)^2 + \left(\frac{\hat{\alpha}_s(M_z) - \hat{\alpha}_s(M_z)^{\exp}}{\Delta\hat{\alpha}_s(M_z)}\right)^2 + \left(\frac{\langle \frac{\alpha_s}{\pi}G^2 \rangle - \langle \frac{\alpha_s}{\pi}G^2 \rangle^{\exp}}{\Delta\langle \frac{\alpha_s}{\pi}G^2 \rangle}\right)^2$$

Our approach: more than two moments?

Define a χ^2 function:

ρ	Constraints	$(\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2)_{\rho}$ -0.06	$\mathcal{M}_{0}, \ (\mathcal{M}_{1}, \mathcal{M}_{2})_{\rho} - 0.05$	$\mathcal{M}_0, \ (\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3)_{\rho} \\ 0.32$
$\hat{m}_c(\hat{m}_c)$ [GeV]		1.275(8)	1.275(8)	1.271(7)
λ_3^c		1.19(8)	1.19(8)	1.19(7)
$\Gamma^{e}_{J/\Psi}$ [keV]	5.55(14)	5.57(14)	5.57(14)	5.59(14)
$\Gamma^{e}_{\Psi(2S)}$ [keV]	2.36(4)	2.36(4)	2.36(4)	2.36(4)
C_G [GeV ⁴]	0.005(5)	0.005(5)	0.005(5)	0.004(5)
$\hat{\alpha}_s(M_z)$	0.1182(16)	0.1178(15)	0.1178(15)	0.1173(15)

Our approach: more than two moments?

Preferred scenario:

	$0\mathrm{th} + (\mathrm{1st} + 2\mathrm{nd})_ ho \ \Delta \hat{m}_c(\hat{m}_c) \mathrm{[MeV]}$	(0th + 2nd) $\Delta \hat{m}_c(\hat{m}_c) \text{ [MeV]}$
Central value	1274.5	1272.4
$\Delta\Gamma^e_{J/\Psi}$	5.9	4.5
$\Delta\Gamma^{e}_{\Psi(2S)}$	1.4	0.4
Truncation	—	5.9
$\Delta\lambda_3^c$	3.0	2.3
Condensates	1.1	1.9
$\Delta \hat{\alpha}_s(M_Z)$	5.4	4.2
Total	8.7	9.0

